A loglog step towards the Erdős-Hajnal conjecture

Paul Seymour (Princeton)

Joint work with Matija Bucić, Tung Nguyen and Alex Scott.

H-free: no induced subgraph isomorphic to *H*.

 $\alpha(G)$ = size of the largest stable set in G.

H-free: no induced subgraph isomorphic to *H*.

 $\alpha(G)$ = size of the largest stable set in G.

 $\omega(G)$ = size of the largest clique in G.

• There are *n*-vertex graphs with $\max(\alpha(G), \omega(G)) \leq O(\log(n))$.

H-free: no induced subgraph isomorphic to *H*.

 $\alpha(G)$ = size of the largest stable set in G.

- There are *n*-vertex graphs with $\max(\alpha(G), \omega(G)) \leq O(\log(n))$.
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/2}$ for every P_4 -free graph G.

H-free: no induced subgraph isomorphic to *H*.

 $\alpha(G)$ = size of the largest stable set in G.

- There are *n*-vertex graphs with $\max(\alpha(G), \omega(G)) \leq O(\log(n))$.
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/2}$ for every P_4 -free graph G.
- $\alpha(G) \geq \frac{1}{2} |G|^{1/(t-1)}$ for every K_t -free graph G.

H-free: no induced subgraph isomorphic to *H*.

 $\alpha(G)$ = size of the largest stable set in G.

- There are *n*-vertex graphs with $\max(\alpha(G), \omega(G)) \leq O(\log(n))$.
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/2}$ for every P_4 -free graph G.
- $\alpha(G) \geq \frac{1}{2} |G|^{1/(t-1)}$ for every K_t -free graph G.
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/4}$ for every bull-free graph G. (Chudnovsky, Safra, 2008)

H-free: no induced subgraph isomorphic to *H*.

 $\alpha(G)$ = size of the largest stable set in G.

- There are *n*-vertex graphs with $\max(\alpha(G), \omega(G)) \leq O(\log(n))$.
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/2}$ for every P_4 -free graph G.
- $\alpha(G) \geq \frac{1}{2} |G|^{1/(t-1)}$ for every K_t -free graph G.
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/4}$ for every bull-free graph G. (Chudnovsky, Safra, 2008)
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/3}$ for every C_4 -free graph G.

H-free: no induced subgraph isomorphic to *H*.

 $\alpha(G)$ = size of the largest stable set in G.

 $\omega(G)$ = size of the largest clique in G.

- There are *n*-vertex graphs with $\max(\alpha(G), \omega(G)) \leq O(\log(n))$.
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/2}$ for every P_4 -free graph G.
- $\alpha(G) \geq \frac{1}{2} |G|^{1/(t-1)}$ for every K_t -free graph G.
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/4}$ for every bull-free graph G. (Chudnovsky, Safra, 2008)
- $\max(\alpha(G), \omega(G)) \ge |G|^{1/3}$ for every C_4 -free graph G.

Conjecture (Erdős, Hajnal, 1977)

For every graph H, there exists c > 0 such that every H-free graph G has a clique or stable set of size at least $|G|^c$.

Theorem (Alon, Pach, Solymosi, 2001)

If H_1 , H_2 have the EH-property, and H is obtained by substituting H_1 for a vertex of H_2 , then H has the EH-property.

Theorem (Alon, Pach, Solymosi, 2001)

If H_1 , H_2 have the EH-property, and H is obtained by substituting H_1 for a vertex of H_2 , then H has the EH-property.

Theorem (Alon, Pach, Solymosi, 2001)

If H_1 , H_2 have the EH-property, and H is obtained by substituting H_1 for a vertex of H_2 , then H has the EH-property.

The following graphs are known to have the EH-property:

• P₄-free graphs (Erdős, Hajnal, 1989)

The following graphs are known to have the EH-property:

- P₄-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)

The following graphs are known to have the EH-property:

- P₄-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)
- The bull (Chudnovsky, Safra, 2008)

The following graphs are known to have the EH-property:

- P₄-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)
- The bull (Chudnovsky, Safra, 2008)
- The cycle of length five (Chudnovsky, Scott, S., Spirkl, 2021).

