# Skipless Chain Decompositions & Improved Poset Saturation Bounds

Paul BastideLaBRI, TU DelftCarla GroenlandTU DelftMaria-Romina IvanCambridgeHugo JacobENS Paris-SaclayTom JohnstonUniversity of Bristol

#### The Boolean lattice of dimension n:

- elements:  $2^{[n]} = \mathcal{P}(\{1,\ldots,n\})$
- ullet relation:  $\subseteq$



The Boolean lattice of dimension n:

- elements:  $2^{[n]} = \mathcal{P}(\{1, ..., n\})$
- relation: ⊆

A chain is a set system where every pair of elements is comparable.

An antichain is a set system where every pair of elements is incomparable.



The Boolean lattice of dimension n:

- elements:  $2^{[n]} = \mathcal{P}(\{1, ..., n\})$
- relation: ⊆

A chain is a set system where every pair of elements is comparable.

An antichain is a set system where every pair of elements is incomparable.



A chain  $C = \{C_1 \subsetneq C_2 \subsetneq \ldots \subsetneq C_k\} \subseteq P$  is skipless in P if for all  $i \in [k-1]$ , there is no  $X \in P$  with  $C_i \subsetneq X \subsetneq C_{i+1}$ .



A chain  $C = \{C_1 \subsetneq C_2 \subsetneq \ldots \subsetneq C_k\} \subseteq P$  is skipless in P if for all  $i \in [k-1]$ , there is no  $X \in P$  with  $C_i \subsetneq X \subsetneq C_{i+1}$ .



Theorem (Dilworth 1950)

For a family poset  $\mathcal{P}$ , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of  $\mathcal{P}$ .

Theorem (Dilworth 1950)

For a family poset  $\mathcal{P}$ , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of  $\mathcal{P}$ .

Can you ask for Dilworth theorem to use disjoint skipless chains?

Theorem (Dilworth 1950)

For a family poset  $\mathcal{P}$ , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of  $\mathcal{P}$ .

Can you ask for Dilworth theorem to use disjoint skipless chains? NO



## Theorem (Dilworth 1950)

For a family poset  $\mathcal{P}$ , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of  $\mathcal{P}$ .

Can you ask for Dilworth theorem to use disjoint **skipless** chains? NO What if we view this poset embedded in the Boolean lattice...



## Theorem (Dilworth 1950)

For a family poset  $\mathcal{P}$ , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of  $\mathcal{P}$ .

Can you ask for Dilworth theorem to use disjoint **skipless** chains? NO What if we view this poset embedded in the Boolean lattice...



Theorem (Dilworth 1950)

For a family poset  $\mathcal{P}$ , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of  $\mathcal{P}$ .

Can you ask for Dilworth theorem to use disjoint **skipless** chains? NO What if we view this poset embedded in the Boolean lattice...



## Theorem (Dilworth 1950)

For a family poset  $\mathcal{P}$ , the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of  $\mathcal{P}$ .

Can you ask for Dilworth theorem to use disjoint **skipless** chains? NO What if we view this poset embedded in the Boolean lattice...



True for every poset, and every way to embed it.

# Cover chains with skipless chains

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any subposet  $\mathcal{P}$  of  $2^{[n]}$  with largest antichain of size k can be **covered** by a family of k **disjoint skipless** chains in  $2^{[n]}$ .

"Any family of k chains in  $2^{[n]}$  can be **covered** by a family of k **disjoint skipless** chains in  $2^{[n]}$ ."

# Cover chains with skipless chains

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any subposet  $\mathcal{P}$  of  $2^{[n]}$  with largest antichain of size k can be **covered** by a family of k **disjoint skipless** chains in  $2^{[n]}$ .

"Any family of k chains in  $2^{[n]}$  can be **covered** by a family of k **disjoint skipless** chains in  $2^{[n]}$ ."

We generalise a result of Lehman and Ron (2001) who proved the special case where all chains of the family are of size 2 and all top (resp. bottom) elements of the chain have the same size.

We generalise a result from Duffus, Howard and Leader (2019) who proved the special case where the family is convex<sup>1</sup>.

