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Spanning trees

Let G = (V, E) be a finite connected graph — V = vertices and E = edges.

Definition

A tree is a connected graph with no cycles. A spanning tree of G is a subgraph
of G which is a tree and has vertex set V.
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Let G = (V, E) be a finite connected graph.

Let 7 be the set of all spanning trees of G.
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Let G = (V, E) be a finite connected graph.

Let 7 be the set of all spanning trees of G. Pick T uniformly at random from
T. We call T a uniform spanning tree — UST.
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Random trees

Let G = (V, E) be a finite connected graph.

Let 7 be the set of all spanning trees of G. Pick T uniformly at random from
T. We call T a uniform spanning tree — UST.
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This is the uniform spanning tree of Z>
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Spanning trees

The study of spanning trees goes back to the work of Kirchhoff in 1847.

1847. ANNALEN No. 12
DER PHYSIK UND CHEMIE.
BAND LXXIL

1. Ueber die Auflisung der Gleichungen, auf wel-
che man bei der Untersuchung der linearen Ver-
theilung galvanischer Stréme gefiihrt wird;

con G. Kirchhoff.

]st ein System von n Drihten: 1, 2...n gegeben, welche
auf eine beliebige Weise unter einander verbunden sind,
und hat in einem jeden derselben eine beliebige elektro-
motorische Kraft ihren Sitz, so findet man zur Bestimmung
der Intensititen der Strdme, von welchen die Drihte durch-
flossen werden, Iy, I...IL, die nothige Anzahl linearcr
Gleichungen durch Benutzung der beiden folgenden Siitze *):

I. Wenn die Dribte ki, k3, ... eine geschlossene Fi-
gur bilden, und 1wy bezeichnet den Widerstand des Drah-
tes k, E. die elektromotorische Kraft, die in demselben
ibren Sitz hat, mach derselben Richtung positiv gerechnet
als Ir, so ist, falls Iu, I, ... alle nach einer Richtung
als positiv gerechnet werden:
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Gustav Kirchhoff
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Gustav Kirchhoff

@ In his 1847 paper he developed a set of rules that
formalise that current and energy are conserved in
electrical circuits.
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Gustav Kirchhoff

@ In his 1847 paper he developed a set of rules that
formalise that current and energy are conserved in
electrical circuits.

@ In his work it is the first time that the connection
between UST and electrical networks was
established:

__ ##spanning trees containing e

Re(e) 71
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Gustav Kirchhoff

@ In his 1847 paper he developed a set of rules that
formalise that current and energy are conserved in
electrical circuits.

@ In his work it is the first time that the connection
between UST and electrical networks was
established:

__ ##spanning trees containing e

Re(e) 71

@ In his 8 page long paper, he also proved the
Matrix Tree Theorem — counting the number of
spanning trees of a graph.
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Gustav Kirchhoff
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Gustav Kirchhoff

@ His motivation was not probabilistic.
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Gustav Kirchhoff

@ His motivation was not probabilistic.

@ Instead to set the foundations for the theory of
electrical networks.
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Gustav Kirchhoff

@ His motivation was not probabilistic.

@ Instead to set the foundations for the theory of
electrical networks.

@ His insight has been fruitful in both directions.
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Gustav Kirchhoff

@ His motivation was not probabilistic.

@ Instead to set the foundations for the theory of
electrical networks.

@ His insight has been fruitful in both directions.

@ Electrical networks are an important tool to
understand the geometry of large UST's.
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@ Picking a uniform spanning tree is an essential component in many
randomised algorithms in computer science.
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Why do we study UST?

@ Picking a uniform spanning tree is an essential component in many
randomised algorithms in computer science.

@ |t is connected to models in statistical physics, such as the random cluster
model.
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Why do we study UST?

@ Picking a uniform spanning tree is an essential component in many
randomised algorithms in computer science.

@ |t is connected to models in statistical physics, such as the random cluster
model.

@ Connections between UST, electrical networks and random walks.

Perla Sousi The four dimensional uniform spanning tree



Why do we study UST?

@ Picking a uniform spanning tree is an essential component in many
randomised algorithms in computer science.

@ |t is connected to models in statistical physics, such as the random cluster
model.

@ Connections between UST, electrical networks and random walks.

