Correlated stochastic block models: graph matching and community recovery

Based on joint works with Julia Gaudio and Anirudh Sridhar

Miklós Z. Rácz

Oxford Discrete Mathematics and Probability Seminar March 7, 2023

Recovering communities in networks

Zachary's karate club (1970-72; 1977)

Drosophila protein-protein interaction network (Guruharsha et al., 2011)

Holland, Laskey, Leinhardt (1983)

Many works in physics, statistics, probability, CS, info theory... including:

- Decelle, Krzakala, Moore, Zdeborová (2011)
- Mossel, Neeman, Sly (2012, 2013a,b, 2014)
- Massoulié (2014)
- Abbé, Bandeira, Hall (2014)
- Abbé, Sandon (2015a,b,c)
- Bordenave, Lelarge, Massoulié (2015)
- Abbé (2017)
- •

Q: given the graph without community labels, can we recover the communities?

- Partial recovery?
- Almost exact recovery?
- Exact recovery?

Holland, Laskey, Leinhardt (1983)

Many works in physics, statistics, probability, CS, info theory... including:

- Decelle, Krzakala, Moore, Zdeborová (2011)
- Mossel, Neeman, Sly (2012, 2013a,b, 2014)
- Massoulié (2014)
- Abbé, Bandeira, Hall (2014)
- Abbé, Sandon (2015a,b,c)
- Bordenave, Lelarge, Massoulié (2015)
- Abbé (2017)
- ..

Q: given the graph without community labels, can we recover the communities?

- Partial recovery?
- Almost exact recovery?
- Exact recovery?

Holland, Laskey, Leinhardt (1983)

Many works in physics, statistics, probability, CS, info theory... including:

- Decelle, Krzakala, Moore, Zdeborová (2011)
- Mossel, Neeman, Sly (2012, 2013a,b, 2014)
- Massoulié (2014)
- Abbé, Bandeira, Hall (2014)
- Abbé, Sandon (2015a,b,c)
- Bordenave, Lelarge, Massoulié (2015)
- Abbé (2017)
- ...

This talk: two balanced communities

- *n* nodes
- $\sigma_i \in \{+1, -1\}$ i.i.d. uniform community labels
- Given $\sigma = {\sigma_i}$, edges drawn independently:
 - If $\sigma_i = \sigma_j$, then $i \sim j$ with prob. p
 - If $\sigma_i \neq \sigma_j$, then $i \sim j$ with prob. q

Q: given the graph without community labels, can we recover the communities?

- Partial recovery?
- Almost exact recovery?
- Exact recovery?

 $G \sim SBM(n, p, q)$

Holland, Laskey, Leinhardt (1983)

Many works in physics, statistics, probability, CS, info theory... including:

- Decelle, Krzakala, Moore, Zdeborová (2011)
- Mossel, Neeman, Sly (2012, 2013a,b, 2014)
- Massoulié (2014)
- Abbé, Bandeira, Hall (2014)
- Abbé, Sandon (2015a,b,c)
- Bordenave, Lelarge, Massoulié (2015)
- Abbé (2017)
- ...

This talk: two balanced communities

- n nodes
- $\sigma_i \in \{+1, -1\}$ i.i.d. uniform community labels
- Given $\sigma = {\sigma_i}$, edges drawn independently:
 - If $\sigma_i = \sigma_j$, then $i \sim j$ with prob. p
 - If $\sigma_i \neq \sigma_j$, then $i \sim j$ with prob. q

Multiple correlated networks

Q: can we synthesize information from multiple correlated networks to better recover communities?

Multiple correlated networks

Q: can we synthesize information from multiple correlated networks to better recover communities?

STOCHASTIC BLOCKMODELS: FIRST STEPS *

Paul W. HOLLAND

Educational Testing Service **

Kathryn Blackmond LASKEY and Samuel LEINHARDT

Carnegie - Mellon University †

lowercase letters. If X is a random adjacency array for g nodes and m relations, then the probability distribution of X is called a *stochastic multigraph*. We will denote the probability distribution of X by $p(x) = \Pr(X = x)$.

A stochastic blockmodel is a special case of a stochastic multigraph which satisfies the following requirements.

• Subsampling probability $s \in [0,1]$

• Subsampling probability $s \in [0,1]$

- Subsampling probability $s \in [0,1]$
- π_* uniformly random permutation of [n]

- Subsampling probability $s \in [0,1]$
- π_* uniformly random permutation of [n]
- Marginally G_1 , $G_2 \sim SBM(n, ps, qs)$
- Corresponding edges are correlated

$$(G_1, G_2) \sim \text{CSBM}(n, p, q, s)$$

(Onaran, Garg, Erkip, 2016)

HLL83: (G_1, G_2') is a "pair-dependent SBM"

- given (G_1, G_2) , when can we (exactly) recover the communities?
- can we do so in regimes where it is impossible to do so using only G_1 ?

