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Geodetic Graphs (Ore 1962)
A graph is geodetic if there is a unique geodesic between any two 
vertices

We still do not know to characterize such graphs (Ore’s problem)

E.g., trees, complete graphs, odd cycles and the Petersen graph



Geodetic Graphs
If  is the collection of all geodesics in a geodetic graph , then𝒫 G

• For every two vertices  and  in  there is a unique  path 
 in   

• If  is a path in  then any subpath of  is also in 

u v G uv
Pu,v 𝒫

P 𝒫 P 𝒫

A collection of paths  in a graph  that has these two 
properties is said to be a consistent path system 

𝒫 G



The Question
Given a consistent path system  in a simple undirected graph𝒫
G = (V, E)

Does there exist a metric  on  so that each path in  
is a -shortest path between its end vertices?

d G 𝒫
d

For which graphs  is it the case that for every 
consistent path system there exists such a metric?

G

When this is the case we say that  is metrizableG



The Petersen Graph is Non-Metrizable

Define a path system  as follows: 
• For most pairs  the path  is the 

unique  geodesic 
• The exceptions are the five pairs of vertices 

connected by the colored paths

𝒫
u, v Pu,v

uv



Why Petersen is Non-Metrizable
If  is a positive weight function  

inducing this system then
w

w1,2 + w1,6 + w6,8 ≤ w2,3 + w3,8
w2,3 + w2,7 + w7,9 ≤ w3,4 + w4,9
w3,4 + w3,8 + w8,10 ≤ w4,5 + w5,10
w4,5 + w4,9 + w6,9 ≤ w1,5 + w1,6

w1,5 + w5,10 + w7,10 ≤ w1,2 + w2,7

Adding these inequalities yields 

contradicting  is positive!
w6,8 + w7,9 + w8,10 + w6,9 + w7,10 ≤ 0,
w



What We Discovered
• Metrizability is very rare (details to follow) 

• Yet, there are infinitely many non-trivial examples of metrizable 
graphs - every outerplanar graph is metrizable 

• The property of being metrizable can be decided in poly-time



Path and Tree Systems
Path Systems 

• A path system  on a connected graph  is a collection of paths such that 
for every  there is a unique path  which connects  and  

• A path system is consistent if for every  and vertices  in , the  
subpath of  coincides with  

Tree Systems 

• A tree system  on a connected graph  is a collection of spanning trees 
in  such that for every  there is a unique  

• A tree system is consistent if for every  the  paths in  and  coincide

𝒫 G = (V, E)
u, v ∈ V Pu,v ∈ 𝒫 u v

P ∈ 𝒫 u, v P uv
P Pu,v

𝒯 G = (V, E)
G v ∈ V Tv ∈ 𝒯

u, v ∈ V uv Tu Tv



Consistent path and tree systems are in one-to-one correspondence

Path and Tree Correspondence

Given a path system , for  define  by  𝒫 v ∈ V Tv E(Tv) = ⋃
u∈V

E(Pv,u)

Given , for  let  be the  path in  (or )𝒯 u, v ∈ V Pu,v uv Tv Tu



About Path Systems
• Every weight function  induces a path system in 

. However, 
- The -geodesic between vertices  need not be unique  
- We need a consistent way to break ties between geodesics 
- E.g., fix an ordering on the edges and compare paths using 

lexicographical ordering 

• Certain partial consistent path systems                                                      
do not extend to full consistent systems 

• But every path systems of a subgraph does extend to the entire graph

w:E → (0,∞)
G = (V, E)

w u, v ∈ V



About Path Systems
• A path system where every edge  is the chosen  path is 

called , i.e. for  we have  

• If  is an induced subgraph of , then every consistent neighborly 
path system in   can be extended to a consistent neighborly path 
system in 

uv ∈ E uv
neighborly uv ∈ E Pu,v = uv

H G
H

G



Metrizability  - The Key Theme of this Talk

•  is said to be metrizable if there is a weight function 
 such that for any  path  in ,                                                                

•  is said to be strictly metrizable if there is some  
such that for any  path  in ,          

•  is said to be (strictly) metrizable if every consistent path system 
in  is (strictly) metrizable

𝒫
w:E → (0,∞) uv Q G w(Pu,v) ≤ w(Q)

