Benjamini-Schramm local limits of sparse random planar graphs

Mihyun Kang

Joint work with Michael Missethan

Oxford Discrete Mathematics and Probability Seminar, 18 May 2021

Guiding questions/themes

(1) What does a random graph locally look like?

(2) How does a global structure of a random graph affect its local structure?

(3) What about a local structure of a random graph if a global constraint (e.g. planarity) is imposed to a random graph?

Part I.

Erdős-Rényi random graph

• $G = G(n,m) \in_R \mathcal{G}(n,m)$

a graph chosen uniformly at random from the class $\mathcal{G}(n,m)$ of all vertex-labelled simple graphs on vertex set $[n] := \{1, \ldots, n\}$ with m = m(n) edges

- all asymptotics are taken as $n \to \infty$
- whp = with high probability
 - = with probability tending to one as $n \to \infty$

Phase transition in Erdős-Rényi random graph

 $G = G(n,m) \in_R \mathcal{G}(n,m)$ and $2m/n \xrightarrow{n \to \infty} c \in [0,\infty)$

Theorem

[ERDŐS-RÉNYI 1959-60]

- If c < 1 ('subcritical'), whp
 - each component is of order $O(\log n)$
 - each component is either a tree or unicyclic component
- If c > 1 ('supercritical'), whp
 - unique largest ('giant') component of order $\Theta(n)$
 - largest comp contains \geq two cycles ('complex') and is not planar

Largest component in Erdős-Rényi random graph

 $G = G(n,m) \in_R \mathcal{G}(n,m)$ and $2m/n \xrightarrow{n \to \infty} c \in [0,\infty)$

L largest component in G

$$\rho$$
 positive solution of $1 - \rho = \exp(-c \rho)$

Part II.

Local structure of Erdős-Rényi random graph

Part II.

Local structure of Erdős-Rényi random graph

• $r \in_R V(G(n,m))$

a vertex chosen uniformly at random from V(G(n, m))

Part II.

Local structure of Erdős-Rényi random graph

• $r \in_R V(G(n,m))$

a vertex chosen uniformly at random from V(G(n,m))

Benjamini-Schramm local weak limit

[BENJAMINI-SCHRAMM 2001; ALDOUS-STEELE 2004]

- a rooted graph is a pair (H, r) of a graph H and a vertex $r \in V(H)$
- two rooted graphs (H_1, r_1) and (H_2, r_2) are isomorphic,

$$(H_1,r_1) \cong (H_2,r_2)$$

if \exists isomorphism ϕ from H_1 onto H_2 with $\phi(r_1) = r_2$

• given a rooted graph (H, r) and $\ell \in \mathbb{N} := \{1, 2, ...\}$, let $B_{\ell}(H, r) := H \left[\{v \in V(H) : d_{H}(v, r) \leq \ell \} \right]$

Benjamini-Schramm local weak limit - cont'd

Definition

[BENJAMINI-SCHRAMM 2001; ALDOUS-STEELE 2004]

Given two random rooted graphs (G_1, r_1) and (G_2, r_2) with $G_1 = G_1(n)$,

the local weak limit of (G_1, r_1) is (G_2, r_2) , denoted by

$$(G_1, r_1) \xrightarrow{d} (G_2, r_2)$$

if for each fixed rooted graph (H, r_H) and $\ell \in \mathbb{N}$

$$\mathbb{P}\Big[B_{\ell}\left(G_{1},r_{1}\right) \cong \left(H,r_{H}\right)\Big] \xrightarrow{n \to \infty} \mathbb{P}\Big[B_{\ell}\left(G_{2},r_{2}\right) \cong \left(H,r_{H}\right)\Big]$$

Erdős-Rényi random graph vs Galton–Watson tree

•
$$G = G(n,m) \in_R \mathcal{G}(n,m)$$

• $r \in_{R} V(G)$

If $2m/n \xrightarrow{n \to \infty} c \in [0, \infty)$, then

 $(G,r) \xrightarrow{d} \operatorname{GWT}(c)$

where GWT(c) is the Galton–Watson tree with offspring distribution Po(c)

Local weak limit of a random tree

•
$$T = T(n) \in_R \mathcal{T}(n)$$

a tree chosen uniformly at random from the class of all trees

(i.e. acyclic connected graphs) on vertex set [n]

• $r \in_{R} V(T)$

a rooted tree obtained by replacing each vertex of an infinite path by an independent Galton-Watson tree $\mathrm{GWT}\left(1\right)$

Part III.

