
Skipless Chain Decompositions &

Improved Poset Saturation Bounds

Paul Bastide LaBRI, TU Delft

Carla Groenland TU Delft

Maria-Romina Ivan Cambridge

Hugo Jacob ENS Paris-Saclay

Tom Johnston University of Bristol



Boolean lattice

The Boolean lattice of dimension n:

• elements: 2[n] = P({1, . . . , n})
• relation: ⊆

A chain is a set system where every pair of

elements is comparable.

An antichain is a set system where every pair of

elements is incomparable.
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Boolean lattice

A chain C = {C1 ⊊ C2 ⊊ . . . ⊊ Ck} ⊆ P is

skipless in P if for all i ∈ [k − 1], there is no

X ∈ P with Ci ⊊ X ⊊ Ci+1.
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Chains in the hypercube

Theorem (Dilworth 1950)

For a family poset P, the size of the largest antichain is equal to the size of smallest chain

disjoint chain decomposition of P.

Can you ask for Dilworth theorem to use disjoint skipless chains?

NO

What if we view this poset embedded in the Boolean lattice...

1 2

1 2 4

1 2

1 2 3

24

True for every poset, and every way to embed it.
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Cover chains with skipless chains

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any subposet P of 2[n] with largest antichain of size k can be covered by a family of k

disjoint skipless chains in 2[n].

“Any family of k chains in 2[n] can be covered by a family of k disjoint skipless chains in 2[n].”

We generalise a result of Lehman and Ron (2001) who proved the special case where all chains

of the family are of size 2 and all top (resp. bottom) elements of the chain have the same size.

We generalise a result from Duffus, Howard and Leader (2019) who proved the special case

where the family is convex1.
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1F ⊆ 2[n] is convex if for all X ,Z ∈ F and X ⊂ Y ⊂ Z ,Y ∈ F .
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Lehman and Ron

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in 2[n] can be covered by a family of k disjoint skipless chains in 2[n].

C1 C2 C3 C4 D1 D2 D3 D4
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Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in 2[n] can be covered by a family of k disjoint skipless chains in 2[n].

Double counting + Menger

C1 C2 C3 C4 D1 D2 D3 D4
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Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in 2[n] can be covered by a family of k disjoint skipless chains in 2[n].

D1 D2 D3 D7 D4 D5 D6

A

C1 C2 C3 C7 C4 C5 C6

A
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Antichain saturation

F ⊆ 2[n], is k-saturated if:

• F has no antichain of size k;

• F ∪ {x} has an antichain of size k for any x ∈ 2[n] \ F .

sat*(n, k) = minimum |F| over all k-saturated families F in 2[n].

Red sets form an 2-saturated family for

the hypercube 2[3]: sat*(3, 2) ≤ 4.

Can we extend this construction to

k-saturated ?
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Antichain saturation

∅

[n]

Construction: sat*(n, k) ≤ (n − 1)(k − 1) + 2.

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017).

Danković and Ivan (2022+)

k 2 3 4

5 6

sat∗(k, n) n + 1 2n 3n − 1

4n − 2 5n − 5

Conjecture (FKKMRSS): ∀k ≥ 2, sat*(n, k) ∼ n(k − 1) as n → ∞.

Conjecture (Danković and Ivan): ∀k ≥ 2, sat*(n, k) ≥ n(k − 1)− Ck .
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Quick application

Consider F k-saturated. Consider a chain decomposition

(using Dilworth’s Theorem) of F .

For any element Y /∈ F , Y can not be “added” to one of the

chain (by Dilworth).

Claim. For any ℓ such that k ≤
(

ℓ
⌊ℓ/2⌋

)
, each chain contains

an element of size at most ℓ. They also all contains an

element of size n − ℓ.

P. If chain has smallest element X in |X | ≥ ℓ, then can

extend the chain by some subset of X of size ℓ/2.

∅

[n]

F

X

ℓ

∅

X

F

ℓ/2

≥ k
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Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k − 1 chains in 2[n] can be covered by a family

of k − 1 disjoint skipless chains in 2[n].

F k-saturated.

Dilworth =⇒ F decompose in C1,C2, . . . ,Ck−1 chains.

Claim =⇒ all these chains start in layer O(log k) and end in

layer n − O(log k).

Th. =⇒ F coverable with k − 1 skipless disjoint chains.

k-saturated =⇒ F partitioned into k − 1 skipless chains.

Every chain contains at least n −Θ(log k) elements.

=⇒ |F| ≥ (n − 2ℓ)(k − 1) = n(k − 1)−Θ(k log k)

∅

[n]

F
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From asymptotic to exact

∅

[n]

?

?

n − ℓ

ℓ

(
[ℓ]

≤ℓ/2

)

( [ℓ]
≤ℓ/2

)

n − ℓ/2

ℓ/2

We now know that any F k-saturated looks like this.

To get exact value, need to improve both the upper bound and

the lower bound.

In the case k − 1 =
(

ℓ
⌊ℓ/2⌋

)
FKKMRSS (2017) improved the upper

bound. Using the initial segment of colex.
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Colex and shadow

Let F ⊆
(
[n]
t

)
. Its shadow is

∂F =

{
X ∈

(
[n]

t − 1

)
: X ⊆ Y ∈ F

}
.

Let C(m, t) denote the initial segment of colex of size m on layer t, e.g.

C(3, 6) = {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}.
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Lower bound

F

∂F

Kruskal-Katona (1963)

Initial segments of colex minimise the size of the

shadow.

Lemma (B.,Groenland,Jacob,Johnston,2023+)

The initial segment of colex minimise the matching to

the shadow. (
[6]
3

)
∪ {{1, 2, 7}} = F

= ∂F
(
[6]
2

)
∪ {{1, 7} {2, 7}}

14/24



Lower bound

F

∂F

Kruskal-Katona (1963)

Initial segments of colex minimise the size of the

shadow.

