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Random planar maps

A planar map is a graph drawn on the sphere, viewed modulo
continuous deformations.

For n ∈ N sample Mn uniformly at random from the collection of
planar maps with n edges.

= 6=
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Scaling limits of uniform planar maps

Mn uniform planar map with n edges. Does Mn converge as n→∞?

Gromov-Hausdorff-Prokhorov topology for metric measure spaces (Le
Gall’13, Miermont’13, ...)

length = n−1/4

mass = n−1

⇒ The Brownian
map
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Scaling limits of uniform planar maps

Mn uniform planar map with n edges. Does Mn converge as n→∞?

Gromov-Hausdorff-Prokhorov topology for metric measure spaces (Le
Gall’13, Miermont’13, ...)

Weak topology on measures on S2 and uniform topology on metrics
on S2 under conformal embedding (H.-Sun’19)

conformal embedding

Figure by Nicolas Curien.
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Scaling limits of uniform planar maps

Mn uniform planar map with n edges. Does Mn converge as n→∞?

Gromov-Hausdorff-Prokhorov topology for metric measure spaces (Le
Gall’13, Miermont’13, ...)

Weak topology on measures on S2 and uniform topology on metrics
on S2 under conformal embedding (H.-Sun’19)

mass n−1 ⇒
gravity (LQG) surface

conformally embedded planar map

Liouville quantum

length n−1/4
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The Gaussian free field (GFF)

Hamiltonian H(f ) quantifies how much f deviates from being harmonic

H(f ) =
1

2

∑
x∼y

(f (x)− f (y))2, f :
1

n
Z2 ∩ [0, 1]2 → R.

1

1

1
n
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1

2

∑
x∼y

(f (x)− f (y))2, f :
1

n
Z2 ∩ [0, 1]2 → R.

Discrete Gaussian free field (GFF): Random function hn s.t. hn|∂ = 0 and the
probability density relative to the product of Lebesgue measure is proportional to

exp(−H(hn)).

n = 20, n = 100
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probability density relative to the product of Lebesgue measure is proportional to

exp(−H(hn)).

hn(z) ∼ N (0, 1
2π

log n + O(1)) and Cov(hn(z), hn(w)) = − 1
2π

log |z − w |+ O(1).

The Gaussian free field h is the limit of hn when n→∞.

The GFF is a random distribution (i.e., random generalized function).

n = 20, n = 100
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Liouville quantum gravity (LQG)

Let γ ∈ (0, 2) and let h be the Gaussian free field (GFF).

LQG surface: eγh(dx2 + dy2).

The definition of an LQG surface does not make literal sense since h
is a distribution and not a function.

Measure µ and distance function (metric) D defined by considering
regularization hε of h.1

µ(U) = lim
ε→0

εγ
2/2

∫
U
eγhε(z)d2z , U ⊂ C,

D(z1, z2) = lim
ε→0

aε inf
P:z1→z2

∫
P
eγhε(z)/d dz , z1, z2 ∈ C.

LQG for γ =
√

8/3 describes the scaling limit of uniform planar maps.

1Metric construction: Gwynne-Miller’19, Ding-Dubedat-Dunlap-Falconet’19,
Dubedat-Falconet-Gwynne-Pfeffer-Sun’19. Hausdorff dim. (C,D) denoted by d = d(γ).
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Equivalence of Brownian map & Liouville quantum gravity

planar map

Brownian map
LQGMiller-Sheffield’16

Le Gall’13
Miermont’13

conformalmeasure

...
H.-Sun’19

uniform random

metric

γ =
√

8/3
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Planar maps reweighted by Laplacian determinant

Let c ∈ R be a matter central charge.2

Let M be a random planar map of size n such that

P[M = m] ∝ (det ∆m)−c/2

where ∆m is a linear operator derived from the adjacency matrix of m.

Physics heuristic: The law of M has been “reweighted by the number
of ways to embedded M in c-dimensional space”.

Kirchhoff’s matrix-tree theorem: det ∆m = # spanning trees on m.

David-Distler-Kawai (DDK) ansatz: M ⇒ eγhd2z as n→∞ for
c ≤ 1, where

c = 25− 6(γ/2 + 2/γ)2, γ ∈ (0, 2].

DDK ansatz best understood mathematically for c = 0 (γ =
√

8/3).