Exact community recovery in the SBM

Need no isolated vertices \Rightarrow logarithmic degree regime: $p = a \log(n) / n$ and $q = b \log(n) / n$

Exact community recovery in the SBM

Need no isolated vertices \Rightarrow logarithmic degree regime: $p = a \log(n) / n$ and $q = b \log(n) / n$

Theorem (Abbé, Bandeira, Hall, 2014; Mossel, Neeman, Sly, 2014)

Consider the balanced two-community SBM:
$$G \sim \text{SBM}\left(n, \frac{a \log n}{n}, \frac{b \log n}{n}\right)$$

Exact recovery is possible (in polynomial time) if

Exact recovery is impossible if

$$|\sqrt{a} - \sqrt{b}| > \sqrt{2}$$

$$\left|\sqrt{a} - \sqrt{b}\right| < \sqrt{2}$$

Exact community recovery in the SBM

Need no isolated vertices \Rightarrow logarithmic degree regime: $p = a \log(n) / n$ and $q = b \log(n) / n$

Theorem (Abbé, Bandeira, Hall, 2014; Mossel, Neeman, Sly, 2014)

Consider the balanced two-community SBM: $G \sim \mathrm{SBM}\left(n, \frac{a\log n}{n}, \frac{b\log n}{n}\right)$

Exact recovery is possible (in polynomial time) if

$$\left|\sqrt{a} - \sqrt{b}\right| > \sqrt{2}$$

Exact recovery is impossible if

$$\left|\sqrt{a} - \sqrt{b}\right| < \sqrt{2}$$

Abbé, Sandon (2015): threshold for general SBMs

Intuition:

- Testing multivariate Poisson distributions
- Want error probability $n^{-1+o(1)}$
- Error exponent given by Chernoff-Hellinger divergence

Since $G_1 \sim SBM(n, ps, qs)$, exact community recovery is possible from G_1 iff

$$\left| \sqrt{a} - \sqrt{b} \right| > \sqrt{2/s}$$

Since $G_1 \sim SBM(n, ps, qs)$, exact community recovery is possible from G_1 iff

$$\left| \left| \sqrt{a} - \sqrt{b} \right| > \sqrt{2/s} \right|$$

How can we use both G_1 and G_2 ? Suppose that π_* is known.

$$(G_1,G_2) \sim ext{CSBM}(n,p,q,s)$$
 subsample G_1 subsample G_2 subsample G_3 subsample G_4 subsample G_4 subsample G_5 subsample G_6 subsample G_7 subsample G_8 subsample G_9 subsample

Since $G_1 \sim SBM(n, ps, qs)$, exact community recovery is possible from G_1 iff

$$\left| \left| \sqrt{a} - \sqrt{b} \right| > \sqrt{2/s} \right|$$

How can we use both G_1 and G_2 ? Suppose that π_* is known. Then:

- in G_1 and G_2
- in G_1 , not in G_2
- -- not in G_1 , in G_2

$$G_1 \vee_{\pi_*} G_2 \sim \text{SBM}\left(n, \frac{a(1-(1-s)^2)\log n}{n}, \frac{b(1-(1-s)^2)\log n}{n}\right)$$

$$(G_1,G_2) \sim \text{CSBM}(n,p,q,s) \qquad \text{subsample} \qquad \text{s$$

Since $G_1 \sim SBM(n, ps, qs)$, exact community recovery is possible from G_1 iff

$$\left| \sqrt{a} - \sqrt{b} \right| > \sqrt{2/s}$$

How can we use both G_1 and G_2 ? Suppose that π_* is known. Then:

- -- in G_1 and G_2
- in G_1 , not in G_2
- not in G_1 , in G_2

Thus exact community recovery is possible iff

$$|\sqrt{a} - \sqrt{b}| > \sqrt{2/(1 - (1 - s)^2)}$$

$$G_1 \vee_{\pi_*} G_2 \sim \text{SBM}\left(n, \frac{a(1-(1-s)^2)\log n}{n}, \frac{b(1-(1-s)^2)\log n}{n}\right)$$

In particular, if π_* is known and

Sin

$$\sqrt{2/s} > |\sqrt{a} - \sqrt{b}| > \sqrt{2/(1 - (1-s)^2)}$$

then exact community recovery is possible from G_1 and G_2 , even though it is impossible from G_1 alone

2)

Main Q:

• given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?