@ Study of scaling limit of UST led Oded Schramm to develop the
beautiful theory of SLE that describes the scaling limits of conformally
invariant processes on the plane.
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Sampling algorithms

Let G = (V, E) be a finite connected graph.
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Sampling algorithms

Let G = (V, E) be a finite connected graph.

’Algorithms for sampling a UST
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Sampling algorithms

Let G = (V, E) be a finite connected graph.

’Algorithms for sampling a UST‘

@ First sampling algorithm (1847) using Matrix Tree Theorem — Kirchhoff
@ Wilson's algorithm using loop erased walks

@ Aldous — Broder (and Diaconis) algorithm
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Loop-erased random walk

Let v be a finite path of vertices in G.
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Loop-erased random walk

Let v be a finite path of vertices in G.

We remove loops chronologically as they appear until there are no more loops
left
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Loop-erased random walk

Let v be a finite path of vertices in G.

We remove loops chronologically as they appear until there are no more loops
left

= yields the loop-erasure of ~.
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Loop-erased random walk

Let v be a finite path of vertices in G.

We remove loops chronologically as they appear until there are no more loops
left

= yields the loop-erasure of ~.

Loop-erasing simple random walk path yields loop-erased random walk.

Perla Sousi The four dimensional uniform spanning tree



Loop-erased random walk

Let v be a finite path of vertices in G.

We remove loops chronologically as they appear until there are no more loops
left

= yields the loop-erasure of ~.
Loop-erasing simple random walk path yields loop-erased random walk.

Take a loop erased random walk on Z? and rescale space ~+ SLE(2) curve.
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Wilson's algorithm for UST

Back to the finite case, G = (V, E).
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Wilson's algorithm for UST

Back to the finite case, G = (V, E).

@ Designate a root vertex r and order V' \ {r} = {wv1,...,va_1}.
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Wilson's algorithm for UST

Back to the finite case, G = (V, E).

@ Designate a root vertex r and order V' \ {r} = {wv1,...,va_1}.

@ Start a simple random walk from vi and run until it first hits r.
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Wilson's algorithm for UST

Back to the finite case, G = (V, E).

@ Designate a root vertex r and order V' \ {r} = {wv1,...,va_1}.
@ Start a simple random walk from vi and run until it first hits r.

@ Erase loops.
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Wilson's algorithm for UST

Back to the finite case, G = (V, E).

@ Designate a root vertex r and order V' \ {r} = {wv1,...,va_1}.

@ Start a simple random walk from vi and run until it first hits r.

Erase loops.

Start a random walk from v» and run until it hits the first path. Erase
loops.
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Wilson's algorithm for UST

Back to the finite case, G = (V, E).

@ Designate a root vertex r and order V' \ {r} = {wv1,...,va_1}.

@ Start a simple random walk from vi and run until it first hits r.

Erase loops.

Start a random walk from v» and run until it hits the first path. Erase
loops.

@ Continue until you exhaust all vertices.
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Wilson's algorithm for UST

Back to the finite case, G = (V, E).

@ Designate a root vertex r and order V' \ {r} = {wv1,...,va_1}.

@ Start a simple random walk from vi and run until it first hits r.

Erase loops.

Start a random walk from v» and run until it hits the first path. Erase
loops.

@ Continue until you exhaust all vertices.

We obtained a spanning tree!
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Wilson's algorithm for UST

Back to the finite case, G = (V, E).

@ Designate a root vertex r and order V' \ {r} = {wv1,...,va_1}.
@ Start a simple random walk from vi and run until it first hits r.
@ Erase loops.

@ Start a random walk from v2 and run until it hits the first path. Erase
loops.

@ Continue until you exhaust all vertices.

We obtained a spanning tree!

Theorem (Wilson)
The tree we obtained has the same distribution as the UST.
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Large UST's

Generate a “uniform” spanning tree of Z>
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Large UST's

Generate a “uniform” spanning tree of Z>

@ Designate 0 as the root vertex and order the rest.
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Large UST's

Generate a “uniform” spanning tree of Z>

@ Designate 0 as the root vertex and order the rest.

@ Start a simple random walk from the first vertex in the ordering till it
hits 0.
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Large UST's

Generate a “uniform” spanning tree of Z>

@ Designate 0 as the root vertex and order the rest.