2Note that this is different from the Liouville central charge cL = 26− c.
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Mathematical progress on DDK ansatz for c ≤ 1

Convergence to LQG in the mating-of-trees topology

Duplantier-Miller-Sheffield’14, Sheffield’16 (c ∈ (−2, 1)), Gwynne-Mao-
Sun’19 (c ∈ (−2, 1)), Gwynne-Kassel-Miller-Wilson’18 (c < −2),
Kenyon-Miller-Sheffield-Wilson’19 (c = −7), Gwynne-H.-Sun’16
(c = −7), Li-Sun-Watson’17 (c = −12.5), Bernardi-H.-Sun’18 (c = 0)

10

GFFIsing

−2 0.5
UST uniform

c

bipolar orient.
Schnyder-wood

Fortuin-Kastelyn, O(n)

−7−12.5

Belief: (det ∆)−c/2 ≈ statistical physics model partition function
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(c = −7), Li-Sun-Watson’17 (c = −12.5), Bernardi-H.-Sun’18 (c = 0)

Random planar map exponents consistent with LQG predictions, e.g.

various results on stable maps (Borot, Bouttier, Budd, Chen, Curien,
Guitter, Kortchemski, Le Gall, Maillard, Miermont, Richier, etc.) and
CLE on LQG (Duplantier, Miller, Sheffield, Werner)
nesting statistics in O(n) loop model (Borot-Bouttier-Duplantier’16)
volume growth exponent c ∈ (−∞,−2] ∪ {0} (Gwynne-H.-Sun’20)
Ising perimeter and interface exponent (Chen-Turunen’18, Turunen’20)
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Reweighting discretized LQG surface by (det ∆)−c/2

Ang-Park-Pfeffer-Sheffield’20
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Reweighted planar maps

c = −7
γ =

√
4/3 ≈ 1.15

c = −5
γ ≈ 1.24

c = 0
γ =

√
8/3 ≈ 1.63

.

As c→ −∞, γ → 0 and eγh(dx2 + dy2) approaches Euclidean geometry.

Physics conj.: For c > 1, random planar map ⇒ continuum random tree.

Simulations by Bettinelli

Holden (ETH Zürich) LQG and central charge October 6, 2020 10 / 32



Planar maps reweighted by (det ∆)−c/2

c0 1

continuum random treeLQG for γ ∈ (0, 2]

Can we define some non-trivial geometry for LQG with c > 1?

Yes, when c ∈ (1, 25).
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Square subdivision: discretization of LQG surface

Let µ = eγhd2z be the c-LQG area measure in [0, 1]2 for c < 1.

Fix ε > 0. Divide a square S iff µ(S) > ε.
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Holden (ETH Zürich) LQG and central charge October 6, 2020 12 / 32



Square subdivision: discretization of LQG surface

Let µ = eγhd2z be the c-LQG area measure in [0, 1]2 for c < 1.

Fix ε > 0. Divide a square S iff µ(S) > ε.
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Illustration of LQG area measure

Area measure µ = eγhd2z , γ = 1.5, c = −1.04

(simulation by Miller and Sheffield)
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Illustration of LQG area measure

γ = 1, c = −12.5 γ = 1.5, c = −1.04 γ = 1.75, c = −0.57

Area measure µ = eγhd2z

(simulation by Miller and Sheffield)
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The Hausdorff dimension of an LQG surface

Recall: A c-LQG surf. has measure µ and distance func. (metric) D.

dc = Hausdorff dimension of metric space (C,D).

Volume of metric ball: µ(B(z , r)) = rdc+o(1) (Ang-Falconet-Sun’20).

dc = 2

dc = 5

γ = 2
(c = 1)

γ = 0
(c = −∞)

Watabiki prediction
lower bound

upper bound

γ =
√
8/3

c = 0

γ = 0.75
c = −31

LQG metric balls (by Miller)

Bounds for dc: Ang’19, Ding-Goswami’19, Ding-Gwynne’18, Gwynne-Pfeffer’19
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The square subdivision as a planar map
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The square subdivision as a planar map

B1(0)
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The square subdivision as a planar map

B2(0)
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The square subdivision as a planar map

B3(0)
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The square subdivision as a discrete approximation to LQG

Let c < 1.

By Ding-Zeitouni-Zhang’18, Ding-Gwynne’18,

#Br (0) = rdc+o(1),

where Br (0) is the graph metric ball of radius r
and dc > 2 is the Hausdorff dimension of c-LQG.

B2(0)
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#Br (0) = rdc+o(1),

where Br (0) is the graph metric ball of radius r
and dc > 2 is the Hausdorff dimension of c-LQG.

Gwynne-Miller-Sheffield’17 proved that a related
discretization of c-LQG converges to c-LQG
under the Tutte embedding.

M
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Let c < 1.

By Ding-Zeitouni-Zhang’18, Ding-Gwynne’18,

#Br (0) = rdc+o(1),

where Br (0) is the graph metric ball of radius r
and dc > 2 is the Hausdorff dimension of c-LQG.

Gwynne-Miller-Sheffield’17 proved that a related
discretization of c-LQG converges to c-LQG
under the Tutte embedding.

