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Outline

1) The dimer model
> height function
> Dirichlet Gaussian free field as scaling limit (Kenyon, ...)

» Kasteleyn theory and random walk representation

2) The dimer model with free boundary (or monomer-dimer model )
> height function

> Neumann Gaussian [ree field as scaling limit (in the upper half plane)
(Berestycki—L.—Qian)

» Kasteleyn theory and random walk representation



/) The dimer model



The dimer model

Let G be a finite, planar, bipartite graph.

A dimer cover (or perfect matching): a set of edges (=dimers), such that
each vertex is incident to exactly one dimer.
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The dimer model with edge weights w,:

Typically w, = 1.



The dimer model as a random surface

Honeycomb lattice: /ozenge tiling or a stack of cubes
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Height function

Introduced by Thurston. Hence view as a random surface.

Note: depends on the choice of a reference frame.
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Height function

Take two dimer covers...

one fixed and one random = single dimer model

both random and independent = double dimer model



Height function

... and superimpose them...

loops and doubled edges



Height function

... and interpret the loops as level lines of the height function.
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Height function

... and interpret the loops as level lines of the height function.
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Kenyon—Okounkov—Sheffield 2006

Large scale behaviour?

Kenyon

The effect of boundary conditions is, however, not entirely trivial and will be

discussed in more detail in a subsequent paper.

P. W. Kasteleyn, 1961



The Dirichlet Gaussian free field

Let D be a domain in the plane with boundary and let
o0
Gp(x,y) = / pi(x, y)dt
0
be the Green function of Brownian motion killed upon hitting 9D.

The Gaussian free field with Dirichlet b.c. ®2 is a random distribution
satisfying

» ®DIT(f) is a mean-zero Gaussian for all test functions f,

[(I)Dlr(f (I)Dlr J”J"sz GD‘r(x y)dxdy for all f, g.

The value at a point does not make sense!
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The Dirichlet GFF in the half-plane H

We have
Y C C
pt(xay) =D; (xay)fpt (X,j))
and hence
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The dimer model h.f. and the Dirichlet GFF

Theorem (Kenyon *99)

Let D C C bounded domain, D° = D N §Z? with Temperleyan boundary
conditions. Let 4° be the associated height function. Then,
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in distribution.

Main ingredients of the proof:
» Kasteleyn theory (exact solvability)
» Analysis of boundary conditions

» Computation of moments
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Kasteleyn theory

A Kasteleyn orientation: orientation of edges, such that around every face,
odd number of clockwise arrows.
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Kasteleyn theory

Kasteleyn matrix K: adjacency matrix, with Kasteleyn signs
(antisymmetric).

Theorem (Temperley—Fisher, 61& Kasteleyn, *61)

We have Z = |Pf(K)| and therefore the probabilities P(ey, ..., e, € m) are
given by Pf(K1).

Consequence: we need to understand K !
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Random walk representation (Kenyon)

‘We restrict our attention to D = H.
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Let £L = K*K. Then £ nonzero only from W — W, B — B.
Diagonal contributions vanish so really Wy — Wy, ...,B; — By.

Then £ = discrete Laplacian on each four sublattices, with appropriate
boundary conditions.



Random walk representation (Kenyon)

From the definition £ = K*K we get
K '=,7'k*
Moreover

» L~ 1is the Green function

» K* isthe discrete derivative

We can understand K !, and hence Kasteleyn theory leads to the scaling
limit for n-point correlation function!



2) Free boundary dimer model

aka: dimer model with boundary monomers,
or boundary monomer-dimer model



Free boundary dimer model

Let 0,, C V be a fixed part of the boundary of G.

A monomer-dimer cover m: a set of vertices from 0, (called monomers) and
edges, such that each vertex covered by exactly one monomer or dimer.

The (boundary) monomer-dimer model for vertex weights z, and edge

weights w,:
1
P(m):illzv”we.

veEm ecm

We will consider the uniform modelw, = 1, z, =z > 0.

(The monomers can be considered as impurities in the medium)
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Double free boundary dimers

Take two free boundary dimer covers...




Double free boundary dimers

... and superimpose them...




Double free boundary dimers

... and superimpose them...

Not only loops but also arcs connecting 0, to Op,.
(We have a conjecture for scaling limit of arcs).
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Double free boundary dimers

... and interpret the arcs and loops as level lines of the height function.

1] 1] |1 1] |-1




Guessing the scaling limit

The monomer-dimer h.f. is the dimer h.f. conditioned to be even.



The Neumann GFF in H

The Neumann GFF is the even part of the Dirichlet GFF (up to a constant).

) pi(x,) = py (6, 9)+p; (%, 3)
So
- G (x,y) = — - 1 L y
NS B (0Y) = —5_logl—y|-5—log|x |
AR = - log|(x—)x—y)].



Main result

Theorem (B.—Lis—Qian, ’21)

» The infinite volume limit of the monomer-dimer model D,, 1 H exists.

» In the scaling limit, for any z > 0, we have

1
h —E(h°) — —chﬁe“ as 00,

7

Note: first result where the limit doesn’t have Dirichlet b.c.
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Sketch of proof of main result

Lemma (Giuliani—Jauslin—Lieb, ’15)

There is a bijection between the monomer-dimer model and a non-bipartite
dimer model.
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Kasteleyn orientation

O

O

V3 o
Va o
Vi o
Vo

\ 9




Random walk representation??
Analysis breaks down near the boundary:
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Let P(x,y) = —L(x,y)/L(x,x) : can be signed, do not sum to I...

Question

Make sense of Green function?
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Random walk representation!!

Proposition (Berestycki—L.—Qian, *21)

Grouping walks by their excursions to the boundary: an effective random
walk with no killing.
Jump probabilities on the boundary have an exponential tail.

Proof: Tt is a miracle! From a computation we obtain:

» weights are positive

» weights sum up to one.

Open question

Find a conceptual proof...
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Towards scaling limit

Notice that £~! not restricted to B — B, W — W:
However paths must go through boundary!

E.g:e= (w,b);e = (W, b)

P(e,¢’ € m) = Pf

P(e€m) P(e’ €m)
———
=K '(w,b) K" (W, b)) +K~ (b, WK~ (w, D)
—K ' (w, WK (b, b)

$0
CoV(leem; loem) = K~ (b, w)K ™ (w,b')—K " (w,w )K" (b,b)

Leads to scaling limit eventually...! 0



Thank you!



Double dimer model

Conjecture (Kenyon ’10)

The scaling limit of the loops in the double dimer model should be the CLE,
process introduced by Sheffield and Werner.

» the scaling limit can only be CLE4 (Kenyon 10, Dubédat " 14,
Basok—Chelkak *18)

> tightness of loops is missing!

» analogous picture in the continuum: CLE, are the level lines of GFF
(Miller—Sheffield).
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Double monomer-boundary dimer model

Cojecture (Berestycki-L.-Qian)

The scaling limit of the arcs in the double free boundary dimer should be the
ALE process introduced by Aru, Sepulveda and Werner.

(©B. Werness

» analogous picture in the continuum: ALE is boundary touching level
lines of Neumann GFF (Qian—Werner, *18)
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Thank you!