@ Start a simple random walk from the first vertex in the ordering till it
hits 0.

@ Erase loops.
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Large UST's

Generate a “uniform” spanning tree of Z>

Designate 0 as the root vertex and order the rest.

@ Start a simple random walk from the first vertex in the ordering till it
hits 0.

@ Erase loops.

Start a SRW from the next vertex in the ordering till it hits the previous
path. Erase loops.
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UST on Z2

SRW on 72 is recurrent. It visits every vertex oo many times.
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UST on Z2

SRW on 72 is recurrent. It visits every vertex oo many times.

So this algorithm is guaranteed to visit all vertices of Z? and produce a
connected tree.
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UST on Z2

SRW on 72 is recurrent. It visits every vertex oo many times.

So this algorithm is guaranteed to visit all vertices of Z? and produce a

connected tree.
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UST on Z2

SRW on 72 is recurrent. It visits every vertex oo many times.

So this algorithm is guaranteed to visit all vertices of Z? and produce a

connected tree.
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This is the uniform spanning tree of Z2
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Higher dimensions

| What is the canonical way to define the UST in Z¢, d > 37|
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Higher dimensions

| What is the canonical way to define the UST in Z¢, d > 37|

Consider the UST measure on finite exhaustions of the co graph.
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Higher dimensions

| What is the canonical way to define the UST in Z¢, d > 37|

Consider the UST measure on finite exhaustions of the co graph.

Take G, = [—n,n]? N Z9 and let u, be the UST measure on G,.
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| What is the canonical way to define the UST in Z¢, d > 37|

Consider the UST measure on finite exhaustions of the co graph.
Take G, = [—n,n]? N Z9 and let u, be the UST measure on G,.

The sequence p, converges weakly to a limiting measure y as n — oo.
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Higher dimensions

| What is the canonical way to define the UST in Z¢, d > 37|

Consider the UST measure on finite exhaustions of the co graph.
Take G, = [—n,n]? N Z9 and let u, be the UST measure on G,.
The sequence p, converges weakly to a limiting measure y as n — oo.

We call 1z the Uniform Spanning Forest (USF) measure on Z°.
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Higher dimensions

| What is the canonical way to define the UST in Z¢, d > 37|

Consider the UST measure on finite exhaustions of the co graph.
Take G, = [—n,n]? N Z9 and let u, be the UST measure on G,.

The sequence p, converges weakly to a limiting measure y as n — oo.
We call 1z the Uniform Spanning Forest (USF) measure on Z°.

Indeed, by construction  is supported on acyclic graphs ~~ forests.
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Higher dimensions

| What is the canonical way to define the UST in Z¢, d > 37|

Consider the UST measure on finite exhaustions of the co graph.
Take G, = [—n,n]? N Z9 and let u, be the UST measure on G,.

The sequence p, converges weakly to a limiting measure y as n — oo.
We call 1z the Uniform Spanning Forest (USF) measure on Z°.

Indeed, by construction  is supported on acyclic graphs ~~ forests.

Theorem (Pemantle (1991))

The USF on Z¢ has one tree with probability 1 for d < 4 and infinitely many
trees for d > 5.
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One ended trees

An infinite tree is k-ended if there exist exactly k distinct infinite simple paths
starting at each vertex of the tree.
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One ended trees

An infinite tree is k-ended if there exist exactly k distinct infinite simple paths
starting at each vertex of the tree.

Z is 2-ended, N is 1-ended.
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One ended trees

An infinite tree is k-ended if there exist exactly k distinct infinite simple paths
starting at each vertex of the tree.

Z is 2-ended, N is 1-ended.

Theorem (Pemantle (1991); Benjamini, Lyons, Peres and Schramm (2001))

All trees in the USF in Z¢ are one-ended for all d > 2.
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Quantifying one-endedness

’ past of 0 = {0} U finite piece disconnected from co by 0 ‘
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Quantifying one-endedness

’ past of 0 = {0} U finite piece disconnected from co by 0 ‘

Theorem (Hutchcroft (2017) d > 5)

P(past of 0 contains a path of length n) < %
1
P(past of 0 NAB(0, n) # 0) = =

P(|past of 0 | > n) < L

NG
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Quantifying one-endedness