M

These results suggest that the square subdivision planar map M is in the
c-universality class of planar maps.
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The square subdivision as a discrete approximation to LQG

z1

z2 M

Conjecture: The graph metric of M appropriately rescaled converges to
the c-LQG metric D associated with the GFF h as ε→ 0.

Ding-Dunlap’20 proves tightness for a related metric.
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Approximate LQG area measure via GFF circle average

S

zS|S|

LQG area measure: µ = eγhd2z ; GFF circle average: h|S|(zS).

µ(S)1/γ ≈ |S |Qeh|S|(zS ), Q = 2/γ + γ/2

Coupling constant γ γ ∈ (0, 2] |γ| = 2
Background charge Q = 2/γ + γ/2 Q ≥ 2 Q ∈ (0, 2)

Matter central charge c = 25− 6Q2 c ≤ 1 c ∈ (1, 25)
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The square subdivision model with GFF circle averages

Fix ε > 0. Divide a square S iff |S |Qeh|S|(zS ) > ε.

We now have a model for LQG with c ∈ (1, 25)!

γ ∈ C, Q ∈ R
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Our model for LQG with c ∈ (1, 25)

M

Let M be planar map of squares defined using GFF circle averages.

M is our model for LQG with c ∈ (1, 25).
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Phase transition at c = 1: Infinite-volume surface

For c < 1 the square subdivision
terminates with probability 1.

For c ∈ (1, 25), as ε→ 0 the
probability that the square

subdivision terminates goes to 0.

Dense set of “infinite mass” points
(d = 2− Q2/2, Hu-Miller-Peres’10).
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Finite and infinite volume models for c ∈ (1, 25)

Finite volume: continuum random tree Infinite volume

Left figure due to Kortchemski.
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Is our model the “correct” model for c ∈ (1, 25)?

Ang-Park-Pfeffer-Sheffield’20 argue as follows:

Let c ∈ R, ε > 0, and n ∈ N.

Let M be obtained from square subdivision
for central charge 0 and square size ε,
conditioned on #V (M) = n.

Reweight the prob. meas. by Laplacian
determinant (defined via smooth approx. to
h and Polyakov-Alvarez) to power −c/2.

For the resulting probability measure, M
has the law of square subdivision for central
charge c, conditioned on #V (M) = n.

M
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Superpolynomial ball volume growth

Theorem (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
r→∞

log #Br (0)

log r
=∞.

B2(0)

0
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Superpolynomial ball volume growth

Theorem (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
r→∞

log #Br (0)

log r
=∞.

big square small square

< εK

> ε1/Q
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Superpolynomial ball volume growth

Theorem (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
r→∞

log #Br (0)

log r
=∞.

1 Large squares well connected: Any two big squares (side length
> ε1/Q) have distance < ε−C for some C > 0.

GFF level lines (SLE4-type curves)
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Superpolynomial ball volume growth

Theorem (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
r→∞

log #Br (0)

log r
=∞.

1 Large squares well connected: Any two big squares (side length
> ε1/Q) have distance < ε−C for some C > 0.

2 Many small squares close to a big square: For any K > 0 there
are > ε−cK squares of side length < εK with distance < ε−C from a
big square (C and c indep. of K ).

< ε−C
> ε1/Q

< εK
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Superpolynomial ball volume growth

Theorem (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
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log #Br (0)

log r
=∞.

1 Large squares well connected: Any two big squares (side length
> ε1/Q) have distance < ε−C for some C > 0.

2 Many small squares close to a big square: For any K > 0 there
are > ε−cK squares of side length < εK with distance < ε−C from a
big square (C and c indep. of K ).

3 Origin close to a big square: The origin has distance < ε−C to a
big square.

By the triangle inequality and the above, #Br (0) > ε−cK for r = 3ε−C .
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Point-to-point distances grow polynomially

Let Dε
h(·, ·) denote the graph metric in the planar map of squares.

Proposition 1 (Gwynne-H.-Pfeffer-Remy’19)

For c < 25, there exists α, α > 0 s.t. for fixed z1, z2 ∈ C, a.s.

ε−α+o(1) ≤ Dε
h(z1, z2) ≤ ε−α−o(1) as ε→ 0.

Ding-Gwynne’20 gets tightness for
point-to-point distances in Liouville first passage
percolation for c ∈ (1, 25). z1

z2
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Liouville first passage percolation

DLFPP,ε
h (z1, z2) := aε inf

P:z1→z2

∫
P
eξhε(z) dz ,

ξ > 0.

If ξ = γc/dc and c < 1 then DLFPP,ε
h converges

to the LQG metric in probability as ε→ 0.

Ding-Gwynne’20: If ξ > ξcrit := γ1/d1 then

DLFPP,ε
h is tight for the topology on lower

semi-continuous functions.