 $<sup>{}^1\</sup>mathcal{F}\subseteq 2^{[n]}$  is convex if for all  $X,Z\in\mathcal{F}$  and  $X\subset Y\subset Z,Y\in\mathcal{F}$ .

#### Lehman and Ron

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in  $2^{[n]}$  can be **covered** by a family of k **disjoint skipless** chains in  $2^{[n]}$ .



# Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in  $2^{[n]}$  can be **covered** by a family of k **disjoint skipless** chains in  $2^{[n]}$ .



## Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in  $2^{[n]}$  can be **covered** by a family of k **disjoint skipless** chains in  $2^{[n]}$ .



 $\mathcal{F} \subseteq 2^{[n]}$ , is *k*-saturated if:

- $\mathcal{F}$  has no antichain of size k;
- $\mathcal{F} \cup \{x\}$  has an antichain of size k for any  $x \in 2^{[n]} \setminus \mathcal{F}$ .

 $sat^*(n, k) = minimum |\mathcal{F}| \text{ over all } k\text{-saturated families } \mathcal{F} \text{ in } 2^{[n]}.$ 

 $\mathcal{F} \subseteq 2^{[n]}$ , is *k*-saturated if:

- $\mathcal{F}$  has no antichain of size k;
- $\mathcal{F} \cup \{x\}$  has an antichain of size k for any  $x \in 2^{[n]} \setminus \mathcal{F}$ .

 $sat^*(n, k) = minimum |\mathcal{F}| \text{ over all } k\text{-saturated families } \mathcal{F} \text{ in } 2^{[n]}.$ 



Red sets form an 2-saturated family for the hypercube  $2^{[3]}$ : sat\* $(3,2) \le 4$ . Can we extend this construction to k-saturated ?



Construction:  $sat^*(n, k) \leq (n-1)(k-1) + 2$ .



Construction: sat\*
$$(n, k) \le (n-1)(k-1) + 2$$
.

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017).

$$\begin{array}{c|cccc} k & 2 & 3 & 4 \\ \operatorname{sat}^*(k,n) & n+1 & 2n & 3n-1 \end{array}$$

Conjecture (FKKMRSS):  $\forall k \geq 2$ , sat\* $(n, k) \sim n(k-1)$  as  $n \to \infty$ .



Construction: sat\* $(n, k) \le (n-1)(k-1) + 2$ .

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017). Danković and Ivan (2022+)

$$k$$
 2 3 4 5 6  $sat^*(k,n)$   $n+1$  2n  $3n-1$   $4n-2$   $5n-5$ 

Conjecture (FKKMRSS):  $\forall k \geq 2$ , sat\* $(n, k) \sim n(k-1)$  as  $n \to \infty$ .

Conjecture (Danković and Ivan):  $\forall k \geq 2$ , sat\* $(n, k) \geq n(k - 1) - C_k$ .

Consider  $\mathcal{F}$  k-saturated. Consider a chain decomposition (using Dilworth's Theorem) of  $\mathcal{F}$ .



Consider  $\mathcal{F}$  k-saturated. Consider a chain decomposition (using Dilworth's Theorem) of  $\mathcal{F}$ .

For any element  $Y \notin \mathcal{F}$ , Y can not be "added" to one of the chain (by Dilworth).



Consider  $\mathcal{F}$  k-saturated. Consider a chain decomposition (using Dilworth's Theorem) of  $\mathcal{F}$ .

For any element  $Y \notin \mathcal{F}$ , Y can not be "added" to one of the chain (by Dilworth).

**Claim.** For any  $\ell$  such that  $k \leq \binom{\ell}{\lfloor \ell/2 \rfloor}$ , each chain contains an element of size at most  $\ell$ . They also all contains an element of size  $n-\ell$ .



Consider  $\mathcal{F}$  k-saturated. Consider a chain decomposition (using Dilworth's Theorem) of  $\mathcal{F}$ .

For any element  $Y \notin \mathcal{F}$ , Y can not be "added" to one of the chain (by Dilworth).

**Claim.** For any  $\ell$  such that  $k \leq \binom{\ell}{\lfloor \ell/2 \rfloor}$ , each chain contains an element of size at most  $\ell$ . They also all contains an element of size  $n-\ell$ .