Lemma (B.,Groenland,Jacob,Johnston,2023+)

The initial segment of colex minimise the matching to

the shadow. (
[6]
3

)
∪ {{1, 2, 7}} = F

= ∂F
(
[6]
2

)
∪ {{1, 7} {2, 7}}

14/24



Lower bound

F

∂F

Kruskal-Katona (1963)

Initial segments of colex minimise the size of the

shadow.

Lemma (B.,Groenland,Jacob,Johnston,2023+)

The initial segment of colex minimise the matching to

the shadow.

(
[6]
3

)
∪ {{1, 2, 7}} = F

= ∂F
(
[6]
2

)
∪ {{1, 7} {2, 7}}

14/24



Lower bound

F

∂F

Kruskal-Katona (1963)

Initial segments of colex minimise the size of the

shadow.

Lemma (B.,Groenland,Jacob,Johnston,2023+)

The initial segment of colex minimise the matching to

the shadow. (
[6]
3

)
∪ {{1, 2, 7}} = F

= ∂F
(
[6]
2

)
∪ {{1, 7} {2, 7}}

14/24



Exact values

ν(F) → the size of the maximum matching from F to its shadow ∂F .

C(m, t) → initial segment of colex of size m on layer t.

Define the sequence c⌊ℓ/2⌋ = k − 1, and for 0 ≤ t < ⌊ℓ/2⌋, let ct = ν (C(ct+1, t + 1)).

B, Groenland, Jacob and Johnston (2023+)

For n ≥ 2ℓ+ 1,

sat∗(n, k) = 2

⌊ℓ/2⌋∑
t=0

ct + (k − 1)(n − 1− 2 ⌊ℓ/2⌋).

The lower bound still holds for n ≥ ℓ (and sat∗(n, k) = 2n for n < ℓ).

Open question: What happens when n ≤ 2ℓ? Finding a matching between the top and the

bottom is harder.
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Upperbound

Lemma

There exist a “canonical” way to decompose any

integer k in the following way:

k − 1 =

(
ar1
r1

)
+ · · ·+

(
ars
rs

)
,

satisfying the following conditions,

• r1 > · · · > rs ≥ 1;

• ar1 > · · · > ars ≥ 1;

• for all i ∈ [s], we have ri ≤ ⌈ari/2⌉.

In particular if k − 1 =
(

ℓ
⌊ℓ/2⌋

)
,

s = 1, r1 = ℓ/2, ar1 = ℓ

A1 A2 A3

r1

r2 + 1

r3 + 2

n − r1

n − r2 − 1

n − r3 − 2

16/24



Upperbound

Lemma

There exist a “canonical” way to decompose any

integer k in the following way:

k − 1 =

(
ar1
r1

)
+ · · ·+

(
ars
rs

)
,

satisfying the following conditions,

• r1 > · · · > rs ≥ 1;

• ar1 > · · · > ars ≥ 1;

• for all i ∈ [s], we have ri ≤ ⌈ari/2⌉.

In particular if k − 1 =
(

ℓ
⌊ℓ/2⌋

)
,

s = 1, r1 = ℓ/2, ar1 = ℓ

A1 A2 A3

r1

r2 + 1

r3 + 2

n − r1

n − r2 − 1

n − r3 − 2

16/24



General saturation

Definition

F ⊆ 2[n] a set system is P-saturated if:

• F has induced copy of P;

• F ∪ {x} has an induced copy of P for any x ∈ 2[n] \ P.

Theorem (Morrison, Noel and Scott 2014;

Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós 2011)

2(k−3)/2

≤ sat*(n,Ck) ≤ 20.98k
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Table

Figure 1: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022
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Table

Figure 2: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022 19/24



General bounds

Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either sat*(n,P) ≥ 2
√
n − 2 or sat*(n,P) = OP(1).

What about a general upper bound? Can we hope to have sat*(n,P) ≤ 2
√
n for every poset?

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat*(n,P) ≤ n|P|2 .
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Cube dimension

For a poset P, we define the cube-height h∗(P) to be the minimum h∗ ∈ N for which there

exists n ∈ N such that
(

[n]
≤h∗

)
contains an induced copy of P.

For a poset P, we define the cube-width w∗(P) to be the minimum w∗ ∈ N such that there

exists an induced copy of P in
( [w∗]
≤h∗(P)

)
.
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Theorem (B., Groenland, Ivan, Johnston,

2023+)

For any poset P, sat*(n,P) ≤ n|P|2 .

We give a constructive proof.

F0: first h
∗(P) layers.

F1: Any completion.

Key lemma: F1 has bounded VC -dimension.

Main idea: if we shatter a large enough set,

we can find a copy of P \max(P) in the first

h∗(P) layers such that we have, in F0, all

possible relations to this copy.

∅

[n]

F0

F1
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General Upperbound

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat*(n,P) ≤ O(nw
∗(P)−1).

Remark

For every P, h∗(P) ≤ |P|, w∗(P) ≤ |P| · h∗(P) ≤ |P|2.

With a bit more effort we proved:

Lemma (B., Groenland, Ivan, Johnston, 2023+)

For every P, w∗(P) ≤ |P|2/4 + 1.
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Open question

Conjecture

For every poset P, w∗(P) = O(|P|).

That would directly improve our upper bound!

Conjecture

For every poset P, either sat*(n,P) = OP(1) or sat*(n,P) = ΘP(n).

sat*(C2, n) = 1 sat*(2C2, n) ≥ n sat*(3C2, n) ≤ 14

Thank you!
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Table

Figure 3: Table from [?]
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Figure 4: Table from [?]
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