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Induced subgraph: subgraph obtained by deleting vertices.
H-free: no induced subgraph isomorphic to H.

a(G) = size of the largest stable set in G.
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@ max(a(G),w(G)) > |G|'/3 for every Cy4-free graph G.

Conjecture (Erdds, Hajnal, 1977)

For every graph H, there exists ¢ > 0 such that every H-free graph G
has a clique or stable set of size at least |G|°.
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H has the EH-property if there exists ¢ > 0 such that
max(a(G),w(G)) > |G|° for every H-free graph G.
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Theorem
The following graphs are known to have the EH-property:
@ P,-free graphs (Erdés, Hajnal, 1989)
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Theorem
The following graphs are known to have the EH-property:
@ P,-free graphs (Erdés, Hajnal, 1989)

@ Graphs that can be made from graphs with the EH-property by
substitution (Alon, Pach, Solymosi, 2001)

@ The bull (Chudnovsky, Safra, 2008)
@ The cycle of length five (Chudnovsky, Scott, S., Spirkl, 2021).

It is open whether P5 has the EH-property.

Theorem (Blanco, Buci¢, 2022)
There exists ¢ > 0 such that

max(a(G), w(G)) > 2°(°816D**,

for every Ps-free graph G.
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Cograph: P4-free graph. Equivalently, a graph that can be constructed
starting from one-vertex graphs by repeatedly taking disjoint unions
and complete joins.

Define 1.(G) = size of largest induced cograph in G.
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Conjecture (Erd6s-Hajnal, equivalent form)

For every graph H, there exists ¢ > 0 such that u(G) > |G|° for every
H-free graph G.
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H-free graph G.

Theorem (Erdds, Hajnal, 1989)

For every H there exists ¢ > 0 such that u(G) > 2°V'°&|Cl for every
H-free graph G.

Theorem (Buci¢, Nguyen, Scott, S., 2022)
For every H there exists ¢ > 0 such that

N(G) > 20\/I0g|G\ log log |G|

for every H-free graph G.
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Theorem
For every H there exists ¢ > 0 such that

@ u(G) > 2¢'glGl 22 (The E-H conjecture)
for every H-free graph G.
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Disjoint subsets A, B of V(G) are

complete if every vertex in A is adjacent to every vertex in B;
anticomplete if there are no edges between A, B;

a pure pair if A is either complete or anticomplete to B.

8/23



Disjoint subsets A, B of V(G) are
complete if every vertex in A is adjacent to every vertex in B;
anticomplete if there are no edges between A, B;
a pure pair if A is either complete or anticomplete to B.
@ If we could prove that every H-free graph has a pure pair (A, B)
with |A|, |B| > Q(|G|), we could prove H has the EH-property. But
this is true only for very small graphs H.

8/23



Disjoint subsets A, B of V(G) are
complete if every vertex in A is adjacent to every vertex in B;

anticomplete if there are no edges between A, B;
a pure pair if A is either complete or anticomplete to B.
@ If we could prove that every H-free graph has a pure pair (A, B)
with |A|, |B| > Q(|G|), we could prove H has the EH-property. But
this is true only for very small graphs H.
@ If every H-free graph G has a pure pair (A, B) with
A, |B| > Q(|G|/u(G)F), then u(G) > 2°V'*¢1Cl for H-free graphs.

8/23



Disjoint subsets A, B of V(G) are
complete if every vertex in A is adjacent to every vertex in B;
anticomplete if there are no edges between A, B;
a pure pair if A is either complete or anticomplete to B.
@ If we could prove that every H-free graph has a pure pair (A, B)
with |A|, |B| > Q(|G|), we could prove H has the EH-property. But
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@ If every H-free graph G has a pure pair (A, B) with
A, |B| > Q(|G|/u(G)F), then u(G) > 2°V'*¢1Cl for H-free graphs.
@ If every H-free graph has a pure pair (A, B) with
Al > Q(|Gl/u(G)") and [B| > Q(|Gl), then
1(G) > 2¢V'eelGlloglog Gl for H-free graphs.
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(A, B) is almost-pure if either every vertex in B has at most
|Al/(214(G)) neighbours in A, or every vertex in B has at most
|A|/(21(G)) non-neighbours in A.
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@ If every H-free graph has an almost-pure pair (A, B) with
|Al,|B| > Q(|G|), then H has the EH-property. But still this is true
only for very small graphs H.