Local weak limit of a random planar graph

GWT (c) Galton–Watson tree

• $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$ a uniform random planar graph

• $r \in_{R} V(P)$ a vertex chosen uniformly at random from V(P)

• $P = P(n,m) \in_R \mathcal{P}(n,m)$ a uniform random planar graph

• $r \in_{R} V(P)$ a vertex chosen uniformly at random from V(P)

Theorem [K.-MISSETHAN 2021+]
If
$$2m/n \xrightarrow{n \to \infty} c \in [0, 1]$$
, then $(P, r) \xrightarrow{d} \text{GWT}(c)$

• $P = P(n,m) \in_R \mathcal{P}(n,m)$ a uniform random planar graph

• $r \in_R V(P)$ a vertex chosen uniformly at random from V(P)

Theorem [K.-MISSETHAN 2021+]
• If
$$2m/n \xrightarrow{n \to \infty} c \in [0, 1]$$
, then $(P, r) \xrightarrow{d}$ GWT (c)
• If $2m/n \xrightarrow{n \to \infty} 2$, then $(P, r) \xrightarrow{d} T_{\infty}$

• $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$ and $2m/n \xrightarrow{n \to \infty} c \in (1,2)$ • $r \in_{\mathbb{R}} V(P)$

GWT (1)

Theorem [K.-MISSETHAN 2021+] $(P,r) \xrightarrow{d} (2-c) \text{ GWT}(1) + (c-1) T_{\infty}$

 T_{∞}

• $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$ and $2m/n \xrightarrow{n \to \infty} c \in (1,2)$ • $r \in_{\mathbb{R}} V(P)$

i.e. for each rooted graph (H, r_H) and $\ell \in \mathbb{N}$, we have

$$\mathbb{P}\Big[B_{\ell}\left(P,r\right)\cong\left(H,r_{H}\right)\Big] \xrightarrow{n\to\infty} (2-c)\,\mathbb{P}\Big[B_{\ell}\left(\mathrm{GWT}\left(1\right)\right)\cong\left(H,r_{H}\right)\Big] + (c-1)\,\mathbb{P}\Big[B_{\ell}\left(T_{\infty}\right)\cong\left(H,r_{H}\right)\Big]$$

Part IV.

Main proof ideas

Phase transition in a random planar graph

 $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$ and $2m/n \to c \in (1,6]$

L largest component of P

Global structure of a random planar graph

$$P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$$
 and $2m/n \rightarrow c \in (1,2)$

L largest component of P

Global structure of a random planar graph

$$P = P(n,m) \in_R \mathcal{P}(n,m)$$
 and $2m/n \to c \in (1,2)$

- L largest component of P
- $S = P \setminus L$ 'small' part of P
- C 2-core = max subgraph of L with min deg \geq two

Global structure of a random planar graph

 $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m) \text{ and } 2m/n \to c \in (1,2)$ $L \qquad \qquad \text{largest component of } P$ $S = P \setminus L \qquad \text{'small' part of } P$ $C \qquad \qquad 2\text{-core} = \max \text{ subgraph of } L \text{ with min deg} \geq \text{two}$

[K.–Łuczak 2012; K.–Mosshammer–Sprüssel 2020]

- *S* 'behaves similarly' like a critical ER random graph $G(\bar{n}, \bar{m})$ with $\bar{n} = (2 - c) n$ and $2\bar{m}/\bar{n} \rightarrow 1$
- L = C + each vertex in V(C) replaced by a rooted tree

Theorem

Local weak limit of a random forest

F = *F*(*n*, *t*) ∈_{*R*} *F*(*n*, *t*) a forest with *t* tree components *r_F* ∈_{*R*} *V*(*F*) a vertex chosen uniformly at random from *V*(*F*)

Local weak limit of a random forest

• $F = F(n, t) \in_R \mathcal{F}(n, t)$ a forest with *t* tree components

• $r_F \in_R V(F)$ a vertex chosen uniformly at random from V(F)

• r_T the root of the tree component T in F that contains r_F

Lemma [K.-MISSETHAN 2021+] If t = t(n) = o(n), then whp $d_F(r_F, r_T) = \omega(1)$ and $(F, r_F) \xrightarrow{d} T_{\infty}$ $(T, r_F) \xrightarrow{d} T_{\infty}$

Finer view of local weak limits

 $P = P(n,m) \in_{R} \mathcal{P}(n,m) \qquad \text{and} \qquad 2m/n \to c \in (1,2)$ $L \qquad \text{largest component of } P \qquad \text{and} \qquad |L| \sim (c-1)n$ $r_{L} \in_{R} V(L)$

Theorem

[K.-MISSETHAN 2021+]

$$(L, r_L) \xrightarrow{d} T_{\infty}$$

Finer view of local weak limits

[K.-MISSETHAN 2021+

$$\begin{split} P &= P(n,m) \in_{\mathcal{R}} \mathcal{P}(n,m) & \text{and} \quad 2m/n \to c \in (1,2) \\ L & \text{largest component of } P & \text{and} \quad |L| \sim (c-1) n \\ S &= P \setminus L \sim & \text{crtitical ER random graph} \quad \text{and} \quad |S| \sim (2-c) n \\ r_{S} \in_{\mathcal{R}} V(S), \quad r_{L} \in_{\mathcal{R}} V(L) \end{split}$$