𝒫 w:E → (0,∞)
uv Q ≠ Pu,v G w(Pu,v) < w(Q)

G
G

Let  a graph and  a path system in G = (V, E) 𝒫 G



Metrizability - Remarks
• A graph is not metrizable if it has even one non-metrizable path 

system 
• We do not restrict ourselves to neighborly path systems 
• A graph is metrizable iff its 2-connected components are metrizable



Cycles are Strictly Metrizable
Let us start with the (unweighted) odd cycle . It is a geodetic graph 
and its geodesics give rise to a path system, 

C2n+1
𝒮2n+1

As we show, every consistent path system of the cycle results from a 
slight variation of this one

Viewing  as a tree system, the tree  is the path obtained by 
deleting the edge antipodal to .

𝒮2n+1 Tv
v



Cycles - Crossing Maps
Any tree system  of a cycle  can be viewed as a mapping  

, where .
𝒯 C

f:V(C) → E(C) Tv = C ∖ f(v)

We say a map  is crossing if 
for all  either  or  
and  separates  from .

f:V(C) → E(C)
u, v ∈ V(C) f(u) = f(v) u

f(u) v f(v)

Lemma. A mapping   
corresponds to a consistent path system in  
if and only if it is crossing.

f:V(C) → E(C)
C



Persistent Edges
Let  be a path system in  and   its corresponding 
crossing map. An edge  is called -persistent  if 

𝒫 C f:V(C) → E(C)
uv ∈ E 𝒫 f(u) = f(v) .

Claim. Let  be a neighborly path system on . Then, contracting a 
-persistent edge  yields a path system on , denoted .

𝒫 Cn
𝒫 e Cn−1 𝒫/e



Cycles - Path Systems
Theorem. Let  be a neighborly path system in the cycle  , , 
and let  be the set of all -persistent edges. Then

, for some odd .

𝒫 Cn n ≥ 3
F ⊆ E(Cn) 𝒫

𝒫/F = 𝒮m 3 ≤ m ≤ n

Corollary. Cycles are strictly metrizable.



The Class of Metrizable Graphs
If the graph  contains a subgraph which is isomorphic to a subdivision 
of , we say that  is a of .

G
H H topologicalminor G

Theorem. A topological minor of a (strictly) metrizable graph is (strictly) 
metrizable.

Corollary. If a graph  contains a subdivision of a non-metrizable graph 
then  is not metrizable.

G
G



Theorem. A topological minor of a (strictly) metrizable graph is 
(strictly) metrizable.

The Class of Metrizable Graphs

We need to show that  remains metrizable after either 
1. Edge removal 
2. Suppression of a degree 2 vertex

G



 Metrizability is Maintained under Edge Removal 

• Recall: our path systems need not be neighborly 
• If  for some edge   from , then any path system of 

 is also a path system in  and is metrizable by assumption
G′ = G ∖ {e} e G

G′ G



 Metrizabity is Maintained  under Vertex Suppression 
(Rough Sketch) 

Let  result from  by vertex suppression  
and let  be a path system in 

G′ G
𝒫′ G′ 

• “Extend”  to a path system  of  
• Since  is metrizable,  is induced by some  
• Modify  to some  that induces 

𝒫′ 𝒫 G
G 𝒫 w:E(G) → (0,∞)
w w′ :E(G′ ) → (0,∞) 𝒫′ 



A Zoo of Non-Metrizable Graphs
We found the following non-metrizable graphs. This was done 

by a computer brute-force search + linear program



In combination these methods show how rare metrizability is

Metrizability is Rare

Method 2 can also show that 
Petersen’s graph is not metrizable

We now have two ways to prove a given graph  is not metrizable: 
1. Construct an explicit path system in  and show that it is non-

metrizable using an appropriate linear program 
2. Find in  a subdivision of a non-metrizable graph from the Zoo

G
G

G



Metrizability is Rare

Specifically the following graphs are not metrizable: 
• 3-connected graphs with at least 8 vertices 
• 2-connected non-planar graphs with at least 8 vertices 
• 2-connected graphs with minimum degree at least 3 and at least 13 

vertices

Theorem. If a 2-connected graph on at least 8 vertices contains a 
subdivision of a 3-connected graph other than ,  and , then 
it is not metrizable.