**P.** If chain has smallest element X in  $|X| \ge \ell$ , then can extend the chain by some subset of X of size  $\ell/2$ .



Consider  $\mathcal{F}$  k-saturated. Consider a chain decomposition (using Dilworth's Theorem) of  $\mathcal{F}$ .

For any element  $Y \notin \mathcal{F}$ , Y can not be "added" to one of the chain (by Dilworth).

**Claim.** For any  $\ell$  such that  $k \leq \binom{\ell}{\lfloor \ell/2 \rfloor}$ , each chain contains an element of size at most  $\ell$ . They also all contains an element of size  $n-\ell$ .

**P.** If chain has smallest element X in  $|X| \ge \ell$ , then can extend the chain by some subset of X of size  $\ell/2$ .



Consider  $\mathcal{F}$  k-saturated. Consider a chain decomposition (using Dilworth's Theorem) of  $\mathcal{F}$ .

For any element  $Y \notin \mathcal{F}$ , Y can not be "added" to one of the chain (by Dilworth).

**Claim.** For any  $\ell$  such that  $k \leq \binom{\ell}{\lfloor \ell/2 \rfloor}$ , each chain contains an element of size at most  $\ell$ . They also all contains an element of size  $n-\ell$ .

**P.** If chain has smallest element X in  $|X| \ge \ell$ , then can extend the chain by some subset of X of size  $\ell/2$ .



Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k-1 chains in  $2^{[n]}$  can be covered by a family of k-1 disjoint skipless chains in  $2^{[n]}$ .

 $\mathcal{F}$  k-saturated.



Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k-1 chains in  $2^{[n]}$  can be covered by a family of k-1 disjoint skipless chains in  $2^{[n]}$ .

 $\mathcal{F}$  k-saturated.

 $\mathsf{Dilworth} \implies \mathcal{F} \mathsf{ decompose in } \mathit{C}_1, \mathit{C}_2, \ldots, \mathit{C}_{k-1} \mathsf{ chains}.$ 



Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k-1 chains in  $2^{[n]}$  can be covered by a family of k-1 disjoint skipless chains in  $2^{[n]}$ .

 $\mathcal{F}$  k-saturated.

Dilworth  $\implies \mathcal{F}$  decompose in  $C_1, C_2, \ldots, C_{k-1}$  chains. Claim  $\implies$  all these chains start in layer  $O(\log k)$  and end in layer  $n - O(\log k)$ .



Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k-1 chains in  $2^{[n]}$  can be covered by a family of k-1 disjoint skipless chains in  $2^{[n]}$ .

 $\mathcal{F}$  k-saturated.

Dilworth  $\implies \mathcal{F}$  decompose in  $C_1, C_2, \ldots, C_{k-1}$  chains.

Claim  $\implies$  all these chains start in layer  $O(\log k)$  and end in layer  $n - O(\log k)$ .

Th.  $\Longrightarrow \mathcal{F}$  coverable with k-1 skipless disjoint chains.



Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k-1 chains in  $2^{[n]}$  can be covered by a family of k-1 disjoint skipless chains in  $2^{[n]}$ .

 $\mathcal{F}$  k-saturated.

Dilworth  $\implies \mathcal{F}$  decompose in  $C_1, C_2, \dots, C_{k-1}$  chains.

Claim  $\implies$  all these chains start in layer  $O(\log k)$  and end in layer  $n - O(\log k)$ .

Th.  $\Longrightarrow \mathcal{F}$  coverable with k-1 skipless disjoint chains.

k-saturated  $\implies \mathcal{F}$  partitioned into k-1 skipless chains.



Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k-1 chains in  $2^{[n]}$  can be covered by a family of k-1 disjoint skipless chains in  $2^{[n]}$ .

 $\mathcal{F}$  k-saturated.

Dilworth  $\implies \mathcal{F}$  decompose in  $C_1, C_2, \dots, C_{k-1}$  chains.

Claim  $\implies$  all these chains start in layer  $O(\log k)$  and end in layer  $n - O(\log k)$ .

Th.  $\Longrightarrow \mathcal{F}$  coverable with k-1 skipless disjoint chains.

k-saturated  $\implies \mathcal{F}$  partitioned into k-1 skipless chains.

Every chain contains at least  $n - \Theta(\log k)$  elements.