The following graphs are known to have the EH-property:

- P₄-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)
- The bull (Chudnovsky, Safra, 2008)
- The cycle of length five (Chudnovsky, Scott, S., Spirkl, 2021).

It is open whether P_5 has the EH-property.

The following graphs are known to have the EH-property:

- P₄-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)
- The bull (Chudnovsky, Safra, 2008)
- The cycle of length five (Chudnovsky, Scott, S., Spirkl, 2021).

It is open whether P_5 has the EH-property.

Theorem (Blanco, Bucić, 2022)

There exists c > 0 such that

$$\max(\alpha(G), \omega(G)) \ge 2^{c(\log|G|)^{2/3}}$$

Cograph: P_4 -free graph. Equivalently, a graph that can be constructed starting from one-vertex graphs by repeatedly taking disjoint unions and complete joins.

Define $\mu(G)$ = size of largest induced cograph in G.

Conjecture (Erdős-Hajnal, equivalent form)

For every graph H, there exists c > 0 such that $\mu(G) \ge |G|^c$ for every H-free graph G.

Conjecture (Erdős-Hajnal, equivalent form)

For every graph H, there exists c > 0 such that $\mu(G) \ge |G|^c$ for every H-free graph G.

Theorem (Erdős, Hajnal, 1989)

For every H there exists c > 0 such that $\mu(G) \ge 2^{c\sqrt{\log|G|}}$ for every H-free graph G.

Conjecture (Erdős-Hajnal, equivalent form)

For every graph H, there exists c > 0 such that $\mu(G) \ge |G|^c$ for every H-free graph G.

Theorem (Erdős, Hajnal, 1989)

For every H there exists c > 0 such that $\mu(G) \ge 2^{c\sqrt{\log|G|}}$ for every H-free graph G.

Theorem (Bucić, Nguyen, Scott, S., 2022)

For every H there exists c > 0 such that

$$\mu(G) \geq 2^{c\sqrt{\log|G|\log\log|G|}}$$

For every H there exists c > 0 such that

• $\mu(G) \ge 2^{c \log |G|}$?? (The E-H conjecture)

For every H there exists c > 0 such that

- $\mu(G) \ge 2^{c \log |G|}$?? (The E-H conjecture)
- $\mu(G) \ge 2^{c\sqrt{\log|G|}}$ (Erdős, Hajnal, 1989)

For every H there exists c > 0 such that

- $\mu(G) \ge 2^{c \log |G|}$?? (The E-H conjecture)
- $\mu(G) \ge 2^{c\sqrt{\log|G|}}$ (Erdős, Hajnal, 1989)
- ullet $\mu(G) \geq 2^{c\sqrt{\log|G|\log\log|G|}}$ (Bucić, Nguyen, Scott, S., 2022)

• If we could prove that every H-free graph has a pure pair (A, B) with $|A|, |B| \ge \Omega(|G|)$, we could prove H has the EH-property. But this is true only for very small graphs H.

- If we could prove that every H-free graph has a pure pair (A, B) with $|A|, |B| \ge \Omega(|G|)$, we could prove H has the EH-property. But this is true only for very small graphs H.
- If every *H*-free graph *G* has a pure pair (A, B) with $|A|, |B| \ge \Omega(|G|/\mu(G)^k)$, then $\mu(G) \ge 2^{c\sqrt{\log|G|}}$ for *H*-free graphs.