- given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?
- Of significant independent interest

- given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?
- Of significant independent interest
- Correlated Erdős-Rényi random graphs:
 Pedarsani, Grossglauser (2011)

- given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?
- Of significant independent interest
- Correlated Erdős-Rényi random graphs:
 Pedarsani, Grossglauser (2011)
- Many works in statistics/probability/CS/info theory... including:
 - Cullina, Kiyavash (2016, 2017)
 - Barak, Chou, Lei, Schramm, Sheng (2019)
 - Ding, Ma, Wu, Xu (2018)
 - Mossel, Xu (2019)
 - Fan, Mao, Wu, Xu (2019a,b)
 - Ganassali, Massoulié (2020)
 - Wu, Xu, Yu (2020, 2021)

- Cullina, Kiyavash, Mittal, Poor (2020)
- Mao, Rudelson, Tikhomirov (2021a,b)
- Ganassali, Lelarge, Massoulié (2021)
- Mao, Wu, Xu, Yu (2021,2022)
- Ding, Du (2022a,b)

Correlated SBMs: graph matching and community recovery

Main Q1 (community recovery):

- given (G_1, G_2) , when can we (exactly) recover the communities?
- can we do so in regimes where it is impossible to do so using only G_1 ?

Main Q2 (graph matching):

• given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?

Related work

Multi-layer networks/SBMs

- Holland, Laskey, Leinhardt (1983)
- Han, Xu, Airoldi (2015)
- Paul, Chen (2016, 2020a,b, 2021)
- Ali et al. (2019)
- Lei, Chen, Lynch (2019)
- Arroyo et al. (2020)
- Bhattacharyya, Chatterjee (2020)
- Chen, Liu, Ma (2020)
- •

Contextual block models

- Kanade, Mossel, Schramm (2016)
- Mossel, Xu (2016)
- Zhang, Levina, Zhu (2016)
- Binkiewicz, Vogelstein, Rohe (2017)
- Deshpande, Sen, Montanari, Mossel (2018)
- Abbé, Fan, Wang (2020)
- Lu, Sen (2020)
- •

- Mayya, Reeves (2019)
- Ma, Nandy (2021)

Correlated SBMs: graph matching and community recovery

Main Q1 (community recovery):

- given (G_1, G_2) , when can we (exactly) recover the communities?
- can we do so in regimes where it is impossible to do so using only G_1 ?

Main Q2 (graph matching):

• given (G_1, G_2) , when can we (exactly) recover the latent permutation π_* ?

Results

Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 then $\lim_{n\to\infty}\mathbb{P}\left(\widehat{\pi}(G_1,G_2)=\pi_*\right)=1$

Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 then $\lim_{n\to\infty}\mathbb{P}\left(\widehat{\pi}(G_1,G_2)=\pi_*\right)=1$

 $\hat{\pi}$ is the MAP estimate for the correlated Erdős-Rényi model

Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

If
$$s^2\left(\frac{a+b}{2}\right) > 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widehat{\pi}(G_1, G_2) = \pi_*\right) = 1$

- $\widehat{\pi}$ is the MAP estimate for the correlated Erdős-Rényi model
- Cullina, Kiyavash (2016, 2017): exact graph matching for the correlated Erdős-Rényi model; see also Wu, Xu, Yu (2021)

Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

If
$$s^2\left(\frac{a+b}{2}\right) > 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widehat{\pi}(G_1, G_2) = \pi_*\right) = 1$

- $m{\hat{\pi}}$ is the MAP estimate for the correlated Erdős-Rényi model
- Cullina, Kiyavash (2016, 2017): exact graph matching for the correlated Erdős-Rényi model; see also Wu, Xu, Yu (2021)
- Condition: the intersection graph is connected (whp)

Theorem (R., Sridhar, 2021)

Let $\hat{\pi}(G_1, G_2)$ be a vertex mapping that maximizes the number of agreeing edges between G_1 and G_2 .

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

If
$$s^2\left(\frac{a+b}{2}\right) > 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widehat{\pi}(G_1, G_2) = \pi_*\right) = 1$

- $\hat{\pi}$ is the MAP estimate for the correlated Erdős-Rényi model
- Cullina, Kiyavash (2016, 2017): exact graph matching for the correlated Erdős-Rényi model; see also Wu, Xu, Yu (2021)
- Condition: the intersection graph is connected (whp)
- Onaran, Garg, Erkip (2016): same conclusion under stronger parameter assumptions and assuming all community labels are known

 \longrightarrow in G_1 and G_2

Exact graph matching – converse

Theorem (Cullina, Singhal, Kiyavash, Mittal, 2016)

If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

Theorem (Cullina, Singhal, Kiyavash, Mittal, 2016)

If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

Condition: the intersection graph is disconnected (whp)

