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Guiding questions/themes

(1) What does a random graph locally look like?

(2) How does a global structure of a random graph affect its local structure?

ANl

(3) What about a local structure of a random graph if a global constraint
(e.g. planarity) is imposed to a random graph?



Part I.
Erdos-Rényi random graph

@ G =G(n,m) €g G(n,m)
a graph chosen uniformly at random from the class G(n, m) of
all vertex-labelled simple graphs on vertex set [n] := {1,...,n}
with m = m(n) edges

@ all asymptotics are taken as n —

@ whp = with high probability

= with probability tending to one as n — oo



Phase transition in Erdos-Rényi random graph
G =G(n,m) €g G(n,m) and 2m/n "= ¢ € [0,00)
Theorem [ ERDOS-RENYI 1959-60 |
@ If¢c < 1 (‘subcritical’), whp
— each component is of order O(log n)
— each component is either a tree or unicyclic component
@ Ifc¢ > 1 (‘supercritical’), whp

— unique largest (‘giant’) component of order ©(n)

— largest comp contains > two cycles (‘complex’) and is not planar
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Largest component in Erdés-Rényi random graph
G=G(n,m) €g Gn,m) and 2m/n =25 ¢ € [0,00)
L largest componentin G

p positive solution of 1 — p = exp(—c p)

Theorem

h
P L] = (L+0(1)) pn
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Part Il.

Local structure of Erdos-Rényi random graph
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@ rerV(G(n,m))
a vertex chosen uniformly at random from V(G(n, m))

d(r) ~ Po(c)



Part Il.

Local structure of Erdos-Rényi random graph

@ rerV(G(n,m))
a vertex chosen uniformly at random from V(G(n, m))

d(r) ~ Po(c)
d(u) ~ Po(c)

d(v) ~ Po(c)



Benjamini-Schramm local weak limit
[ BENJAMINI-SCHRAMM 2001; ALDOUS—STEELE 2004]
@ arooted graph is a pair (H, r) of a graph H and a vertex r € V(H)
@ two rooted graphs (Hi, ) and (H», r») are isomorphic,
(Hi,r) = (Ha, 1)
if 3 isomorphism ¢ from H, onto H, with ¢(ri) = r>
@ given arooted graph (H,r) and ¢ € N := {1,2,...}, let

Bi(H,r) == H [{v € V(H) : dy(v,r) < 0}




Benjamini-Schramm local weak limit — cont’d

Definition [ BENJAMINI-SCHRAMM 2001; ALDOUS—STEELE 2004]
Given two random rooted graphs (Gi, 1) and (G, r2) with Gi = Gi(n),
the local weak limit of (G1,r1) is (G2, r2), denoted by
(Gi,n) = (Gan)
if for each fixed rooted graph (H, ry) and £ € N
n—roc0

P|Be (Gi,r) (H,FH)] e P[Bg (G2, r2) = (H,ru)
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Erdos-Rényi random graph vs Galton—-Watson tree

@ G =G(n,m) €g G(n,m)
Q reg V(G)

n— oo

If 2m/n ——— ¢ € [0,00), then

d

G,r) -5 GWT(c)

where GWT (c) is the Galton—Watson tree with offspring distribution Po (¢)

.

ie. P [1:, (G,r) = (/er} o~ (u.,m}



Local weak limit of a random tree

@ T=T(n)erT(n)
a tree chosen uniformly at random from the class of all trees
(i.e. acyclic connected graphs) on vertex set [n]

Q@ rer V(T)

Theorem [ GRIMMETT 1980/1981 ]

d

Y

a rooted tree obtained by replacing each vertex of an infinite path
by an independent Galton-Watson tree GWT (1)

Skeleton tree T




Part Ill.
Local weak limit of a random planar graph

GWT (¢) Galton—Watson tree

T Skeleton tree

Y




Local weak limit of a random planar graph
@ P=P(n,m) €g P(n,m) a uniform random planar graph

@ r €g V(P) avertex chosen uniformly at random from V(P)



Local weak limit of a random planar graph
@ P=P(n,m) €g P(n,m) a uniform random planar graph

@ r €g V(P) avertex chosen uniformly at random from V(P)

Theorem [ K.—=MISSETHAN 2021+ ]

n—o00

@ lf2m/n 2225 cc[0,1], then (P,r) -5 GWT ()




Local weak limit of a random planar graph
@ P=P(n,m) €g P(n,m) a uniform random planar graph

@ r €g V(P) avertex chosen uniformly at random from V(P)

Theorem [ K.—=MISSETHAN 2021+ ]
@ lf2m/n 2225 cc[0,1], then (P,r) -5 GWT ()
@ If2m/n 2225 2, then P,r) 5 T




Local weak limit of a random planar graph

© P=P(nm) € P(nym) and 2m/n ~==5 c € (1,2)

@ rerV(P)

Theorem [ K.—=MISSETHAN 2021+ ]

(P,r) 5 (2—=¢)GWT() + (c—1)Ts




Local weak limit of a random planar graph

© P=P(nm) € P(nym) and 2m/n “=25 ce(1,2)

@ rerV(P)

Theorem [ K.—=MISSETHAN 2021+ ]

(P,r) 5 (2—=¢)GWT() + (c—1)Ts

i.e. for each rooted graph (H, ry) and ¢ € N, we have

n— oo

f[np (P,r) = (H, r“)} K-S S \P[n, (GWT (1)) = (H, r,,)] + (c—1) \P{B[ (Too) (/1,)-,,)}



Part IV.