@ If every H-free graph has an almost-pure pair (A, B) with
A, |B| > Q(|G|/u(G)¥), then u(G) > 2°V'°¢lCl for H-free graphs.
This is true, for all H, and this is how Erdds and Hajnal proved
their theorem.

@ If every H-free graph has an almost-pure pair (A, B) with
Al > Q(|GI/p(G)¥) and |B| > Q(|Gl), then
u(G) > 2¢Vlee|Glloglog |Gl for H-free graphs. This is still open, but
related to what we do.
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Theorem

For all H, there exist k > 0 such that for every H-free graph G and
every x withQ < x < ﬁ, there is a sequence A+, .. ., A, of disjoint
subsets of V(G) with n > log(1/x), and each of cardinality at least
|xX|G||, such that for 1 < i < n, either

every vertex of Ai 1 U--- U Ay has at most x|A;| neighbours in A;, or
every vertex of Aj, 1 U --- U A, has at most x|A;| non-neighbours in A;.

A A; A1 Air2 An
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Main theorem

indy(@G): No of isomorphisms from H to induced subgraphs of G.
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Main theorem

indy(@G): No of isomorphisms from H to induced subgraphs of G.

Theorem

For all H, there exist ky, ko > 0 such that for every graph G and every x
with 0 < x < gy, ifindp(G) < x*1|G|I", there is a sequence

A1, ..., A, of disjoint subsets of V(G) with n > log(1/x), and each of
cardinality at least | x"2|G||, such that for 1 < i < n, either

every vertex of Ai,1 U --- U A, has at most x|A;| neighbours in A;, or
every vertex of Aj 4 U--- U Ay has at most x|A;| non-neighbours in A;.
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Key lemma

A B

Let g € V(H). Let A, B C V(G), and suppose every vertex in A is
nonadjacent to at least a moderate amount of B.
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Key lemma

B/

A B

Let g € V(H). Let A, B C V(G), and suppose every vertex in A is
nonadjacent to at least a moderate amount of B. Then either:

@ G[A U B] contains many copies of H; or

@ there exists some B’ C B, not too small, such that G[B'] contains
surprisingly few copies of H \ g;
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B/

B

Let g € V(H). Let A, B C V(G), and suppose every vertex in A is
nonadjacent to at least a moderate amount of B. Then either:

@ G[A U B] contains many copies of H; or

@ there exists some B’ C B, not too small, such that G[B'] contains

surprisingly few copies of H\ g; or

@ there exist A C Aand B’ C B, not too small, such that there are

very few edges between A" and B'.
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Key lemma

Theorem

Let H be a graph and let g € V(H). Let b,c > 0, and let
a:=b+ (1+c)|H|. Let G be a graph, let A, B be disjoint subsets of

V(G), and let0 < x < 1/2. Suppose that every vertex in A has at least
x|B| non-neighbours in B. Then either:

@ indy(G) > x3A| - |BIIM=1; or
@ there exists B' C B with |B'| > x|B| such that
indpn g(G[B) < xP|B'|IH1=1; or
@ there exists A C Aand B' C B with |A'| > x@|A| and |B'| > x4|B]

such that the number of edges between A', B' is at most
2x°|A| - |B/|.
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Let H be a graph and let g € V(H). Letb,c > 0, and let

a:=b+ (1+c)|H|. Let G be a graph, let A, B be disjoint subsets of
V(G), and let0 < x < 1/2. Suppose that every vertex in A has at least
x|B| non-neighbours in B. Then either:

o there are at least x!"\=1+b+cd| A . |B|IHI=1 jsomorphisms ¢ from H
to induced subgraphs of G where ¢(g) € A and ¢(h) € B for all
other h € V(H), where g has degree d in H; or

@ there exists B' C B with |B'| > x|B| such that
indpn g(G[B) < xP|B'|IH1=1; or

@ there exists A C A and B' C B with |A'| > x@|A| and |B'| > x2|B]
such that the number of edges between A', B' is at most
2xC|A'| - |B/|.
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Key lemma

Proof: Induction on d.

Base case d = 0. Let v € A, and let B’ be its non-neighbours in B. So
|B'| > x|B].
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Key lemma

Inductive case d > 0. Let e = gh be an edge incident with g.
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Key lemma

Inductive case d > 0. Let e = gh be an edge incident with g.

@ From the induction, we may assume that there are at least
xIHI=1+b+e(d=1)| 4| . |B|IHI=1 copies of H \ e in G where g is
mapped into A and all the rest into B. (Call these “good” copies.)