Theorem (Cullina, Singhal, Kiyavash, Mittal, 2016)

If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

- Condition: the intersection graph is disconnected (whp)
- In particular: the intersection graph has many isolated vertices

Theorem (Cullina, Singhal, Kiyavash, Mittal, 2016)

If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

- Condition: the intersection graph is disconnected (whp)
- In particular: the intersection graph has many isolated vertices
- These vertices have non-overlapping neighborhoods in G_1 and G_2'

Theorem (Cullina, Singhal, Kiyavash, Mittal, 2016)

If
$$s^2\left(\frac{a+b}{2}\right) < 1$$
 then $\lim_{n \to \infty} \mathbb{P}\left(\widetilde{\pi}(G_1, G_2) = \pi_*\right) = 0$ for every estimator $\widetilde{\pi}$

- Condition: the intersection graph is disconnected (whp)
- In particular: the intersection graph has many isolated vertices
- These vertices have non-overlapping neighborhoods in G_1 and G_2'
- Such vertices are hard to match due to the lack of shared information (even for optimal estimators that have access to the community labels)

Theorem (R., Sridhar, 2021)

Exact community recovery is **possible**

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 and $\left|\sqrt{a}-\sqrt{b}\right|>\sqrt{2/(1-(1-s)^2)}$

then there is an estimator
$$\widehat{\boldsymbol{\sigma}} = \widehat{\boldsymbol{\sigma}}(G_1, G_2)$$
 such that $\lim_{n \to \infty} \mathbb{P}(\operatorname{ov}(\widehat{\boldsymbol{\sigma}}, \boldsymbol{\sigma}) = 1) = 1$

Theorem (R., Sridhar, 2021)

Exact community recovery is **possible**

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 and $\left|\sqrt{a}-\sqrt{b}\right|>\sqrt{2/(1-(1-s)^2)}$

then there is an estimator
$$\widehat{\boldsymbol{\sigma}} = \widehat{\boldsymbol{\sigma}}(G_1, G_2)$$
 such that $\left[\lim_{n \to \infty} \mathbb{P}(\operatorname{ov}(\widehat{\boldsymbol{\sigma}}, \boldsymbol{\sigma}) = 1) = 1\right]$

Proof: can recover π_* whp; then run a community recovery algorithm on the union of the matched graphs.

Theorem (R., Sridhar, 2021)

Exact community recovery is **possible**

If
$$s^2\left(\frac{a+b}{2}\right) > 1$$
 and $\left|\sqrt{a}-\sqrt{b}\right| > \sqrt{2/(1-(1-s)^2)}$

then there is an estimator
$$\widehat{\boldsymbol{\sigma}} = \widehat{\boldsymbol{\sigma}}(G_1, G_2)$$
 such that $\lim_{n \to \infty} \mathbb{P}(\operatorname{ov}(\widehat{\boldsymbol{\sigma}}, \boldsymbol{\sigma}) = 1) = 1$

Proof: can recover π_* whp; then run a community recovery algorithm on the union of the matched graphs.

Theorem (R., Sridhar, 2021)

Exact community recovery is **impossible**

If
$$|\sqrt{a} - \sqrt{b}| < \sqrt{2/(1 - (1 - s)^2)}$$

then for any estimator
$$\widetilde{\boldsymbol{\sigma}}=\widetilde{\boldsymbol{\sigma}}(G_1,G_2)$$
 we have that $\lim_{n o\infty}\mathbb{P}(\operatorname{ov}(\widetilde{\boldsymbol{\sigma}},\boldsymbol{\sigma})=1)=0$

Theorem (R., Sridhar, 2021)

Exact community recovery is **possible**

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 and $\left|\sqrt{a}-\sqrt{b}\right|>\sqrt{2/(1-(1-s)^2)}$

then there is an estimator
$$\widehat{\boldsymbol{\sigma}} = \widehat{\boldsymbol{\sigma}}(G_1, G_2)$$
 such that $\left[\lim_{n \to \infty} \mathbb{P}(\operatorname{ov}(\widehat{\boldsymbol{\sigma}}, \boldsymbol{\sigma}) = 1) = 1\right]$

Proof: can recover π_* whp; then run a community recovery algorithm on the union of the matched graphs.