’ past of 0 = {0} U finite piece disconnected from co by 0 ‘

Theorem (Hutchcroft (2017) d > 5)

P(past of 0 contains a path of length n) < %
1
P(past of 0 NAB(0, n) # 0) = =

P(|past of 0 | > n) < L

NG

’ What happens at d = 47 ‘
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Theorem (Hutchcroft and S. (2020) d=4)

(log n)*/®

P(past of 0 contains a path of length n) =
n

_ (|0g n)2/3+o(1)
P(past of 0 NAB(0, n) # 0) < —
(log m)*/®

P(|past of 0| > n) =
Vvn
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Small detour
Aldous - Broder algorithm for generating a UST of a finite graph G
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Aldous - Broder algorithm for generating a UST of a finite graph G

@ Let o be a vertex of G.

Perla Sousi The four dimensional uniform spanning tree



Small detour
Aldous - Broder algorithm for generating a UST of a finite graph G

@ Let o be a vertex of G.

@ Start a random walk from o and run until
the cover time (1st time walk has
visited every vertex)
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Small detour
Aldous - Broder algorithm for generating a UST of a finite graph G

@ Let o be a vertex of G.

@ Start a random walk from o and run until
the cover time (1st time walk has
visited every vertex)

@ For every vertex v # o, keep the edge
that was used when visiting v for the first
time.
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Small detour
Aldous - Broder algorithm for generating a UST of a finite graph G

@ Let o be a vertex of G.

@ Start a random walk from o and run until
the cover time (1st time walk has
visited every vertex)
@ For every vertex v # o, keep the edge
that was used when visiting v for the first
time. °
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Small detour
Aldous - Broder algorithm for generating a UST of a finite graph G

@ Let o0 be a vertex of G.

@ Start a random walk from o and run until
the cover time (1st time walk has .
visited every vertex)
@ For every vertex v # o, keep the edge
that was used when visiting v for the first
time.
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Small detour
Aldous - Broder algorithm for generating a UST of a finite graph G
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Small detour
Aldous - Broder algorithm for generating a UST of a finite graph G

@ Let o0 be a vertex of G.

@ Start a random walk from o and run until
the cover time (1st time walk has .
visited every vertex)

@ For every vertex v # o, keep the edge
that was used when visiting v for the first
time.

@ The collection of all these edges
constitutes a spanning tree.
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Small detour
Aldous - Broder algorithm for generating a UST of a finite graph G

@ Let o0 be a vertex of G.

@ Start a random walk from o and run until
the cover time (1st time walk has .
visited every vertex)

@ For every vertex v # o, keep the edge
that was used when visiting v for the first
time.

@ The collection of all these edges
constitutes a spanning tree.

Theorem (Aldous - Broder (discussions with Diaconis) 1990)

The distribution of the spanning tree generated is that of the UST.
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Small detour
Aldous - Broder algorithm for generating a UST of a finite graph G

@ Let o0 be a vertex of G.

@ Start a random walk from o and run until
the cover time (1st time walk has .
visited every vertex)

@ For every vertex v # o, keep the edge
that was used when visiting v for the first
time.

@ The collection of all these edges
constitutes a spanning tree.

Theorem (Aldous - Broder (discussions with Diaconis) 1990)

The distribution of the spanning tree generated is that of the UST.

Clear how to generalise the algorithm for an oo recurrent graph (walk visits
every vertex with probability 1).
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’ Hutchcroft's generalisation for transient graphs‘
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’ Hutchcroft's generalisation for transient graphs‘

@ Replace the walk with Sznitman’s random interlacements (RI)
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’ Hutchcroft's generalisation for transient graphs‘

@ Replace the walk with Sznitman’s random interlacements (RI)

@ RI = Poisson process of bi-oo random walk trajectories arriving in time

P(RI has not hit K by time t) = exp (—t - Cap(K)),
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’ Hutchcroft's generalisation for transient graphs‘

@ Replace the walk with Sznitman’s random interlacements (RI)

@ RI = Poisson process of bi-oo random walk trajectories arriving in time
P(RI has not hit K by time t) = exp (—t - Cap(K)),

Cap(K) = Y, Px(never hit K again) for K finite.
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’ Hutchcroft's generalisation for transient graphs‘

@ Replace the walk with Sznitman’s random interlacements (RI)
@ RI = Poisson process of bi-oo random walk trajectories arriving in time
P(RI has not hit K by time t) = exp (—t - Cap(K)),

Cap(K) = Y, Px(never hit K again) for K finite.