- If we could prove that every H-free graph has a pure pair (A, B) with $|A|, |B| \ge \Omega(|G|)$, we could prove H has the EH-property. But this is true only for very small graphs H.
- If every H-free graph G has a pure pair (A, B) with $|A|, |B| \ge \Omega(|G|/\mu(G)^k)$, then $\mu(G) \ge 2^{c\sqrt{\log |G|}}$ for H-free graphs.
- If every *H*-free graph has a pure pair (A, B) with $|A| \geq \Omega(|G|/\mu(G)^k)$ and $|B| \geq \Omega(|G|)$, then $\mu(G) \geq 2^{c\sqrt{\log|G|\log\log|G|}}$ for *H*-free graphs.

- (A,B) is almost-pure if either every vertex in B has at most $|A|/(2\mu(G))$ neighbours in A, or every vertex in B has at most $|A|/(2\mu(G))$ non-neighbours in A.
 - If every H-free graph has an almost-pure pair (A, B) with $|A|, |B| \ge \Omega(|G|)$, then H has the EH-property. But still this is true only for very small graphs H.

- (A,B) is almost-pure if either every vertex in B has at most $|A|/(2\mu(G))$ neighbours in A, or every vertex in B has at most $|A|/(2\mu(G))$ non-neighbours in A.
 - If every H-free graph has an almost-pure pair (A, B) with $|A|, |B| \ge \Omega(|G|)$, then H has the EH-property. But still this is true only for very small graphs H.
 - If every H-free graph has an almost-pure pair (A,B) with $|A|,|B| \geq \Omega(|G|/\mu(G)^k)$, then $\mu(G) \geq 2^{c\sqrt{\log|G|}}$ for H-free graphs. This is true, for all H, and this is how Erdős and Hajnal proved their theorem.

- (A,B) is almost-pure if either every vertex in B has at most $|A|/(2\mu(G))$ neighbours in A, or every vertex in B has at most $|A|/(2\mu(G))$ non-neighbours in A.
 - If every H-free graph has an almost-pure pair (A, B) with $|A|, |B| \ge \Omega(|G|)$, then H has the EH-property. But still this is true only for very small graphs H.
 - If every H-free graph has an almost-pure pair (A,B) with $|A|,|B| \geq \Omega(|G|/\mu(G)^k)$, then $\mu(G) \geq 2^{c\sqrt{\log|G|}}$ for H-free graphs. This is true, for all H, and this is how Erdős and Hajnal proved their theorem.
 - If every H-free graph has an almost-pure pair (A, B) with $|A| \geq \Omega(|G|/\mu(G)^k)$ and $|B| \geq \Omega(|G|)$, then $\mu(G) \geq 2^{c\sqrt{\log|G|\log\log|G|}}$ for H-free graphs. This is still open, but related to what we do.

For all H, there exist k > 0 such that for every H-free graph G and every x with $0 < x \le \frac{1}{8|H|}$, there is a sequence A_1, \ldots, A_n of disjoint subsets of V(G) with $n \ge \log(1/x)$, and each of cardinality at least $\lfloor x^k |G| \rfloor$, such that for $1 \le i \le n$, either every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ neighbours in A_i , or every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ non-neighbours in A_i .

For all H, there exist k > 0 such that for every H-free graph G and every x with $0 < x \le \frac{1}{8|H|}$, there is a sequence A_1, \ldots, A_n of disjoint subsets of V(G) with $n \ge \log(1/x)$, and each of cardinality at least $\lfloor x^k |G| \rfloor$, such that for $1 \le i \le n$, either every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ neighbours in A_i , or every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ non-neighbours in A_i .

To deduce $\mu(G) \ge 2^{c\sqrt{\log|G|\log\log|G|}}$: take $x = 1/(2\mu(G))$.

For all H, there exist k > 0 such that for every H-free graph G and every x with $0 < x \le \frac{1}{8|H|}$, there is a sequence A_1, \ldots, A_n of disjoint subsets of V(G) with $n \ge \log(1/x)$, and each of cardinality at least $\lfloor x^k |G| \rfloor$, such that for $1 \le i \le n$, either every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ neighbours in A_i , or every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ non-neighbours in A_i .