Theorem (R., Sridhar, 2021)

Exact community recovery is **impossible**

If
$$|\sqrt{a} - \sqrt{b}| < \sqrt{2/(1 - (1 - s)^2)}$$

then for any estimator
$$\ \widetilde{m{\sigma}} = \widetilde{m{\sigma}}(G_1,G_2) \ \ \ ext{we have that} \ \left[\lim_{n o \infty} \mathbb{P}(\operatorname{ov}(\widetilde{m{\sigma}},m{\sigma}) = 1) = 0 \right]$$

Proof: even if π_* is known, it is impossible to exactly recover the communities from $G_1 \vee_{\pi_*} G_2$

Exact community recovery impossible from G_1 ,

$$s = 0.75$$

Exact community recovery impossible from G_1 , possible from (G_1, G_2)

Exact community recovery impossible from G_1 , exact recovery of π_* impossible

$$b = 2$$

$$b = 10$$

$$b = 20$$

Exact community recovery possible from G_1

Exact community recovery impossible from (G_1, G_2)

Exact community recovery impossible from G_1 , possible from (G_1, G_2)

Exact community recovery impossible from G_1 , exact recovery of π_* impossible

$$a/b = 2$$

$$a/b = 4$$

$$a/b = 6$$

Proof (graph matching)

A, B: adjacency matrices of G_1 , G_2

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

A, B: adjacency matrices of G_1 , G_2

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{e \in \mathcal{E}} A_e B_{\tau(e)}$$

Permutation $\pi \in \mathcal{S}_n$ on vertices

Lifted permutation $\tau: \mathcal{E} \to \mathcal{E}$ on vertex pairs

A, B: adjacency matrices of G_1 , G_2

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

Permutation $\pi \in \mathcal{S}_n$ on vertices

$$\tau = \ell(\pi)$$

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{e \in \mathcal{E}} A_e B_{\tau(e)}$$

Lifted permutation $\tau: \mathcal{E} \to \mathcal{E}$ on vertex pairs

$$X(\tau) := \sum_{e \in \mathcal{E}} A_e B_{\tau_*(e)} - \sum_{e \in \mathcal{E}} A_e B_{\tau(e)} = \sum_{e \in \mathcal{E} : \tau(e) \neq \tau_*(e)} \left(A_e B_{\tau_*(e)} - A_e B_{\tau(e)} \right)$$

A, B: adjacency matrices of G_1 , G_2

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{(i,j) \in \mathcal{E}} A_{i,j} B_{\pi(i),\pi(j)}$$

Permutation $\pi \in \mathcal{S}_n$ on vertices

$$\tau = \ell(\pi)$$

$$\widehat{\pi}(G_1, G_2) \in \arg\max_{\pi \in \mathcal{S}_n} \sum_{e \in \mathcal{E}} A_e B_{\tau(e)}$$

Lifted permutation $\tau: \mathcal{E} \to \mathcal{E}$ on vertex pairs

$$X(\tau) := \sum_{e \in \mathcal{E}} A_e B_{\tau_*(e)} - \sum_{e \in \mathcal{E}} A_e B_{\tau(e)} = \sum_{e \in \mathcal{E} : \tau(e) \neq \tau_*(e)} \left(A_e B_{\tau_*(e)} - A_e B_{\tau(e)} \right)$$

If $X(\tau) > 0$ for every $\tau \neq \tau_*$, then $\hat{\pi} = \pi_*$

Let S_{k_1,k_2} denote the set of lifted permutations such that

- k_1 vertices are mismatched in V_+ (relative to π_*)
- k_2 vertices are mismatched in V_-

Let S_{k_1,k_2} denote the set of lifted permutations such that

- k_1 vertices are mismatched in V_+ (relative to π_*)
- k_2 vertices are mismatched in V_-

From vertex mismatches to edge mismatches:
$$M^+(\tau) := \left| \left\{ e \in \mathcal{E}^+(\boldsymbol{\sigma}) : \tau(e) \neq \tau_*(e) \right\} \right|$$
 $M^-(\tau) := \left| \left\{ e \in \mathcal{E}^-(\boldsymbol{\sigma}) : \tau(e) \neq \tau_*(e) \right\} \right|$

Let S_{k_1,k_2} denote the set of lifted permutations such that

- k_1 vertices are mismatched in V_+ (relative to π_*)
- k₂ vertices are mismatched in V₋

From vertex mismatches to edge mismatches:

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|$$
$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|$$

Assume that the communities are approximately balanced (this happens whp).

$$\mathcal{F}_{\epsilon} := \left\{ \left(1 - \frac{\epsilon}{2} \right) \frac{n}{2} \le |V_{+}|, |V_{-}| \le \left(1 + \frac{\epsilon}{2} \right) \frac{n}{2} \right\}$$

Lemma

When
$$k_1 \leq \frac{\epsilon}{2} |V_+|$$
 and $k_2 \leq \frac{\epsilon}{2} |V_-|$:

$$M^+(\tau) \ge (1 - \epsilon) \frac{n}{2} (k_1 + k_2),$$

$$M^{-}(\tau) \ge (1 - \epsilon) \frac{n}{2} (k_1 + k_2).$$

Let S_{k_1,k_2} denote the set of lifted permutations such that

- k_1 vertices are mismatched in V_+ (relative to π_*)
- k₂ vertices are mismatched in V₋