K4 W5 K5 − e



Establishing Metrizability

A path in a graph  is said to be suspended if all of its vertices, 
except possibly its endpoints, have degree 2 in .

G
G

Theorem. If  is metrizable then so is  provided  has a 
suspended path between  and . Likewise for strict metrizability.

G G + uv G
u v

We saw that metrizability is rare, and that cycles are metrizable.
Is that all there is?



Rough Sketch of Proof
• For a path system  in  we define a “similar" path 

system  on some topological minor  of  

• But  is metrizable, being topological minor of , so we get a 
weight function  inducing  

• Modify  to a weight function on  that induces 

𝒫 G + uv
𝒫′ H G

H G
w′ 𝒫′ 

w′ G + uv 𝒫



Establishing Metrizability
Corollary. All outerplanar graphs are strictly metrizable.

A graph is outerplanar if it can be drawn in the plane with all its 
vertices in the outer face



Metrizable Graphs are not Minor Closed

While the graph on the left is metrizable contracting an edge yields a 
non-metrizable graph. 
But note: We know that the left graph is metrizable only by means of a 
computer run



Gate Keepers - Minors

Theorem. (Robertson & Seymour) Every minor closed family can be 
characterized by a finite set of forbidden minors.

Any graph family  closed under taking minors, is uniquely 
defined by the set of its minimal minor non-members , 

ℱ
ℳ

,ℱ = {G:∀K ∈ ℳ, K ⪯ ̸G} ∀H, K ∈ ℳ, H ⪯ ̸K



Gate Keepers - Topological Minors

But unlike minors, for topological minors infinite anti-chains do exist.

Likewise, any graph family closed under topological minors, is 
uniquely defined by the set of its minimal topological minor non-
members, 



Characterizing Metrizability
Let  denote the set of minimal forbidden topological minors 
characterizing the family of metrizable graphs. 

ℳ

Claim. If  and  contains a suspended path of length greater 
than 1 with endpoints  and  then 

G ∈ ℳ G
x y xy ∉ E(G) .

Proof. Suppose Since , it is non-metrizable. By our 
previous theorem  is also not metrizable, contradicting that  is 
minimally non-metrizable.

xy ∈ G . G ∈ ℳ
G ∖ xy G

Theorem: The family of  (strictly) metrizable graphs is characterized by 
a finite set of forbidden topological minors



Forbidden Graphs
Can  contain the sort of infinite antichain we saw before?ℳ

No! By our previous claim the graph on the left can’t be in .ℳ
While we don’t know precisely what graphs are/aren’t metrizable we 
can still say something about the sorts of graphs that can be in .ℳ



Forbidden Graphs
Theorem. The class of metrizable graphs is characterized by a finite set 
of forbidden topological minors. The same is true for strictly metrizable 
graphs.

Corollary. It is possible to decide in polynomial time whether a given 
graph is (strictly) metrizable.

Combined with the following result of Robertson and Seymour, this 
yields significant algorithmic consequences for metrizability testing

Theorem. (Roberson & Seymour). Fix a graph . There is a polynomial 
time algorithm to decide whether a given graph  contains a subdivision 
of .

H
G

H



Some Open Questions & Challenges
• Let  denote the graph that has 2 vertices of degree 3 that are connected 

three openly disjoint paths of length  and . We know that  is 
metrizable when  and that  is non-metrizable. What 
about the case  ? 

• Find the full list of topologically minimal non-metrizable graphs. 

• Do there exist “humanly verifiable” certificates for metrizability? 

• What if we restrict ourselves to neighborly path systems?  

• Let  be the set of all consistent path system in a graph  and  the set 
of all metrizable systems. As mentioned, typically . Is it even true 
that for most graphs?

Θa,b,c
a, b, c Θa,b,c

min(a, b, c) = 1 Θ3,3,4
min(a, b, c) = 2

ΠG G ℳG
ℳG ⊊ ΠG

|ℳG | ≪ |ΠG |



Related Work
Bodwin (2019) offers a topological characterization of partial path 
systems which are strictly metrizable. 

He shows that a path system is strictly metrizable if and only if the 
system avoids an infinite family of forbidden intersection patterns. 

These forbidden patterns are in a correspondence with two-
colored topological 2-manifolds.