## **Quick application**

Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k-1 chains in  $2^{[n]}$  can be covered by a family of k-1 disjoint skipless chains in  $2^{[n]}$ .

 $\mathcal{F}$  k-saturated.

Dilworth  $\implies \mathcal{F}$  decompose in  $C_1, C_2, \dots, C_{k-1}$  chains.

Claim  $\implies$  all these chains start in layer  $O(\log k)$  and end in layer  $n - O(\log k)$ .

Th.  $\Longrightarrow \mathcal{F}$  coverable with k-1 skipless disjoint chains.

k-saturated  $\implies \mathcal{F}$  partitioned into k-1 skipless chains.

Every chain contains at least  $n - \Theta(\log k)$  elements.

$$\implies |\mathcal{F}| \ge (n-2\ell)(k-1) = n(k-1) - \Theta(k \log k)$$



# From asymptotic to exact

# From asymptotic to exact



We now know that any  $\mathcal{F}$  k-saturated looks like this. To get **exact** value, need to improve both the upper bound and the lower bound.

## From asymptotic to exact



We now know that any  $\mathcal{F}$  k-saturated looks like this. To get **exact** value, need to improve both the upper bound and the lower bound.

In the case  $k-1=\binom{\ell}{\lfloor\ell/2\rfloor}$  FKKMRSS (2017) improved the upper bound. Using the initial segment of colex.

### **Colex and shadow**

Let  $\mathcal{F} \subseteq \binom{[n]}{t}$ . Its **shadow** is

$$\partial \mathcal{F} = \left\{ X \in {[n] \choose t-1} : X \subseteq Y \in \mathcal{F} \right\}.$$

Let C(m, t) denote the initial segment of colex of size m on layer t, e.g.

$$\mathcal{C}(3,6) = \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,5\}, \{1,3,5\}, \{2,3,5\}.$$





### Kruskal-Katona (1963)

Initial segments of colex minimise the size of the shadow.



### Kruskal-Katona (1963)

Initial segments of colex minimise the size of the shadow.

# Lemma (B., Groenland, Jacob, Johnston, 2023+)

The initial segment of colex minimise the matching to the shadow.



### Kruskal-Katona (1963)

Initial segments of colex minimise the size of the shadow.

### Lemma (B., Groenland, Jacob, Johnston, 2023+)

The initial segment of colex minimise the matching to the shadow.



#### **Exact values**

 $\nu(\mathcal{F}) \to \text{the size of the maximum matching from } \mathcal{F} \text{ to its shadow } \partial \mathcal{F}.$ 

 $\mathcal{C}(m,t) o ext{initial segment of colex of size } m ext{ on layer } t.$ 

Define the sequence  $c_{\lfloor \ell/2 \rfloor} = k-1$ , and for  $0 \le t < \lfloor \ell/2 \rfloor$ , let  $c_t = \nu \left( \mathcal{C}(c_{t+1}, t+1) \right)$ .

B, Groenland, Jacob and Johnston (2023+)

For  $n \geq 2\ell + 1$ ,

$$\mathsf{sat}^*(n,k) = 2 \sum_{t=0}^{\lfloor \ell/2 \rfloor} c_t + (k-1)(n-1-2\lfloor \ell/2 \rfloor).$$

The lower bound still holds for  $n \ge \ell$  (and sat\* $(n, k) = 2^n$  for  $n < \ell$ ).

#### **Exact values**

 $\nu(\mathcal{F}) \to \mathsf{the}$  size of the maximum matching from  $\mathcal{F}$  to its shadow  $\partial \mathcal{F}$ .

 $\mathcal{C}(m,t) o ext{initial segment of colex of size } m ext{ on layer } t.$ 

Define the sequence  $c_{\lfloor \ell/2 \rfloor} = k-1$ , and for  $0 \le t < \lfloor \ell/2 \rfloor$ , let  $c_t = \nu \left( \mathcal{C}(c_{t+1}, t+1) \right)$ .

### B, Groenland, Jacob and Johnston (2023+)

For  $n \geq 2\ell + 1$ ,

$$\mathsf{sat}^*(n,k) = 2 \sum_{t=0}^{\lfloor \ell/2 \rfloor} c_t + (k-1)(n-1-2\lfloor \ell/2 \rfloor).$$

The lower bound still holds for  $n \ge \ell$  (and sat\* $(n, k) = 2^n$  for  $n < \ell$ ).