From vertex mismatches to edge mismatches:

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|$$
$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|$$

Assume that the communities are approximately balanced (this happens whp).

$$\mathcal{F}_{\epsilon} := \left\{ \left(1 - \frac{\epsilon}{2} \right) \frac{n}{2} \le |V_{+}|, |V_{-}| \le \left(1 + \frac{\epsilon}{2} \right) \frac{n}{2} \right\}$$

Lemma

When
$$k_1 \leq \frac{\epsilon}{2} |V_+|$$
 and $k_2 \leq \frac{\epsilon}{2} |V_-|$:

$$M^+(\tau) \ge (1 - \epsilon) \frac{n}{2} (k_1 + k_2),$$

$$M^{-}(\tau) \geq (1 - \epsilon) \frac{n}{2} (k_1 + k_2).$$

In general:

$$M^{+}(\tau) \ge (1 - \epsilon) \frac{n}{4} (k_1 + k_2),$$

$$M^{-}(\tau) \geq (1 - \epsilon) \frac{n}{4} (k_1 + k_2).$$

Claim

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 then there exists $\delta>0$ such that

$$\mathbb{P}\left(\widehat{\tau} \in S_{k_1,k_2} \mid \boldsymbol{\sigma}, \tau_*\right) \mathbf{1}(\mathcal{F}_{\epsilon}) \leq n^{-\delta(k_1+k_2)}.$$

Claim

If
$$s^2\left(\frac{a+b}{2}\right)>1$$
 then there exists $\delta>0$ such that
$$\mathbb{P}\left(\widehat{ au}\in S_{k_1,k_2}\mid m{\sigma}, au_*\right)\mathbf{1}(\mathcal{F}_\epsilon)\leq n^{-\delta(k_1+k_2)}.$$

Proof sketch:

• Union bound gives factor of $|S_{k_1,k_2}| \leq n^{k_1+k_2}$

Claim

If
$$s^2\left(rac{a+b}{2}
ight)>1$$
 then there exists $\delta>0$ such that $\mathbb{P}\left(\widehat{ au}\in S_{k_1,k_2}\mid m{\sigma}, au_*
ight)\mathbf{1}(\mathcal{F}_\epsilon)\leq n^{-\delta(k_1+k_2)}.$

Proof sketch:

- Union bound gives factor of $|S_{k_1,k_2}| \leq n^{k_1+k_2}$
- Individual bound boils down to bounds on the probability-generating function:

$$\mathbb{P}\left(\widehat{\tau} = \tau \mid \boldsymbol{\sigma}, \tau_*\right) \leq \mathbb{P}\left(X(\tau) \leq 0 \mid \boldsymbol{\sigma}, \tau_*\right) = \mathbb{P}\left(n^{-X(\tau)/2} \geq 1 \mid \boldsymbol{\sigma}, \tau_*\right)$$
$$\leq \mathbb{E}\left[\left(1/\sqrt{n}\right)^{X(\tau)} \mid \boldsymbol{\sigma}, \tau_*\right]$$

Claim

If
$$s^2\left(rac{a+b}{2}
ight)>1$$
 then there exists $\delta>0$ such that
$$\mathbb{P}\left(\widehat{ au}\in S_{k_1,k_2}\ \middle|\ oldsymbol{\sigma}, au_*\right)\mathbf{1}(\mathcal{F}_\epsilon)\leq n^{-\delta(k_1+k_2)}.$$

Proof sketch:

- Union bound gives factor of $|S_{k_1,k_2}| \leq n^{k_1+k_2}$
- Individual bound boils down to bounds on the probability-generating function:

$$\mathbb{P}\left(\widehat{\tau} = \tau \mid \boldsymbol{\sigma}, \tau_{*}\right) \leq \mathbb{P}\left(X(\tau) \leq 0 \mid \boldsymbol{\sigma}, \tau_{*}\right) = \mathbb{P}\left(n^{-X(\tau)/2} \geq 1 \mid \boldsymbol{\sigma}, \tau_{*}\right)$$

$$\leq \mathbb{E}\left[\left(1/\sqrt{n}\right)^{X(\tau)} \mid \boldsymbol{\sigma}, \tau_{*}\right]$$

$$\leq \exp\left(-(1 - \epsilon)s^{2}\left(aM^{+}(\tau) + bM^{-}(\tau)\right) \frac{\log n}{n}\right)$$