Theorem

$$(S, r_S) \xrightarrow{d} \operatorname{GWT}(1)$$

 $(L, r_L) \xrightarrow{d} T_{\infty}$

Finer view of local weak limits

$$\begin{split} P &= P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m) & \text{and} \quad 2m/n \to c \in (1,2) \\ L & \text{largest component of } P & \text{and} \quad |L| \sim (c-1) n \\ S &= P \setminus L \sim & \text{crtitical ER random graph} \quad \text{and} \quad |S| \sim (2-c) n \\ r_{S} \in_{\mathbb{R}} V(S), \quad r_{L} \in_{\mathbb{R}} V(L), \quad \text{and} \quad r_{P} \in_{\mathbb{R}} V(P) \end{split}$$

Theorem

$$\begin{array}{ll} (S,r_S) & \stackrel{d}{\longrightarrow} & \operatorname{GWT}(1) \\ (L,r_L) & \stackrel{d}{\longrightarrow} & T_{\infty} \\ (P,r_P) & \stackrel{d}{\longrightarrow} & (2-c) \operatorname{GWT}(1) + (c-1) T_{\infty} \end{array}$$

Local limit of a random planar graph with root in 2-core

 $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$ and $2m/n \rightarrow c \in (1,2)$

 $C \qquad 2\text{-core} = \text{maximal subgraph of largest comp of } P \text{ with min deg} \geq 2$ $r_C \in_R V(C)$

 $T_{\infty}^{(k)}$ a rooted tree obtained by replacing each vertex of *k* infinite paths rooted at a common vertex by an independent GWT (1)

Local limit of a random planar graph with root in 2-core

 $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$ and $2m/n \rightarrow c \in (1,2)$

 $C \qquad 2\text{-core} = \text{maximal subgraph of largest comp of } P \text{ with min deg} \geq 2$ $r_C \in_R V(C)$

- $T_{\infty}^{(k)}$ a rooted tree obtained by replacing each vertex of *k* infinite paths rooted at a common vertex by an independent GWT (1)
- cf. local weak limit of a random planar graph with $r \in_R V(P)$

$$(P, r) \stackrel{d}{\longrightarrow} (2 - c) \operatorname{GWT}(1) + (c - 1) T_{\infty}$$
$$= (2 - c) T_{\infty}^{(0)} + (c - 1) T_{\infty}^{(1)}$$

Summary and open problems

(1) Phase transitions and critical phenomena

Uniform random graph G(n, m)

Random planar graph P(n, m)

Summary and open problems

(1) Phase transitions and critical phenomena

Uniform random graph G(n,m)Random planar graph P(n,m) $0.5 \xrightarrow[]{|L|/n}$ $0.5 \xrightarrow[]{0}{0}{1}{1}{2}{2}{3}{c}{2}{2m \over n}$ Random planar graph P(n,m)

• $S = G(n,m) \setminus L$ 'behaves similarly' like a subcritical ER random graph $G(\bar{n},\bar{m})$ with $\bar{n} = (1-\rho)n$ and $2\bar{m}/\bar{n} < 1$

• $S = P(n,m) \setminus L$ 'behaves similarly' like a critical ER random graph $G(\bar{n},\bar{m})$ with $\bar{n} = (2-c)n$ and $2\bar{m}/\bar{n} \to 1$

(2) Local weak limit of a random planar graph

If $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m), \ 2m/n \rightarrow c \in (1,2)$, and $r \in_{\mathbb{R}} V(P)$, then

 $(P,r) \xrightarrow{d} (2-c) \operatorname{GWT}(1) + (c-1) T_{\infty}$

Let $P = P(n,m) \in_{R} \mathcal{P}(n,m)$ and $r \in_{R} V(P)$

(3) In 2nd critical regime when $2m/n \rightarrow 2$

|2-core| = o(n) and $(P,r) \xrightarrow{d} T_{\infty} = T_{\infty}^{(1)}$

Let $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$ and $r \in_{\mathbb{R}} V(P)$

(3) In 2nd critical regime when $2m/n \rightarrow 2$ and $m \le n + o\left(n \left(\log n\right)^{-2/3}\right)$

|2-core| = o(n) and $(P,r) \xrightarrow{d} T_{\infty} = T_{\infty}^{(1)}$

Let $P = P(n,m) \in_{\mathbb{R}} \mathcal{P}(n,m)$ and $r \in_{\mathbb{R}} V(P)$

(3) In 2nd critical regime when $2m/n \rightarrow 2$ and $m \leq n + o\left(n \left(\log n\right)^{-2/3}\right)$

|2-core| = o(n) and $(P,r) \xrightarrow{d} T_{\infty} = T_{\infty}^{(1)}$

(4) Conjecture: $\exists 2 < t_c < 4.42 \text{ and } 0 < a, b < 1 \text{ s.t. } 2m/n \rightarrow \beta \in (2, t_c),$

• |2-core| = (a+b+o(1)) n, |kernel| = (b+o(1)) n, and

• $(P,r) \xrightarrow{d} (1-a-b) T_{\infty}^{(1)} + a T_{\infty}^{(2)} + b T_{\infty}^{(\geq 3)}$