Open question: What happens when  $n \le 2\ell$ ? Finding a matching between the top and the bottom is harder.

# Upperbound

#### Lemma

There exist a "canonical" way to decompose any integer k in the following way:

$$k-1=\binom{a_{r_1}}{r_1}+\cdots+\binom{a_{r_s}}{r_s},$$

In particular if 
$$k-1=\binom{\ell}{\lfloor \ell/2 \rfloor}$$
,  $s=1, r_1=\ell/2, a_{r_1}=\ell$ 



# Upperbound

#### Lemma

There exist a "canonical" way to decompose any integer k in the following way:

$$k-1=\binom{a_{r_1}}{r_1}+\cdots+\binom{a_{r_s}}{r_s},$$

satisfying the following conditions,

- $r_1 > \cdots > r_s \ge 1$ ;
- $a_{r_1} > \cdots > a_{r_s} \geq 1$ ;
- for all  $i \in [s]$ , we have  $r_i \leq \lceil a_{r_i}/2 \rceil$ .

In particular if 
$$k-1=\binom{\ell}{\lfloor \ell/2 \rfloor}$$
,  $s=1, r_1=\ell/2, a_{r_1}=\ell$ 



#### Definition

 $\mathcal{F} \subseteq 2^{[n]}$  a set system is  $\mathcal{P}$ -saturated if:

- $\mathcal{F}$  has induced copy of  $\mathcal{P}$ ;
- $\mathcal{F} \cup \{x\}$  has an induced copy of  $\mathcal{P}$  for any  $x \in 2^{[n]} \setminus \mathcal{P}$ .

#### Definition

 $\mathcal{F} \subseteq 2^{[n]}$  a set system is  $\mathcal{P}$ -saturated if:

- $\mathcal{F}$  has induced copy of  $\mathcal{P}$ ;
- $\mathcal{F} \cup \{x\}$  has an induced copy of  $\mathcal{P}$  for any  $x \in 2^{[n]} \setminus \mathcal{P}$ .

Theorem (Morrison, Noel and Scott 2014;

$$\leq$$
 sat\* $(n, C_k) \leq 2^{0.98k}$ 

#### Definition

 $\mathcal{F} \subseteq 2^{[n]}$  a set system is  $\mathcal{P}$ -saturated if:

- $\mathcal{F}$  has induced copy of  $\mathcal{P}$ ;
- $\mathcal{F} \cup \{x\}$  has an induced copy of  $\mathcal{P}$  for any  $x \in 2^{[n]} \setminus \mathcal{P}$ .

Theorem (Morrison, Noel and Scott 2014;

Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós 2011)

$$2^{(k-3)/2} \le \text{sat*}(n, C_k) \le 2^{0.98k}$$

## **Table**

| $\mathbf{poset}\ P$              | $\mathbf{sat}(n,P)$ | $\mathbf{sat}^*(n,P)$ |                |
|----------------------------------|---------------------|-----------------------|----------------|
| $C_2$ , chain                    | =1                  | =1                    |                |
| $A_2$ , antichain                | =1                  | = n + 1               |                |
| $C_3$ , chain                    | =2                  | =2                    |                |
| $C_2 + C_1$ , chain and single   | =2                  | =4                    | case analysis  |
| $\vee$ fork (or $\wedge$ )       | =2                  | = n + 1               | [F7]           |
| $A_3$ , antichain                | =2                  | =3n-1                 | [F7]           |
| $C_4$ , chain                    | =4                  | =4                    | [G6]           |
| $\vee_3$ , fork with three times | = 3                 | $\geq \log_2 n$       | [F7]           |
| ♦, diamond                       | = 3                 | $\geq \sqrt{n}$       | [MSW]          |
|                                  |                     | $\leq n+1$            | [F7]           |
| ♦, diamond minus an edge         | = 3                 | =4                    | case analysis  |
| ⋈, butterfly                     | = 4                 | $\geq n+1$            | [I]            |
|                                  |                     | $\leq 6n - 10$        | $[Thm \ 3.16]$ |
| Y                                | = 3                 | $\geq \log_2 n$       | [Thm. 3.6]     |
| N                                | = 3                 | $\geq \sqrt{n}$       | [I]            |
|                                  |                     | $\leq 2n$             | [F7]           |
| $2C_2$                           | = 3                 | $\geq n+2$            | [Thm. 3.11]    |
|                                  |                     | $\leq 2n$             | [Prop. 3.9]    |