To deduce $\mu(G) \ge 2^{c\sqrt{\log|G|\log\log|G|}}$: take $x = 1/(2\mu(G))$. Assume the union of the brown boxes is a cograph.

For all H, there exist k > 0 such that for every H-free graph G and every x with $0 < x \le \frac{1}{8|H|}$, there is a sequence A_1, \ldots, A_n of disjoint subsets of V(G) with $n \ge \log(1/x)$, and each of cardinality at least $\lfloor x^k |G| \rfloor$, such that for $1 \le i \le n$, either every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ neighbours in A_i , or every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ non-neighbours in A_i .

To deduce $\mu(G) \ge 2^{c\sqrt{\log|G|\log\log|G|}}$: take $x = 1/(2\mu(G))$. Assume the union of the brown boxes is a cograph.

For all H, there exist k > 0 such that for every H-free graph G and every x with $0 < x \le \frac{1}{8|H|}$, there is a sequence A_1, \ldots, A_n of disjoint subsets of V(G) with $n \ge \log(1/x)$, and each of cardinality at least $\lfloor x^k |G| \rfloor$, such that for $1 \le i \le n$, either every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ neighbours in A_i , or every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ non-neighbours in A_i .

To deduce $\mu(G) \ge 2^{c\sqrt{\log|G|\log\log|G|}}$: take $x = 1/(2\mu(G))$. Assume the union of the brown boxes is a cograph.

Main theorem

 $ind_H(G)$: No of isomorphisms from H to induced subgraphs of G.

Main theorem

 $ind_H(G)$: No of isomorphisms from H to induced subgraphs of G.

Theorem

For all H, there exist $k_1, k_2 > 0$ such that for every graph G and every x with $0 < x \le \frac{1}{8|H|}$, if $\operatorname{ind}_H(G) < x^{k_1}|G|^{|H|}$, there is a sequence A_1, \ldots, A_n of disjoint subsets of V(G) with $n \ge \log(1/x)$, and each of cardinality at least $\lfloor x^{k_2}|G| \rfloor$, such that for $1 \le i \le n$, either every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ neighbours in A_i , or every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ non-neighbours in A_i .

Let $g \in V(H)$. Let $A, B \subseteq V(G)$, and suppose every vertex in A is nonadjacent to at least a moderate amount of B.

Let $g \in V(H)$. Let $A, B \subseteq V(G)$, and suppose every vertex in A is nonadjacent to at least a moderate amount of B. Then either:

• $G[A \cup B]$ contains many copies of H;

Let $g \in V(H)$. Let $A, B \subseteq V(G)$, and suppose every vertex in A is nonadjacent to at least a moderate amount of B. Then either:

- $G[A \cup B]$ contains many copies of H; or
- there exists some $B' \subseteq B$, not too small, such that G[B'] contains surprisingly few copies of $H \setminus g$;

Let $g \in V(H)$. Let $A, B \subseteq V(G)$, and suppose every vertex in A is nonadjacent to at least a moderate amount of B. Then either:

- $G[A \cup B]$ contains many copies of H; or
- there exists some $B' \subseteq B$, not too small, such that G[B'] contains surprisingly few copies of $H \setminus g$; or
- there exist $A' \subseteq A$ and $B' \subseteq B$, not too small, such that there are very few edges between A' and B'.

Theorem

- $\operatorname{ind}_{H}(G) \geq x^{a}|A| \cdot |B|^{|H|-1}$; or
- there exists $B' \subseteq B$ with $|B'| \ge x|B|$ such that $\operatorname{ind}_{H \setminus g}(G[B']) < x^b|B'|^{|H|-1}$; or
- there exists $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge x^a |A|$ and $|B'| \ge x^a |B|$ such that the number of edges between A', B' is at most $2x^c |A'| \cdot |B'|$.