Generating function

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$Y^{+}(\tau) := \sum_{e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)},$$

$$Y^{-}(\tau) := \sum_{e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)}.$$

Joint generating function

$$\Phi^{ au}(heta,\omega,\zeta) := \mathbb{E}\left[heta^{X(au)} \omega^{Y^+(au)} \zeta^{Y^-(au)} \, \middle| \, oldsymbol{\sigma}, au_*
ight]$$

The PGF of only $X(\tau)$ only works when $s^2(a+b)/2 > 2$

Generating function

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$Y^{+}(\tau) := \sum_{e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)},$$

$$Y^{-}(\tau) := \sum_{e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)}.$$

Joint generating function

$$\Phi^{ au}(heta,\omega,\zeta) := \mathbb{E}\left[heta^{X(au)} \omega^{Y^+(au)} \zeta^{Y^-(au)} \, \middle| \, oldsymbol{\sigma}, au_*
ight]$$

The PGF of only $X(\tau)$ only works when $s^2(a+b)/2 > 2$

Lemma

For any $\varepsilon \in (0,1)$ and $1 \le \omega, \zeta \le 3$, and for all n large enough:

$$\Phi^{\tau}\left(1/\sqrt{n},\omega,\zeta\right) \le \exp\left(-(1-\epsilon)s^2\left(\alpha M^+(\tau) + \beta M^-(\tau)\right)\frac{\log n}{n}\right)$$

Generating function

$$M^{+}(\tau) := \left| \left\{ e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$M^{-}(\tau) := \left| \left\{ e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e) \right\} \right|,$$

$$Y^{+}(\tau) := \sum_{e \in \mathcal{E}^{+}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)},$$

$$Y^{-}(\tau) := \sum_{e \in \mathcal{E}^{-}(\boldsymbol{\sigma}) : \tau(e) \neq \tau_{*}(e)} A_{e}B_{\tau_{*}(e)}.$$

Joint generating function

$$\Phi^{ au}(heta,\omega,\zeta) := \mathbb{E}\left[heta^{X(au)} \omega^{Y^+(au)} \zeta^{Y^-(au)} \, \middle| \, oldsymbol{\sigma}, au_*
ight]$$

The PGF of only $X(\tau)$ only works when $s^2(a+b)/2 > 2$

Lemma

For any $\varepsilon \in (0,1)$ and $1 \le \omega, \zeta \le 3$, and for all n large enough:

Analysis:

- Decompose according to cycles of $\tau_*^{-1} \circ \tau$; independence across cycles
- For correlated Erdős-Rényi: explicit formulas
- For correlated SBM: recursive bounds

$$\Phi^{\tau}\left(1/\sqrt{n},\omega,\zeta\right) \le \exp\left(-(1-\epsilon)s^2\left(\alpha M^+(\tau) + \beta M^-(\tau)\right)\frac{\log n}{n}\right)$$

The interplay between community recovery and graph matching

Closing the gap for exact community recovery

- Exact community recovery is impossible from G_1
- Exact graph matching is impossible
- Q: is exact community recovery from (G_1, G_2) possible?

Interplay btw community recovery and graph matching

Theorem (Gaudio, R., Sridhar, 2022)

In the regime where $\left|\sqrt{a}-\sqrt{b}\right|>\sqrt{2/(1-(1-s)^2)}$, the threshold for exact community recovery is given by:

$$s^{2}\left(\frac{a+b}{2}\right)+s(1-s)\left(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{2}}\right)^{2}=1$$
 graph matching community recovery

Exact community recovery possible from G_1

Exact community recovery impossible from G_1 , possible from (G_1, G_2)

Exact community recovery impossible from (G_1, G_2)

(though possible if π_* were known)

1. Almost exact labeling of G_1 [Mossel, Neeman, Sly, 2014]

- 1. Almost exact labeling of G_1 [Mossel, Neeman, Sly, 2014]
- 2. Partial almost exact graph matching $\hat{\mu}$ [Cullina, Kiyavash, Mittal, Poor, 2020]

- 1. Almost exact labeling of G_1 [Mossel, Neeman, Sly, 2014]
- 2. Partial almost exact graph matching $\hat{\mu}$ [Cullina, Kiyavash, Mittal, Poor, 2020]

Remarks on the k-core estimator:

- Works well for correlated inhomogeneous random graphs [R., Sridhar, 2023]
- Closely related to densest subgraph estimator [Ding, Du, 2022a,b]

- 1. Almost exact labeling of G_1 [Mossel, Neeman, Sly, 2014]
- 2. Partial almost exact graph matching $\hat{\mu}$ [Cullina, Kiyavash, Mittal, Poor, 2020]