Figure 1: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022

## **Table**

| $C_3 + C_1$ , chain and single | =3                 | $\leq 8$                                                                                                        | [Prop. 3.18] |
|--------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|--------------|
| $\vee +1$ , fork and single    | =3                 | $\geq \log_2 n$                                                                                                 | [F7]         |
| $C_2 + A_2$                    | = 3                | ≤ 8                                                                                                             | [Prop. 3.18] |
| $A_4$ , antichain              | = 3                | $\geq 3n-1$                                                                                                     | [F7]         |
|                                |                    | $\leq 4n+2$                                                                                                     | [F7]         |
| $C_5$ , chain                  | = 8                | = 8                                                                                                             | [G6]+[MNS]   |
| $C_6$ , chain                  | = 16               | = 16                                                                                                            | [G6]+[MNS]   |
| $C_k$ , chain $(k \ge 7)$      | $\geq 2^{(k-3)/2}$ | $\geq 2^{(k-3)/2}$                                                                                              | [G6]         |
|                                | $\leq 2^{0.98k}$   | $\leq 2^{0.98k}$                                                                                                | [MNS]        |
| $A_k$ , antichain              | = k - 1            | $ \geq \left(1 - \frac{1}{\log_2 k}\right) \frac{k}{\log_2 k} n $ $ \leq kn - k - \frac{1}{2} \log_2 k + O(1) $ | [MSW]        |
|                                |                    | $ \leq kn - k - \frac{1}{2}\log_2 k + O(1) $                                                                    | [F7]         |
| $3C_2$                         | = 5                | ≤ 14                                                                                                            | [Prop. 3.13] |
| $5C_2$                         | = 9                | $\leq 42$                                                                                                       | [Prop. 3.18] |
| $7C_2$                         | = 13               | $\leq 60$                                                                                                       | [Prop. 3.18] |
| any poset on $k$ elements      | $\leq 2^{k-2}$     | _                                                                                                               | [Thm. 1.1]   |
| UCTP (def. in Section 3.2)     | O(1)               | $\geq \log_2 n$                                                                                                 | [F7]         |
| UCTP with top chain            | O(1)               | $\geq \log_2 n$                                                                                                 | [Thm. 3.6]   |
| chain + shallower              | O(1)               | O(1)                                                                                                            | [Thm. 3.8]   |

Figure 2: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022

### **General bounds**

Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either sat\* $(n, P) \ge 2\sqrt{n} - 2$  or sat\* $(n, P) = O_P(1)$ .

### **General bounds**

Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either sat\* $(n, P) \ge 2\sqrt{n} - 2$  or sat\* $(n, P) = O_P(1)$ .

What about a general upper bound? Can we hope to have sat\* $(n, P) \le 2^{\sqrt{n}}$  for every poset?

### **General bounds**

Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either sat\* $(n, P) \ge 2\sqrt{n} - 2$  or sat\* $(n, P) = O_P(1)$ .

What about a general upper bound? Can we hope to have sat\* $(n, P) \le 2^{\sqrt{n}}$  for every poset?

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat\* $(n, P) \leq n^{|P|^2}$ .

### Cube dimension

For a poset  $\mathcal{P}$ , we define the **cube-height**  $h^*(\mathcal{P})$  to be the minimum  $h^* \in \mathbb{N}$  for which there exists  $n \in \mathbb{N}$  such that  $\binom{[n]}{\leq h^*}$  contains an induced copy of  $\mathcal{P}$ .

#### **Cube dimension**

For a poset  $\mathcal{P}$ , we define the **cube-height**  $h^*(\mathcal{P})$  to be the minimum  $h^* \in \mathbb{N}$  for which there exists  $n \in \mathbb{N}$  such that  $\binom{[n]}{\leq h^*}$  contains an induced copy of  $\mathcal{P}$ .