Main proof ideas



Phase transition in a random planar graph

P = P(n,m) €g P(n,m) and 2m/n — c€ (1,6]

L largest component of P
Theorem [ K.—kuczak 2012 ]
@ Ifc € (1,2), whp Ll = (14+0(1)) (c—1)n
@ Ifc € [2,6], whp Ll = (1+o0(1))n
[LI/n
1
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Global structure of a random planar graph

P = P(n,m) €g P(n,m) and 2m/n — c€ (1,2)
L largest component of P



Global structure of a random planar graph
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S =P\L ‘small’ part of P
c 2-core = max subgraph of L with min deg > two



Global structure of a random planar graph

P = P(n,m) €g P(n,m) and 2m/n — c€(1,2)

L largest component of P

S =P\L ‘small’ part of P

c 2-core = max subgraph of L with min deg > two
Theorem [ K.—£UCZAK 2012; K.~MOSSHAMMER—SPRUSSEL 2020 |

@ S ‘behaves similarly’ like a critical ER random graph G(#, )
with n=(2—-¢)n and 2m/n — 1

@ L = C + each vertexin V(C) replaced by a rooted tree



Local weak limit of a random forest

@ F=F(n,t) €gr F(n,t) aforestwithttree components
@ rr €g V(F) avertex chosen uniformly at random from V(F)




Local weak limit of a random forest

@ F=F(n,t) €gr F(n,t) aforestwithttree components
Q@ rrerV (F)

°I‘T

a vertex chosen uniformly at random from V(F)

the root of the tree component T in F that contains rr

Lemma [ K.=MISSETHAN 2021+ ]

If t = t(n) = o(n), then whp dr(rr,rr) = w(1) and

(Frr) -5 T




Finer view of local weak limits

P = P(n,m) €g P(n,m) and 2m/n — c€(1,2)
L largest componentof P and |L| ~ (c—1)n
rL €r V(L)
Theorem [ K.—MISSETHAN 2021+ ]

(Lir) -5 Te

(L, L) L> Too



Finer view of local weak limits

P = P(n,m) €g P(n,m) and 2m/n — c€(1,2)
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Finer view of local weak limits

P = P(n,m) €g P(n,m) and 2m/n — c€(1,2)
L largest componentof P and |L| ~ (c—1)n
S=P\L ~ crtitical ERrandomgraph and |S| ~ (2—c¢)n

rs €ErV(S), r€rV(L), and rp €x V(P)

Theorem [ K.—MISSETHAN 2021+ ]
S,rs) -5 GWT(1)
(Lir) -5 Te
(P,rp) L (2-¢)GWT(1) + (c—1)Teo

(S,rs) <L GWT (1) L) 5 Teo



Local limit of a random planar graph with root in 2-core
P =P(n,m) €g P(n,m) and 2m/n — c€ (1,2)
C  2-core = maximal subgraph of largest comp of P with min deg > 2
rec €r V(C)
rc

(P,re) L 1O

7.0 a rooted tree obtained by replacing each vertex of k infinite
paths rooted at a common vertex by an independent GWT (1)



Local limit of a random planar graph with root in 2-core

P =P(n,m) €g P(n,m) and 2m/n — c€ (1,2)
C  2-core = maximal subgraph of largest comp of P with min deg > 2
re €r V(C)

rc

(P,re) & 1.9

7.0 a rooted tree obtained by replacing each vertex of k infinite
paths rooted at a common vertex by an independent GWT (1)

cf. local weak limit of a random planar graph with r €z V (P)
P,r) L (2-c)GWT() + (c—1)Tw

= 2-010 + (=1



Summary and open problems
(1) Phase transitions and critical phenomena

Uniform random graph G(n, m) Random planar graph P(n, m)

[L|/n [L|/n

0 1 2 3 o= 0 1 2 3 o=

n n



Summary and open problems

(1) Phase transitions and critical phenomena

Uniform random graph G(n, m) Random planar graph P(n, m)
[L[/n [L]/n
1
0.5 0.5
0 . . 0
0 1 2 3 c=2 0 1 2 3 =2

n n

@ S = G(n,m)\ L 'behaves similarly’ like a subcritical ER random graph
G(n,m) with n=(l1—-p)n and 2m/n < 1

@ S = P(n,m)\ L ‘behaves similarly’ like a critical ER random graph
G(n,m) with n=Q2—-c)n and 2m/n — 1



Summary and open problems — cont’d

(2) Local weak limit of a random planar graph
If P = P(n,m) €gr P(n,m), 2m/n — c € (1,2),and r €x V(P), then

(P.r) L (2-c0)GWT() + (c—1)Tw

SSYIN(E




Summary and open problems — cont’d
Let P = P(n,m) €g P(n,m) and r &g V (P)

(3) In 2nd critical regime when 2m/n — 2

|2-core|] = o(n) and (P,r) — Tx = 7




Summary and open problems — cont’d
Let P = P(n,m) €g P(n,m) and r &g V (P)

(3) In 2nd critical regime when 2m/n — 2 and m<n+o (n (log n)’m)

|2-core|] = o(n) and  (P,r) L T = 1.0




Summary and open problems — cont’d
Let P = P(n,m) €g P(n,m) and r &g V (P)

(3) In 2nd critical regime when 2m/n — 2 and m<n-+o (n (log n)’m)

|2-core|] = o(n) and  (P,r) L T = 1.0

(4) Conjecture: 32 <t <442and0<a,b<1s.t 2m/n— B € (2,t),
@ [2core] = (a+b+o(1))n, |kemell = (b+o0(1))n, and

@ (P N (1—a—bT" + a7 + bTZY