Theorem

- there are at least $x^a|A|\cdot |B|^{|H|-1}$ isomorphisms ϕ from H to induced subgraphs of G where $\phi(g)\in A$ and $\phi(h)\in B$ for all other $h\in V(H)$; or
- there exists $B' \subseteq B$ with $|B'| \ge x|B|$ such that $\operatorname{ind}_{H \setminus a}(G[B']) < x^b|B'|^{|H|-1}$; or
- there exists $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge x^a |A|$ and $|B'| \ge x^a |B|$ such that the number of edges between A', B' is at most $2x^c |A'| \cdot |B'|$.

Theorem

- there are at least $x^a|A| \cdot |B|^{|H|-1}$ isomorphisms ϕ from H to induced subgraphs of G where $\phi(g) \in A$ and $\phi(h) \in B$ for all other $h \in V(H)$; or
- there exists $B' \subseteq B$ with $|B'| \ge x|B|$ such that $\operatorname{ind}_{H \setminus a}(G[B']) < x^b|B'|^{|H|-1}$; or
- there exists $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge x^a |A|$ and $|B'| \ge x^a |B|$ such that the number of edges between A', B' is at most $2x^c |A'| \cdot |B'|$.

Theorem

- there are at least $x^{|H|-1+b+cd}|A| \cdot |B|^{|H|-1}$ isomorphisms ϕ from H to induced subgraphs of G where $\phi(g) \in A$ and $\phi(h) \in B$ for all other $h \in V(H)$, where g has degree d in H; or
- there exists $B' \subseteq B$ with $|B'| \ge x|B|$ such that $\operatorname{ind}_{H \setminus G}(G[B']) < x^b|B'|^{|H|-1}$; or
- there exists $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge x^a |A|$ and $|B'| \ge x^a |B|$ such that the number of edges between A', B' is at most $2x^c |A'| \cdot |B'|$.

Proof: Induction on *d*.

Base case d=0. Let $v\in A$, and let B' be its non-neighbours in B. So $|B'|\geq x|B|$.

Proof: Induction on *d*.

Base case d=0. Let $v\in A$, and let B' be its non-neighbours in B. So $|B'|\geq x|B|$.

Proof: Induction on *d*.

Base case d=0. Let $v \in A$, and let B' be its non-neighbours in B. So $|B'| \ge x|B|$.

There are $x^b|B'|^{|H|-1} \ge x^{b+|H|-1}|B|^{|H|-1}$ copies of $H \setminus g$ in G[B'] (or else the second outcome holds)

Proof: Induction on *d*.

Base case d=0. Let $v \in A$, and let B' be its non-neighbours in B. So $|B'| \ge x|B|$.

There are $x^b|B'|^{|H|-1} \ge x^{b+|H|-1}|B|^{|H|-1}$ copies of $H \setminus g$ in G[B'] (or else the second outcome holds)

So there are $x^{b+|H|-1}|B|^{|H|-1}$ copies of H where g is mapped to v and all the rest is mapped into B.

Proof: Induction on *d*.

Base case d=0. Let $v \in A$, and let B' be its non-neighbours in B. So $|B'| \ge x|B|$.

There are $x^b|B'|^{|H|-1} \ge x^{b+|H|-1}|B|^{|H|-1}$ copies of $H \setminus g$ in G[B'] (or else the second outcome holds)

So there are $x^{b+|H|-1}|B|^{|H|-1}$ copies of H where g is mapped to v and all the rest is mapped into B.

So there are $x^{b+|H|-1}|A|\cdot |B|^{|H|-1}$ copies of H where g is mapped into A and all the rest is mapped into B.

Inductive case d > 0. Let e = gh be an edge incident with g.

• From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|^{|H|-1}$ copies of $H\setminus e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|^{|H|-1}$ copies of $H\setminus e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \setminus \{g, h\}$ in G[B].

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|^{|H|-1}$ copies of $H\setminus e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \setminus \{g, h\}$ in G[B].
- So on average, each such copy extends to $x^{|H|-1+b+c(d-1)}|A| \cdot |B|$ good copies of $H \setminus e$.