For a poset  $\mathcal{P}$ , we define the **cube-width**  $w^*(\mathcal{P})$  to be the minimum  $w^* \in \mathbb{N}$  such that there exists an induced copy of  $\mathcal{P}$  in  $\binom{[w^*]}{\leq h^*(\mathcal{P})}$ .

#### Cube dimension

For a poset  $\mathcal{P}$ , we define the **cube-height**  $h^*(\mathcal{P})$  to be the minimum  $h^* \in \mathbb{N}$  for which there exists  $n \in \mathbb{N}$  such that  $\binom{[n]}{< h^*}$  contains an induced copy of  $\mathcal{P}$ .

For a poset  $\mathcal{P}$ , we define the **cube-width**  $w^*(\mathcal{P})$  to be the minimum  $w^* \in \mathbb{N}$  such that there exists an induced copy of  $\mathcal{P}$  in  $\binom{[w^*]}{\leq h^*(\mathcal{P})}$ .





For any poset P, sat\* $(n, P) \leq n^{|P|^2}$ .



For any poset P, sat\* $(n, P) \leq n^{|P|^2}$ .

We give a constructive proof.



For any poset P, sat\* $(n, P) \leq n^{|P|^2}$ .

We give a constructive proof.

 $\mathcal{F}_0$ : first  $h^*(P)$  layers.

 $\mathcal{F}_1$ : Any completion.



For any poset P, sat\* $(n, P) \leq n^{|P|^2}$ .

We give a constructive proof.

 $\mathcal{F}_0$ : first  $h^*(P)$  layers.

 $\mathcal{F}_1$ : Any completion.

Key lemma:  $\mathcal{F}_1$  has bounded VC-dimension.

**Main idea**: if we shatter a large enough set, we can find a copy of  $P \setminus \max(P)$  in the first  $h^*(P)$  layers such that we have, in  $\mathcal{F}_0$ , all possible relations to this copy.



## **General Upperbound**

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat\* $(n, P) \le O(n^{w^*(P)-1})$ .

# **General Upperbound**

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat\* $(n, P) \leq O(n^{w^*(P)-1})$ .

#### Remark

For every 
$$P$$
,  $h^*(P) \leq |P|$ ,  $w^*(P) \leq |P| \cdot h^*(P) \leq |P|^2$ .

# **General Upperbound**

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat\* $(n, P) \leq O(n^{w^*(P)-1})$ .

#### Remark

For every 
$$P$$
,  $h^*(P) \le |P|$ ,  $w^*(P) \le |P| \cdot h^*(P) \le |P|^2$ .

With a bit more effort we proved:

Lemma (B., Groenland, Ivan, Johnston, 2023+)

For every 
$$P$$
,  $w^*(P) \le |P|^2/4 + 1$ .

## Conjecture

For every poset  $\mathcal{P}$ ,  $w^*(\mathcal{P}) = O(|\mathcal{P}|)$ .

That would directly improve our upper bound!

### Conjecture

For every poset  $\mathcal{P}$ ,  $w^*(\mathcal{P}) = O(|\mathcal{P}|)$ .

That would directly improve our upper bound!

### Conjecture

For every poset  $\mathcal{P}$ , either sat\* $(n,\mathcal{P}) = O_{\mathcal{P}}(1)$  or sat\* $(n,\mathcal{P}) = \Theta_{\mathcal{P}}(n)$ .

### Conjecture

For every poset  $\mathcal{P}$ ,  $w^*(\mathcal{P}) = O(|\mathcal{P}|)$ .

That would directly improve our upper bound!

### Conjecture

For every poset  $\mathcal{P}$ , either sat\* $(n,\mathcal{P}) = O_{\mathcal{P}}(1)$  or sat\* $(n,\mathcal{P}) = \Theta_{\mathcal{P}}(n)$ .





### Conjecture

For every poset  $\mathcal{P}$ ,  $w^*(\mathcal{P}) = O(|\mathcal{P}|)$ .

That would directly improve our upper bound!

### Conjecture

For every poset  $\mathcal{P}$ , either sat\* $(n,\mathcal{P}) = O_{\mathcal{P}}(1)$  or sat\* $(n,\mathcal{P}) = \Theta_{\mathcal{P}}(n)$ .