Persistent Edges

Lemma. Let  be a tree system in a graph , and  its 
corresponding path system. For t.f.a.e:
1.
2. Every tree  contains the path  
3.  for all 

𝒯 G = (V, E) 𝒫
u, v ∈ V,

Tu = Tv
Tw ∈ 𝒯 Pu,v

Tz = Tu z ∈ Pu,v

The notion of persistent edges is not limited to cycles:

If  for some edge  then it is possible to contract it and 
obtain a consistent path system  in the graph . 

Tu = Tv uv
𝒫/uv G/uv



Deciding the Metrizability of Path Systems
Theorem. It is possible to decide in polynomial time whether a given 
path system is (strictly) metrizable.

The strict version of this theorem was also proven by Bodwin (2019) 
using a characterization of strict metrizability in terms of flow.

Both the strict and non-strict version of the theorem can be proven 
using a variant of the ellipsoid algorithm from the theory of Grötschel, 
Lovàsz and Schrijver (1988). 



Deciding the Metrizability of Path Systems
A strong separation oracle for a polyhedron   receives an 
input  and either asserts that  or returns some   
such that  for all .

K ⊆ ℝn

x ∈ ℚn x ∈ K c ∈ ℚn

cTx < cTy y ∈ K

“Theorem.” (Grötschel, Lovàsz & Schrijver) Suppose the polyhedron
 has a strong separation oracle, where 
. Then it can be determined in polynomial time 

whether or not  is empty. 

K = {x ∈ ℝn:Ax ≤ b}
A ∈ Mm×n(ℚ), b ∈ ℚm

K

To prove our theorem we need: 
1. An appropriate polyhedron  
2. A strong separation oracle for 

K
K



Au,v: = {x ∈ ℝE:∀Q ∈ 𝒬u,v, ∑
e∈Pu,v

xe − ∑
e∈Q

xe ≤ 0}

The Polyhedron: Let  be a path system on a graph  and let  
denote all the simple  paths in  not equal to . Define:

𝒫 G = (V, E) 𝒬u,v
uv G Pu,v

 is non-empty iff there exists a positive weight function inducing .K 𝒫

B: = {x ∈ ℝE:xe ≥ 1for everye ∈ E}
K: = B ∩ ⋂

u,v∈V

Au,v

The Strong separation Oracle: Let . 
• If  then the inequality  is violated for some  
• For each  calculate the distance  

- If  then for some  path ,  
and the inequality  is violated 

• If  for  then 

w ∈ ℝE

w ∉ B xe ≥ 1 e ∈ E
u, v ∈ V dw(u, v)

dw(u, v) ≠ w(Pu,v) uv Q ≠ Pu,v w(Q) = dw(u, v)

∑
e∈Pu,v

xe − ∑
e∈Q

xe ≤ 0

dw(u, v) = w(Pu,v) u, v ∈ V w ∈ K



Proof of Simple Case
Theorem. If  is metrizable then so is  provided  has a 
suspended path between  and .

G G + uv G
u v

We sketch a proof of the case where the suspended path  between 
 and  is of length 2, i.e. .

P
u v P = uzv

Proof. Let  be a path system on . For simplicity 
we assume that  is neighborly. We define a path system 

 on  as follows: Let , 
1. If  then  

2. If   then   is the path obtained by 
replacing the edge  by the path  in 

𝒫 G + uv
𝒫

𝒫′ G x, y ∈ V
uv ∉ Px,y P′ x,y: = Px,y

uv ∈ Px,y P′ x,y
uv uzv Px,y



Proof of Simple Case
It can be shown that  defines a consistent path system on . As  is 
metrizable there is a weight function  inducing .

𝒫′ G G
w′ :E(G) → (0,∞) 𝒫′ 

w(e): = {
w′ (e) e ≠ uv

w′ (uz) + w′ (zv) e = uv

For a path  in  let  denote the path in  obtained by 
replacing any instance of the edge  with . 
If  is any  path in  then

Q G + uv Q′ G
uv uzv

Q xy G + uv

Define  as followsw:E(G + uv) → (0,∞)

Therefore  induces . w 𝒫
w(Px,y) = w′ (Px,y) ≤ w′ (Q′ ) = w(Q)