@ There are at most |B|I*1-2 copies of H\ {g, h} in G[B].
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good copies of H \ e.
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extensions of C to
copies of H\ {h}
- (2 | extensions of C to

2 copiesof H\ {g}

\\

B

o« copyof Hi{g, h

@ On average (over the choices of C) there are at least
xIHI=1+b+c(d=1)| A| .| B| nonedges between A’ and B'.
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@ On average (over the choices of C) there are at least
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@ Ignore all choices of C with fewer than JxIHI=1+b+e(d=1)| 4| . |B|
nonedges between A’ and B’ (this loses at most half of the good
copies of H \ e).
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@ If for some choice of C, there are only 2x°|A’| - |B'| edges between
A, B, the third outcome holds.

19/23



extensions of C to o< coPY of H\ {g, h}
copies of H\ {h}
4" | extensions of C to

=28 .
Q B | copies of H\ {g}

B

@ On average (over the choices of C) there are at least
xIHI=1+b+c(d=1)| Al . | B| nonedges between A’ and B'.

@ Ignore all choices of C with fewer than JxIHI=1+b+e(d=1)| 4| . |B|
nonedges between A’ and B’ (this loses at most half of the good
copies of H \ e).

e Soforall C, |A| > 1xIHI=1+b+c(d=1)|A| > x3|A| and |B'| > x3|B|.

@ If for some choice of C, there are only 2x°|A’| - |B'| edges between
A, B, the third outcome holds.

@ Otherwise, there are always at least 2x¢|A’| - |B'| edges between
A, B'; so the number of good copies of H is big and the first
outcome holds.
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Approximate blowups

Jisagraph, t > 0 an integer, and q < 1 a real number. A ({, g)-blowup
of Jin G means a family A; (j € V(J)) of pairwise disjoint subsets of
V(G), all of size t, such that for all distinct /,j € V(J),
e if jj ¢ E(J) then every vertex in A; has at most g|A;| neighbours in
Aj and vice versa;
@ if jj € E(J) then every vertex in A; has at most g|A|
non-neighbours in A; and vice versa.
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Proof of the main theorem

Theorem

For all H, there exist k{, ko > 0 such that for every graph G and every x
with 0 < x < g, ifindp(G) < x*1|G|I", there is a sequence

A1, ..., A, of disjoint subsets of V(G) with n > log(1/x), and each of
cardinality at least | x"2|G||, such that for 1 < i < n, either

every vertex of Ai. 1 U --- U Ay has at most x|A;| neighbours in A;, or
every vertex of Aj 4 U --- U Ay has at most x|A;| non-neighbours in A;.
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cardinality at least | x"2|G||, such that for 1 < i < n, either

every vertex of Ai. 1 U --- U Ay has at most x|A;| neighbours in A;, or
every vertex of Aj 4 U --- U Ay has at most x|A;| non-neighbours in A;.

@ Choose an induced subgraph J of H maximal such that there is an
approximate blowup of J in G. (ie a (t, q)-blowup where
t = |x"|G|| and q = x"2 for appropriate ry, r. depending on J.)

@ J # H since indy(G) < x¥|G|!"l. Choose i € V(H)\ V(J).
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Case 1: there is a subset B disjoint from the A/’s, that is very sparse to
some A;, and has size ¢|G|.

22/23



Case 1: there is a subset B disjoint from the A/’s, that is very sparse to
some A;, and has size ¢|G|. Start again, working completely inside
B. If this happens many times we generate the sequence of subsets of
the theorem.
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So most vertices in V(G) \ Ujcy(y) Aj are adjacent to at least a small
fraction of each A;, and also nonadjacent to at least a small fraction of
each A;.
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So most vertices in V(G) \ Ujcy(y) Aj are adjacent to at least a small
fraction of each A;, and also nonadjacent to at least a small fraction of
each A;. Use the key lemma to get a subset Cj, of V(G) \ Ujcy(y) Aj»
not too small, that is very dense or very sparse (whichever we want) to
a subset D;, C Aj, that is not too small.
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Af1 D/1

A;, D;

G

2

Repeat to get C;, C C;, not too small, that is dense or sparse to a
subset D;, C A, that is not too small.
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J1 Jo J3 Ja i

A, D

A;, D; Aj, D; A;, D;

A
G
Repeat to get C;, C C;, not too small, that is dense or sparse to a
subset D;, C A, that is not too small.
Repeat for all other A;. This give an approximate blowup of J+i,
contrary to the choice of J.
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