Thank you!

# **Table**

| $\mathbf{poset}\ P$                  | $\mathbf{sat}(n,P)$ | $\mathbf{sat}^*(n,P)$ |                |
|--------------------------------------|---------------------|-----------------------|----------------|
| $C_2$ , chain                        | = 1                 | = 1                   |                |
| $A_2$ , antichain                    | = 1                 | = n + 1               |                |
| $C_3$ , chain                        | =2                  | =2                    |                |
| $C_2 + C_1$ , chain and single       | =2                  | =4                    | case analysis  |
| $\vee$ fork (or $\wedge$ )           | =2                  | = n + 1               | [F7]           |
| $A_3$ , antichain                    | = 2                 | =3n-1                 | [F7]           |
| $C_4$ , chain                        | =4                  | =4                    | [G6]           |
| $\vee_3$ , fork with three times     | = 3                 | $\geq \log_2 n$       | [F7]           |
| ♦, diamond                           | = 3                 | $\geq \sqrt{n}$       | [MSW]          |
|                                      |                     | $\leq n+1$            | [F7]           |
| $\Diamond^-$ , diamond minus an edge | = 3                 | =4                    | case analysis  |
| ⋈, butterfly                         | =4                  | $\geq n+1$            | [I]            |
|                                      |                     | $\leq 6n - 10$        | $[Thm \ 3.16]$ |
| Y                                    | =3                  | $\geq \log_2 n$       | [Thm. $3.6$ ]  |
| N                                    | = 3                 | $\geq \sqrt{n}$       | [I]            |
|                                      |                     | $\leq 2n$             | [F7]           |
| $2C_2$                               | = 3                 | $\geq n+2$            | [Thm. 3.11]    |
|                                      |                     | $\leq 2n$             | [Prop. 3.9]    |

Figure 3: Table from [?]

# **Table**

| $C_3 + C_1$ , chain and single | = 3                | ≤ 8                                                                                                            | Prop. 3.18   |
|--------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|--------------|
| $\vee + 1$ , fork and single   | = 3                | $\geq \log_2 n$                                                                                                | [F7]         |
| $C_2 + A_2$                    | = 3                | <u>− 32</u><br>≤ 8                                                                                             | [Prop. 3.18] |
| $A_4$ , antichain              | = 3                | $\geq 3n-1$                                                                                                    | [F7]         |
|                                |                    | $\leq 4n+2$                                                                                                    | [F7]         |
| $C_5$ , chain                  | = 8                | = 8                                                                                                            | [G6]+[MNS]   |
| $C_6$ , chain                  | = 16               | = 16                                                                                                           | [G6]+[MNS]   |
| $C_k$ , chain $(k \ge 7)$      | $\geq 2^{(k-3)/2}$ | $\geq 2^{(k-3)/2}$                                                                                             | [G6]         |
|                                | $\leq 2^{0.98k}$   | $\leq 2^{0.98k}$                                                                                               | [MNS]        |
| $A_k$ , antichain              | = k - 1            | $\geq \left(1 - \frac{1}{\log_2 k}\right) \frac{k}{\log_2 k} n$<br>$\leq kn - k - \frac{1}{2} \log_2 k + O(1)$ | [MSW]        |
|                                |                    | $\leq kn - k - \frac{1}{2}\log_2 k + O(1)$                                                                     | [F7]         |
| $3C_2$                         | = 5                | ≤ 14                                                                                                           | [Prop. 3.13] |
| $5C_2$                         | = 9                | $\leq 42$                                                                                                      | [Prop. 3.18] |
| $7C_2$                         | = 13               | $\leq 60$                                                                                                      | [Prop. 3.18] |
| any poset on $k$ elements      | $\leq 2^{k-2}$     | —                                                                                                              | [Thm. 1.1]   |
| UCTP (def. in Section 3.2)     | O(1)               | $\geq \log_2 n$                                                                                                | [F7]         |
| UCTP with top chain            | O(1)               | $\geq \log_2 n$                                                                                                | [Thm. 3.6]   |
| chain + shallower              | O(1)               | O(1)                                                                                                           | [Thm. 3.8]   |

Figure 4: Table from [?]