- 1. Almost exact labeling of G_1 [Mossel, Neeman, Sly, 2014]
- 2. Partial almost exact graph matching $\hat{\mu}$ [Cullina, Kiyavash, Mittal, Poor, 2020]

- 1. Almost exact labeling of G_1 [Mossel, Neeman, Sly, 2014]
- 2. Partial almost exact graph matching $\hat{\mu}$ [Cullina, Kiyavash, Mittal, Poor, 2020]

- 3. For matched nodes in G_1 :
- Consider $G_1 \vee_{\widehat{\mu}} G_2$
- Use majority vote among neighbors in $G_1 \vee_{\widehat{\mu}} G_2$ to refine labels

- 1. Almost exact labeling of G_1 [Mossel, Neeman, Sly, 2014]
- 2. Partial almost exact graph matching $\hat{\mu}$ [Cullina, Kiyavash, Mittal, Poor, 2020]

- 3. For matched nodes in G_1 :
- Consider $G_1 \vee_{\widehat{\mu}} G_2$
- Use majority vote among neighbors in $G_1 \vee_{\widehat{\mu}} G_2$ to refine labels
- 4. For unmatched nodes in G_1 :
- Use majority vote among neighbors in G_1

- 1. Almost exact labeling of G_1 [Mossel, Neeman, Sly, 2014]
- 2. Partial almost exact graph matching $\hat{\mu}$ [Cullina, Kiyavash, Mittal, Poor, 2020]

- 3. For matched nodes in G_1 :
- Consider $G_1 \vee_{\widehat{\mu}} G_2$
- Use majority vote among neighbors in $G_1 \vee_{\widehat{\mu}} G_2$ to refine labels
- 4. For unmatched nodes in G_1 :
- Use majority vote among neighbors in G_1

- 1. Almost exact labeling of G_1 [Mossel, Neeman, Sly, 2014]
- 2. Partial almost exact graph matching $\hat{\mu}$ [Cullina, Kiyavash, Mittal, Poor, 2020]

- 3. For matched nodes in G_1 :
- Consider $G_1 \vee_{\widehat{\mu}} G_2$
- Use majority vote among neighbors in $G_1 \vee_{\widehat{u}} G_2$ to refine labels
- 4. For unmatched nodes in G_1 :
- Use majority vote among neighbors in G_1

$$s^{2}\left(\frac{a+b}{2}\right) + s(1-s)\left(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{2}}\right)^{2} = 1$$

relevant quantity is
$$s(1-s)\left(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{2}}\right)^2$$

Impossibility argument sketch

- S_* : singletons in the intersection graph $G_1 \wedge_{\pi_*} G_2$
- Key: $|S_*| \approx n^{1-s^2(a+b)/2}$
- MAP estimator fails even if given:
 - All community labels in G_2
 - *S**
 - π_* on $[n] \setminus S_*$
- Proof uses careful second moment analysis

Open problems / future directions

Efficient algorithms

- Current algorithms for (exact) graph matching are not efficient
- Do there exist efficient algorithms for graph matching?

Exciting and promising recent developments for efficient graph matching for correlated Erdős—Rényi random graphs:

- Mao, Rudelson, Tikhomirov (2021)
- Mao, Wu, Xu, Yu (2022)

- Almost exact recovery?
- Partial recovery?
- Community detection?

- Almost exact recovery?
- Partial recovery?
- Community detection?

(Gaudio, R., Sridhar; in progress)

- Optimal error rate for almost exact recovery
- Beating KS w/ two correlated SBMs

- Almost exact recovery?
- Partial recovery?
- Community detection?

Improved error rate?
Improved fraction recovered?
Lower threshold?

(Gaudio, R., Sridhar; in progress)

- Optimal error rate for almost exact recovery
- Beating KS w/ two correlated SBMs

Open problem

Predict the threshold for community detection from two correlated SBMs

- Almost exact recovery?
- Partial recovery?
- Community detection?

Improved error rate?
Improved fraction recovered?
Lower threshold?

(Gaudio, R., Sridhar; in progress)

- Optimal error rate for almost exact recovery
- Beating KS w/ two correlated SBMs

Open problem

Predict the threshold for community detection from two correlated SBMs

Challenge:

interplay between community recovery and graph matching

General correlated SBMs

10 (5)

Correlated SBMs: determined the fundamental limits of

exact graph matching and exact community recovery

- Exact community recovery possible in regimes where it is not possible from G_1 alone
- Correlated random graphs: many challenges and applications

Correlated SBMs: determined the fundamental limits of

exact graph matching and exact community recovery

- Exact community recovery possible in regimes where it is not possible from G_1 alone
- Correlated random graphs: many challenges and applications

Thank you!