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Geodetic Graphs (Ore 1962

A graph is geodetic if there is a unique geodesic between any two
vertices

E.g., trees, complete graphs, odd cycles and the Petersen graph




Geodetic Graphs

f S is the collection of all geodesics in a geodetic graph G, then

 For every two vertices u and v in G there is a unigue uy path

in




The Question

Given a consistent path system & in a simple undirected graph
= (V, E)

Does there exist a metric d on G so that each path in &
s a d-shortest path between its end vertices?




The Petersen Graph is Non-Metrizable

Define a path system < as follows:

o For most pairs u, v the path P, , is the
unigue uy geodesic

 The exceptions are the five pairs of vertices
~connected by the colored paths
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Whny Petersen is Non-Metrizable

If w is a positive weight function
iINnducing this system then
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What We Discoverea

* Metrizability is very rare (details to follow

e Yet, there are infinitely many non-trivial examples of metrizable
graphs - every outerplanar graph is metrizable

metrizable can be d




Path and Tree Systems

Path Systems

o A path system &P on a connected graph G = (V, E) is a collection of paths such that
for every u, v € V there is a unique path Pu,v e 9 which connects u and v

o A path system is consistent if for every P € S and vertices u, v in P, the uv
subpath of P coincides with




Path and Tree Correspondence

Consistent path and tree systems are in one-to-one correspondence

V,Uu

Given a path system &, forv € V define T, by E(T) = U il )

uevVv

Given J , foru,v € Viet P, bethe uv pathin I, (or T
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About Path Systems

. Every weight function w: E — (0,00) induces a path system in
= (V, E). However,

- The w-geodesic between vertices u, v € V need not be unique

- We need a consistent way to break ties between geodesics
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About Path Systems

« A path system where every edge uv € E is the chosen uv path is
called neighborly, i.e. foruv € E we have P, = uv

%

o |If H is an induced subgraph of G, then every consistent neighborly

path system in H can be extended to a consistent neighborly path
system in G




Metrizability - The Key Theme of this Talk
Let G = (V, E) a graph and &£ a path system in G

» P is said to be metrizable if there is a weight function
w:E — (0,00) such that for any uv path Q in G, w(P, ) < w(Q)

. X is said to be strictly metrizable if there is some w: E — (0,00)




Metrizability - Remarks

* A graph is not metrizable it it has even one non-metrizable path
system

 We do not restrict ourselves to neighborly path systems

* A graph is metrizable itf its 2-connected components are metrizable




ycles are Strictly Metrizable

Let us start with the (unweighted) odd cycle C,, . ;. It is a geodetic graph
and its geodesics give rise to a path system, &, 4

Viewing &', 1 as a tree system, the tree T, is the path obtained by
deleting the edge antipodal to v.




Cycles - Crossing Maps

Any tree system J of a cycle C can be viewed as a mapping

V(C) - E(C),where T, = C\ f(v).

We say a map f: V(C) — E(C) is crossing if
forall u,v € V(C) either flu) = f(v) or u
goc il senaates L om ey



Persistent Edges

Let & be a path system in C and f: V(C) — E(C) its corresponding
crossing map. An edge uv € E is called &P-persistent if f(u) = f(v).




ycles - Path Systems

Theorem. Let & be a neighborly path system in the cycle 0=

14} J

and let ' C E(C,) be the set of all &-persistent edges. Then
PIF =&, forsomeodd3 <m <n.




The Class of Metrizable Graphs

If the graph G contains a subgraph which is isomorphic to a subdivision
f H, we say that H is atopologicalminorof G.




The Class of Metrizable Graphs

Theorem. A topological minor of a (strictly) metrizable graph is
(strictly) metrizable.

We need to show that G remains metrizable after either
. Edge removal




Metrizability i1Is Maintained under Edge Removal

* Recall: our path systems need not be neighborly

. If G'= G\ {e} for some edge e from G, then any path system of
(G’ is also a path system in G and is metrizable by assumption




Metrizabity is Maintained under Vertex Suppression
Rough Sketch

Let G’ result from G by vertex suppression
and let £’ be a path system in G’

. “Extend” &’to a path system L of G
+ Since G is metrizable, & is induced by some w: E(G) — (0,00)
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A Zoo of Non-Metrizable Graphs

We tfound the following non-metrizable graphs. This was done
by a computer brute-force search + linear program
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Metrizability I1s Rare

We now have two ways to prove a given graph G is not metrizable:

. Construct an explicit path system in G and show that it is non-
metrizable using an appropriate linear program

2. Find in G a subdivision of a non-metrizable graph from the Zoo




Metrizability 1s Rare

Theorem. If a 2-connected graph on at least 8 vertices contains a
subdivision of a 3-connected graph other than K;, W5 and Ks — e, then

it IS not metrizable.