If DLFPP
h is a subsequential limit then

DLFPP
h (z1, z2) <∞ a.s. for fixed z1, z2 and

the “infinite mass” points have infinite
DLFPP

h -distance from all other points.

Conjecture: DLFPP
h is unique.

ξ > ξcrit corresponds to c > 1 via analytic
continuation.

ξ = 0.5

ξ = 1.7

Metric balls
(Miller, Ding-Gwynne)
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KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

Let X be a fractal independent of the Gaussian free field h.

Let Nε
0(X ) and Nε

h(X ) denote the number of squares intersecting X .

Let dX (resp. dc
X ) denote Euclidean (resp. c-LQG) dimension of X .

KPZ formula: dX = Qdc
X − 0.5(dc

X )2

KPZ formula used in physics to predict exponents and dimensions.

N ε
0(X) = ε−dX+o(1) N ε

h(X) = ε−d
c
X+o(1)

X X

ε
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KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

Recall that Nε
h(X ) is the number of squares intersecting X .

Theorem (Gwynne-H.-Pfeffer-Remy’19; KPZ formula for c < 25)

If dimHaus(X ) = dimMink(X ) = dX then a.s. for sufficiently small ε > 0,

Nε
h(X ) =

{
ε−(Q−

√
Q2−2dX )+oε(1) if dX < Q2/2,

∞ if dX > Q2/2.

Furthermore, E[Nε
h(X )] = ε−(Q−

√
Q2−2dX )+oε(1) for dX < Q2/2.

X∩“infinite mass points” 6= ∅ ⇔ dX > Q2/2 ⇔ exponent complex

Variants of KPZ formula for c ≤ 1: Benjamini-Schramm’09,
Duplantier-Sheffield’11, Rhodes-Vargas’11, Barral-Jin-Rhodes-
Vargas’13, Aru’15, Gwynne-H.-Miller’15, Berestycki-Garban-Rhodes-
Vargas’16, Gwynne-Pfeffer’19, etc.
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Open problems and further directions

Scaling limit results for planar maps reweighted by (det ∆)−c/2.
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Open problems and further directions

Scaling limit results for planar maps reweighted by (det ∆)−c/2.

Scaling limit results for coarse-grained versions of LQG.

examples: square subdivision, Liouville first passage percolation

Combinatorial random planar map model for c ∈ (1, 25).

10

GFFIsing

−2 0.5
UST uniform

c

bipolar orient.
Schnyder-wood

Fortuin-Kastelyn, O(n)

−7−12.5

Belief: (det ∆)−c/2 ≈ statistical physics model partition function
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Open problems and further directions

Scaling limit results for planar maps reweighted by (det ∆)−c/2.

Scaling limit results for coarse-grained versions of LQG.

examples: square subdivision, Liouville first passage percolation

Combinatorial random planar map model for c ∈ (1, 25).

eγhd2z for γ ∈ C.

works of Junnila, Lacoin, Rhodes, Saksman, Vargas, Viitasaari, Webb

2−2

√
2

−
√
2

Im(γ)

Re(γ)

c ∈ [1, 25]

eγhd2z constructed
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Open problems and further directions

Scaling limit results for planar maps reweighted by (det ∆)−c/2.

Scaling limit results for coarse-grained versions of LQG.

examples: square subdivision, Liouville first passage percolation

Combinatorial random planar map model for c ∈ (1, 25).

eγhd2z for γ ∈ C.

works of Junnila, Lacoin, Rhodes, Saksman, Vargas, Viitasaari, Webb

Path integral approach e−SL(ϕ)Dϕ to c > 1, where Dϕ is “Lebesgue
measure on the space of functions” and

SL(ϕ) :=
1

π

∫
|∂zϕ(z)|2 + πµ̃eγϕ(z) d2z , µ̃ > 0.

see David-Kupiainen-Rhodes-Vargas’16 and related works for c < 1
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Open problems and further directions (cont.)

Schramm-Loewner evolution (SLE) for c > 1.

SLE is a one parameter family of random fractal curves describing the
scaling limit of statistical physics models. Parameter κ > 0 or c ≤ 1.
Natural couplings between SLE and LQG w/same central charge, i.e.
γ = min{

√
κ; 4/

√
κ} (works of Duplantier, Miller, Sheffield, Werner).
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Open problems and further directions (cont.)

Schramm-Loewner evolution (SLE) for c > 1.

SLE is a one parameter family of random fractal curves describing the
scaling limit of statistical physics models. Parameter κ > 0 or c ≤ 1.
Natural couplings between SLE and LQG w/same central charge, i.e.
γ = min{

√
κ; 4/

√
κ} (works of Duplantier, Miller, Sheffield, Werner).

Physical meaning of complex dimensions, for example in the KPZ
formula dc

X = Q −
√

Q2 − 2dX for dX > Q2/2.
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Thanks!
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