Discrete analogue of the Newtonian capacity: for A C RY compact

m = inf{// G(x,y)du(x)du(y) : n prob. measure on A}

(G is the Green kernel)
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This dynamic way of generating the USF is best suited for calculating tail
probabilities.
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This dynamic way of generating the USF is best suited for calculating tail
probabilities.

Let ¢ to be determined later.
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This dynamic way of generating the USF is best suited for calculating tail
probabilities.

Let ¢ to be determined later.

@ A= {0 is hit by a unique trajectory W of Rl in [0, £]}.
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This dynamic way of generating the USF is best suited for calculating tail
probabilities.

Let ¢ to be determined later.

@ A= {0 is hit by a unique trajectory W of Rl in [0, £]}.
@ Apply Aldous Broder to W/|(p, o) ~ 7 = LERW in Z*.
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This dynamic way of generating the USF is best suited for calculating tail
probabilities.

Let ¢ to be determined later.

@ A= {0 is hit by a unique trajectory W of Rl in [0, £]}.
@ Apply Aldous Broder to W/|(p, o) ~ 7 = LERW in Z*.
0 B={ W|(_suo)nl0,n] =0 } ~ P(B) = (log n)~"/* [Lawler]
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This dynamic way of generating the USF is best suited for calculating tail
probabilities.

Let € to be determined later.
@ A= {0 is hit by a unique trajectory W of Rl in [0, £]}.
@ Apply Aldous Broder to W/|(p, o) ~ 7 = LERW in Z*.
0 B={ W|_w0Nnl0,n =0}~ P(B)x (logn)~*/* [Lawler]
@ C = { no other trajectory of RI hits 5[0, n] in [0,¢] }.
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This dynamic way of generating the USF is best suited for calculating tail
probabilities.

Let ¢ to be determined later.

@ A= {0 is hit by a unique trajectory W of Rl in [0, £]}.
@ Apply Aldous Broder to W/|(p, o) ~ 7 = LERW in Z*.
0 B={ W|_w0Nnl0,n =0}~ P(B)x (logn)~*/* [Lawler]
@ C = { no other trajectory of RI hits 5[0, n] in [0,¢] }.

So P(past of 0 contains a path of length n) > P(AN BN C)
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This dynamic way of generating the USF is best suited for calculating tail
probabilities.

Let € to be determined later.
@ A= {0 is hit by a unique trajectory W of Rl in [0, £]}.
@ Apply Aldous Broder to W/|(p, o) ~ 7 = LERW in Z*.
0 B={ W|_w0Nnl0,n =0}~ P(B)x (logn)~*/* [Lawler]
@ C = { no other trajectory of RI hits 5[0, n] in [0,¢] }.

So P(past of 0 contains a path of length n) > P(AN BN C) and

1 —eC 0,n
P(ANBNC) <& ——= [ Eap(n[,])}.
( )=e (log n)1/3 €
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This dynamic way of generating the USF is best suited for calculating tail
probabilities.

Let ¢ to be determined later.

@ A= {0 is hit by a unique trajectory W of Rl in [0, £]}.

@ Apply Aldous Broder to W/|(p, o) ~ 7 = LERW in Z*.

0 B={ W|_w0Nnl0,n =0}~ P(B)x (logn)~*/* [Lawler]
@ C = { no other trajectory of RI hits 5[0, n] in [0,¢] }.

So P(past of 0 contains a path of length n) > P(AN BN C) and

PANBNC)xe- [e_Ecap("[O’"])} .

1
(iog n)1/3

Need to estimate E[e*ECEPWOv"D], where 77 LERW in Z*.
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Recall Cap(K) = }_, .« Px(never hit K again).
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Recall Cap(K) = ", .« Px(never hit K again). Equivalently

‘ Cap(K) = limy— o0 %
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Recall Cap(K) = ", .« Px(never hit K again). Equivalently

‘ Cap(K) = limy— o0 %

Cap(n[0, n]) | = intersection probabilities between LERW and SRW
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Recall Cap(K) = ", .« Px(never hit K again). Equivalently

‘ Cap(K) = limy— o0 %

Cap(n[0, n]) | = intersection probabilities between LERW and SRW

Step back: Let X, Y be independent SRW's in Z* with || Xo — Yo|| < +/n.
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Recall Cap(K) = ", .« Px(never hit K again). Equivalently

‘ Cap(K) = limy— o0 %

Cap(n[0, n]) | = intersection probabilities between LERW and SRW

Step back: Let X, Y be independent SRW's in Z* with || Xo — Yo|| < +/n.