Specifically the following graphs are not metrizable:




Establishing Metrizability

We saw that metrizability Is rare, and that cycles are metrizable

|s that all there 17

A path in a graph G is said to be suspended if all of its vertices
except possibly its endpoints, have degree 2 in G.

heorem. I G is metrizable then so is G




Rough Sketch of Proof

. For a path system &£ in G + uv we define a “similar’
system &P’ on some topological minor H of G

path

» But H is metrizable, being topological minor of G, so we get a
weight function w’ inducing &’

. Modify w’to a weight function on G + uv that induces &




Establishing Metrizability

Corollary. All outerplanar graphs are strictly metrizable.

A graph is outerplanar it it can be drawn in the plane with all its
vertices in the outer face
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Metrizable Graphs are not Minor Closed

Vi




Gate Keepers - Minors

Any graph family & closed under taking minors, is uniquely
defined by the set of its minimal minor non-members

={G:VKe M,K</G}, VHKe M H=</K




Gate Keepers - Topological Minors

Likewise, any graph family closed under topological minors, Is
uniguely defined by the set of its minimal topological minor non-
members,

But unlike minors, for topological minors infinite anti-chains do exist.




Characterizing Metrizability

et /[ denote the set of minimal forbidden topological minors
characterizing the family of metrizable graphs.

Theorem: The family of (strictly) metrizable graphs is characterized by
a finite set of forbidden topological minors

Claim. If G € [ and G contains a suspended path of length greater




Forbidden Graphs

Can J contain the sort of infinite antichain we saw before?
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Forbidden Graphs

Theorem. The class of metrizable graphs is characterized by a finite set
of forbidden topological minors. The same is true for strictly metrizable
graphs.

Combined with the following result of Robertson and Seymour, this
vields significant algorithmic consequences for metrizability testing

Theorem. (Roberson & Seymour). Fix a graph H. There is a polynomial

time algorithm to decide whether a given graph G contains a subdivision
of H.

Corollary. It is possible to decide in polynomial time whether a given
graph is (strictly) metrizable.



Some Open Questions & Challenges

. Let ®,, . denote the graph that has 2 vertices of degree 3 that are connected
three openly disjoint paths of length a, b, and c¢. We know that ®,, , . is

metrizable when min(a, b, ¢) = 1 and that ©; 5 4 is non-metrizable. What
about the case min(a,b,c) = 2 7

* Find the full list of topologically minimal non-metrizable graphs.




Related Work

Bodwin (2019) offers a topological characterization of partial path
systems which are strictly metrizable

He shows that a path system is strictly metrizable if and only it the
system avoids an infinite family of forbidden intersection patterns.

These forbidden patterns are in a correspondence with two-

colored topological 2-manitolds




Persistent Edges

The notion of persistent edges is not limited to cycles:

Lemma. Let & be a tree system in a graph G = (V, E), and & its
corresponding path system. Foru, v € V,t.f.a.e:

o e b




Deciding the Metrizability of Path Systems

Theorem. /t is possible to decide in polynomial time whether a given
path system is (strictly) metrizable.

The strict version of this theorem was also proven by Bodwin (2019
using a characterization of strict metrizability in terms of flow.




Deciding the Metrizability of Path Systems

A strong separation oracle for a polyhedron K C R" receives an
input x € Q" and either asserts that x € K or returns some ¢ € Q"

suchthat o < o viorallv.c K.

“Theorem.” (Grotschel, Lovasz & Schrijver) Suppose the polyhedron
€ R":Ax < b} has a strong separation oracle, where
"' Then it can be determined in polynomial time




Vv

The Polyhedron: Let 9 be a path system on a graph G = (V, E) and let @,
enote all the simple uv paths in G not equal to P, . Define:

i lreRINOe O > n Y p <0
eePu,v e€Q) K =8B N ﬂ Au,v
= {x € Rf:x, > lfor everye € E} e

K is non-empty iff there exists a positive weight function inducing <.

 The Strong separation Oracle: Let w € R™




Proof of Simple Case

Theorem. If G is metrizable then so is G + uv provided G has a
suspended path between u and v.

We sketch a proof of the case where the suspended path P between
u and vis of length 2, i.e. P = uzv.

Proof. Let & be a path system on G + uv. For simplicity .
peassune hat s neighbort We define 2 paib Syaiem.




Proof of Simple Case

't can be shown that &’ defines a consistent path system on G. As G is
metrizable there is a weight function w’: E(G) — (0,00) inducing &',

Define w: E(G + uv) 0,00) as follows
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