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|^{|H|-1}$ copies of $H\setminus e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \setminus \{g, h\}$ in G[B].
- So on average, each such copy extends to $x^{|H|-1+b+c(d-1)}|A| \cdot |B|$ good copies of $H \setminus e$.

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|^{|H|-1}$ copies of $H\setminus e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \setminus \{g, h\}$ in G[B].
- So on average, each such copy extends to $x^{|H|-1+b+c(d-1)}|A| \cdot |B|$ good copies of $H \setminus e$.

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|^{|H|-1}$ copies of $H\setminus e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \setminus \{g, h\}$ in G[B].
- So on average, each such copy extends to $x^{|H|-1+b+c(d-1)}|A| \cdot |B|$ good copies of $H \setminus e$.

• On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|$ nonedges between A' and B'.

- On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|$ nonedges between A' and B'.
- Ignore all choices of C with fewer than $\frac{1}{2}x^{|H|-1+b+c(d-1)}|A|\cdot |B|$ nonedges between A' and B' (this loses at most half of the good copies of $H\setminus e$).

- On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|$ nonedges between A' and B'.
- Ignore all choices of C with fewer than $\frac{1}{2}x^{|H|-1+b+c(d-1)}|A|\cdot |B|$ nonedges between A' and B' (this loses at most half of the good copies of $H\setminus e$).
- So for all C, $|A'| \ge \frac{1}{2} x^{|H|-1+b+c(d-1)} |A| \ge x^a |A|$ and $|B'| \ge x^a |B|$.

- On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|$ nonedges between A' and B'.
- Ignore all choices of C with fewer than $\frac{1}{2}x^{|H|-1+b+c(d-1)}|A|\cdot |B|$ nonedges between A' and B' (this loses at most half of the good copies of $H\setminus e$).
- So for all C, $|A'| \ge \frac{1}{2}x^{|H|-1+b+c(d-1)}|A| \ge x^a|A|$ and $|B'| \ge x^a|B|$.
- If for some choice of C, there are only $2x^c|A'|\cdot |B'|$ edges between A', B', the third outcome holds.

- On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A|\cdot |B|$ nonedges between A' and B'.
- Ignore all choices of C with fewer than $\frac{1}{2}x^{|H|-1+b+c(d-1)}|A|\cdot |B|$ nonedges between A' and B' (this loses at most half of the good copies of $H\setminus e$).
- So for all C, $|A'| \ge \frac{1}{2} x^{|H|-1+b+c(d-1)} |A| \ge x^a |A|$ and $|B'| \ge x^a |B|$.
- If for some choice of C, there are only $2x^c|A'|\cdot |B'|$ edges between A', B', the third outcome holds.
- Otherwise, there are always at least $2x^c|A'|\cdot |B'|$ edges between A', B'; so the number of good copies of H is big and the first outcome holds.

Approximate blowups

J is a graph, t>0 an integer, and $q\leq 1$ a real number. A (t,q)-blowup of J in G means a family A_j $(j\in V(J))$ of pairwise disjoint subsets of V(G), all of size t, such that for all distinct $i,j\in V(J)$,

- if ij ∉ E(J) then every vertex in A_i has at most q|A_j| neighbours in A_j and vice versa;
- if $ij \in E(J)$ then every vertex in A_i has at most $q|A_j|$ non-neighbours in A_j and vice versa.

Approximate blowups

J is a graph, t>0 an integer, and $q\leq 1$ a real number. A (t,q)-blowup of J in G means a family A_j $(j\in V(J))$ of pairwise disjoint subsets of V(G), all of size t, such that for all distinct $i,j\in V(J)$,

- if ij ∉ E(J) then every vertex in A_i has at most q|A_j| neighbours in A_j and vice versa;
- if $ij \in E(J)$ then every vertex in A_i has at most $q|A_j|$ non-neighbours in A_i and vice versa.