P(X[0,n] N Y[0,00) # 0) < -2 [Lawler '90's]

log n
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Recall Cap(K) = ", .« Px(never hit K again). Equivalently

‘ Cap(K) = limy— o0 %

Cap(n[0, n]) | = intersection probabilities between LERW and SRW

Step back: Let X, Y be independent SRW's in Z* with || Xo — Yo|| < +/n.

P(X[0,n] N Y[0,00) # 0) < -2 [Lawler '90's]

log n

This easily then yields
n
E[Cap(X[0, n])] =

logn’
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Theorem (Lyons, Peres and Schramm)

Let X and Y be transient chains. Then

P(LE(X) N Y[0, 00) # 0) =< P(X N Y[0, 00) # 0).
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Theorem (Lyons, Peres and Schramm)

Let X and Y be transient chains. Then

P(LE(X) N Y[0, 00) # 0) =< P(X N Y[0, 00) # 0).

~  E[Cap(LE(X]0, n]))] < E[Cap(X]0, n])] < =~

logn-
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Theorem (Lyons, Peres and Schramm)

Let X and Y be transient chains. Then

P(LE(X) N Y[0, 00) # 0) =< P(X N Y[0, 00) # 0).

~  E[Cap(LE(X]0, n]))] < E[Cap(X]0, n])] < =~

logn-

Theorem (Lawler)

n(log n)l/3 steps of SRW produce n steps of LERW.
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Theorem (Lyons, Peres and Schramm)

Let X and Y be transient chains. Then

P(LE(X) N Y[0, 00) # 0) =< P(X N Y[0, 00) # 0).

~  E[Cap(LE(X]0, n]))] < E[Cap(X]0, n])] < =~

logn-

Theorem (Lawler)

n(log n)l/3 steps of SRW produce n steps of LERW.

_n__
(log n)?/3"

—  E[Cap(n[0, n])] = E[Cap(X[O, n(log n)1/3])] =
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Back to the lower bound

Recall we showed

P(past of 0 contains a path of length n) > ¢ -

E [e—eCap(n[o,nn}

1
(log n)l/3
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Back to the lower bound

Recall we showed

P(past of 0 contains a path of length n) > ¢ - m «E[efecap("[o’"])]
Substitute | Cap(n[0, n]) = W (typical value)

Perla Sousi The four dimensional uniform spanning tree



Back to the lower bound

Recall we showed

P(past of 0 contains a path of length n) > ¢ - m .E[e*ECap(”?[Ov"])}
. . 2/3
Substitute | Cap (1[0, n]) = {75 | (typical value)and take | & = faarl
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Back to the lower bound

Recall we showed

P(past of 0 contains a path of length n) > ¢ -

E [e—eCap(n[o,nn}

1
(log n)l/3

(log n)?/3
n

Substitute | Cap(n[0, n]) = W (typical value)and take | e =

)> (log n)*/

P(past of 0 contains a path of length n
n
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Upper bound

Upper bound: more delicate
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Upper bound: more delicate

Let Q(n) = IP( past of O contains a path of length n)
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Upper bound: more delicate

Let Q(n) = IP( past of O contains a path of length n)

prove an inductive inequality

(Iog '

Q((2n) < fQ(n)
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Upper bound: more delicate

Let Q(n) = PP( past of 0 contains a path of length n)

prove an inductive inequality

Q(2n) < M + = Q(n)

Useful tools developed in work with Asselah and Schapira on the capacity of
the range of a SRW.
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Theorem (Hutchcroft and S. (2020) d=4)

(log n)*/®

P(past of 0 contains a path of length n) =
n

_ (|0g n)2/3+o(1)
P(past of 0 NAB(0, n) # 0) < —
(log m)*/®

P(|past of 0| > n) =
Vvn
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