Proof of the main theorem

Theorem

For all H, there exist $k_1, k_2 > 0$ such that for every graph G and every x with $0 < x \le \frac{1}{8|H|}$, if $\operatorname{ind}_H(G) < x^{k_1}|G|^{|H|}$, there is a sequence A_1, \ldots, A_n of disjoint subsets of V(G) with $n \ge \log(1/x)$, and each of cardinality at least $\lfloor x^{k_2}|G| \rfloor$, such that for $1 \le i \le n$, either every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ neighbours in A_i , or every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ non-neighbours in A_i .

Proof of the main theorem

Theorem

For all H, there exist $k_1, k_2 > 0$ such that for every graph G and every x with $0 < x \le \frac{1}{8|H|}$, if $\operatorname{ind}_H(G) < x^{k_1}|G|^{|H|}$, there is a sequence A_1, \ldots, A_n of disjoint subsets of V(G) with $n \ge \log(1/x)$, and each of cardinality at least $\lfloor x^{k_2}|G| \rfloor$, such that for $1 \le i \le n$, either every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ neighbours in A_i , or every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ non-neighbours in A_i .

• Choose an induced subgraph J of H maximal such that there is an approximate blowup of J in G. (ie a (t,q)-blowup where $t = \lfloor x^{r_1} |G| \rfloor$ and $q = x^{r_2}$ for appropriate r_1, r_2 depending on J.)

Proof of the main theorem

Theorem

For all H, there exist $k_1, k_2 > 0$ such that for every graph G and every x with $0 < x \le \frac{1}{8|H|}$, if $\operatorname{ind}_H(G) < x^{k_1}|G|^{|H|}$, there is a sequence A_1, \ldots, A_n of disjoint subsets of V(G) with $n \ge \log(1/x)$, and each of cardinality at least $\lfloor x^{k_2}|G| \rfloor$, such that for $1 \le i \le n$, either every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ neighbours in A_i , or every vertex of $A_{i+1} \cup \cdots \cup A_n$ has at most $x|A_i|$ non-neighbours in A_i .

- Choose an induced subgraph J of H maximal such that there is an approximate blowup of J in G. (ie a (t, q)-blowup where $t = \lfloor x^{r_1} |G| \rfloor$ and $q = x^{r_2}$ for appropriate r_1, r_2 depending on J.)
- $J \neq H$ since $\operatorname{ind}_H(G) < x^{k_1} |G|^{|H|}$. Choose $i \in V(H) \setminus V(J)$.

Case 1: there is a subset B disjoint from the A_j 's, that is very sparse to some A_j , and has size c|G|.

Case 1: there is a subset B disjoint from the A_j 's, that is very sparse to some A_j , and has size c|G|. Start again, working completely inside B. If this happens many times we generate the sequence of subsets of the theorem.

So most vertices in $V(G) \setminus \bigcup_{j \in V(J)} A_j$ are adjacent to at least a small fraction of each A_j , and also nonadjacent to at least a small fraction of each A_j .

So most vertices in $V(G)\setminus\bigcup_{j\in V(J)}A_j$ are adjacent to at least a small fraction of each A_j , and also nonadjacent to at least a small fraction of each A_j . Use the key lemma to get a subset C_{j_1} of $V(G)\setminus\bigcup_{j\in V(J)}A_j$, not too small, that is very dense or very sparse (whichever we want) to a subset $D_{j_1}\subseteq A_{j_1}$ that is not too small.

Repeat to get $C_{j_2} \subseteq C_{j_1}$ not too small, that is dense or sparse to a subset $D_{j_2} \subseteq A_{j_2}$ that is not too small.

Repeat to get $C_{j_2} \subseteq C_{j_1}$ not too small, that is dense or sparse to a subset $D_{j_2} \subseteq A_{j_2}$ that is not too small.

Repeat for all other A_j . This give an approximate blowup of J+i, contrary to the choice of J.