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What is a covering system?

Definition (Erdős, 1950)
A covering system is a finite collection A1, . . . , Ak of arithmetic
progressions that cover the integers, that is, A1 ∪ · · · ∪Ak = Z.

Erdős was interested in covering systems with distinct moduli.

For example:{
0 (mod 2)

}
,
{
0 (mod 3)

}
,
{
1 (mod 4)

}
,
{
5 (mod 6)

}
,
{
7 (mod 12)

}
.

Erdős used a similarly simple covering system to answer a question of
Romanoff (and refute a conjecture of de Polignac), by showing that not all
odd numbers are of the form 2k + p, where p is either 1 or prime.
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A covering system is a finite collection A1, . . . , Ak of arithmetic
progressions that cover the integers, that is, A1 ∪ · · · ∪Ak = Z.
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Erdős used a similarly simple covering system to answer a question of
Romanoff (and refute a conjecture of de Polignac), by showing that not all
odd numbers are of the form 2k + p, where p is either 1 or prime.
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Some questions about covering systems

The minimum modulus problem (Erdős, 1950)
Do there exist covering systems with distinct moduli such that the
minimum modulus is arbitrarily large?

Question (Erdős, 1952)
How many minimal covering systems of size n are there?

Conjecture (Erdős and Graham, 1980)
If the moduli of a system of arithmetic progressions are distinct and lie in
the interval [n,Cn], where n > n0(C) is sufficiently large, then the
uncovered set has density at least δ for some δ = δ(C) > 0.
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The number of minimal covering systems

Question (Erdős, 1952)
How many minimal covering systems of size n are there?

Erdős gave a simple proof that there are only finitely many minimal
covering systems of size n.

His bound was doubly exponential.

(Note that there are infinitely many covering systems of size 2, since we
can take A = {Z, A} for any arithmetic progression A.)

Simpson proved in 1985 that the largest modulus in a minimal covering
system of size n is at most 2n−1.

This bound is best possible, since the following system is minimal:

A =
{
2i−1 (mod 2i) : i ∈ [n− 1]

}
∪
{
0 (mod 2n−1)

}
.

It also implies there are only 2O(n2) minimal covering systems of size n.
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Robert Morris Erdős covering systems Oxford, March 2020



Constructing many minimal covering systems

Recall that

A =
{
2i−1 (mod 2i) : i ∈ [n− 1]

}
∪
{
0 (mod 2n−1)

}
is a minimal covering system.

We generalise this construction as follows:

Let p1 < . . . < pk be the first k primes, and set Qk := p1 · · · pk.

For each 1 6 i 6 k and 1 6 a 6 pi − 1, choose an arithmetic progression{
a ·Qi−1 (mod d · pi)

}
for some d

∣∣Qi−1.

Together with
{
0 (mod Qk)

}
, these cover Z.

A frame is a collection of arithmetic progressions as above.
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An example of a frame
For each prime p we choose p− 1 progressions of the form{

a ·Qi−1 (mod d · pi)
}

for some d
∣∣Qi−1 = p1 · · · pi−1,

one for each a ∈ {1, . . . , p− 1}.

p = 2: we take
{
1 (mod 2)

}
.

p = 3: we take
{
2 (mod 3)

}
or
{
2 (mod 6)

}

and
{
1 (mod 3)

}
or
{
4 (mod 6)

}
.

p = 5: we could take (for example):{
1 (mod 5)

}
,
{
2 (mod 10)

}
,
{
3 (mod 15)

}
and

{
24 (mod 30)

}
.

p = 7: we could take (for example):{
2 (mod 7)

} {
4 (mod 14)

} {
6 (mod 21)

}
{
15 (mod 35)

} {
24 (mod 42)

} {
40 (mod 70)

}
.

and so on...
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.

p = 3: we take
{
2 (mod 3)

}
or
{
2 (mod 6)

}
and

{
1 (mod 3)

}
or
{
4 (mod 6)

}
.

p = 5: we could take (for example):{
1 (mod 5)

}
,
{
2 (mod 10)

}
,
{
3 (mod 15)

}
and

{
24 (mod 30)

}
.

p = 7: we could take (for example):{
2 (mod 7)

} {
4 (mod 14)

} {
6 (mod 21)

}
{
15 (mod 35)

} {
24 (mod 42)

} {
40 (mod 70)

}
.

and so on...
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Counting the frames

Proposition
There are at least

exp
(

Ω
(
n3/2)

(logn)1/2

)
minimal covering systems of Z of size n.

Proof.

Each frame has size n =
∑k

i=1(pi − 1) + 1 ≈ k2 log k.

We have 2i−1 choices for the progression
{
a ·Qi−1 (mod d · pi)

}
for each

1 6 i 6 k and 1 6 a 6 pi − 1, so this implies that there are at least
k∏

i=1
2(i−1)(pi−1)

= exp
(
Ω
(
k3 log k

))
= exp

( Ω
(
n3/2)

(logn)1/2

)

minimal covering systems of Z of size n.
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The number of minimal covering systems

Question (Erdős, 1952)
How many minimal covering systems of size n are there?

Theorem (Balister, Bollobás, M., Sahasrabudhe and Tiba, 2020+)
The number of minimal covering systems of Z of size n is

exp
((

4
√
τ

3 + o(1)
)

n3/2

(logn)1/2

)

as n→∞, where

τ =
∞∑

t=1

(
log t+ 1

t

)2
.

To prove this result, we needed to study the ‘rough typical structure’ of a
minimal covering system of size n.
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The minimum modulus problem

The minimum modulus problem (Erdős, 1950)
Do there exist covering systems with distinct moduli such that the
minimum modulus is arbitrarily large?

There exists a system with minimum modulus
The first significant progress in the other direction was made in 2007 by
Filaseta, Ford, Konyagin, Pomerance and Yu:

Theorem (Filaseta, Ford, Konyagin, Pomerance and Yu, 2007)
Let A be a covering system with distinct moduli d1, . . . , dk >M . Then

k∑
i=1

1
di

>
logM log log logM

4 log logM .

They also proved the conjecture of Erdős and Graham.
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The minimum modulus problem

The minimum modulus problem (Erdős, 1950)
Do there exist covering systems with distinct moduli such that the
minimum modulus is arbitrarily large?

There exists a system with minimum modulus 18 (Krukenberg, 1971)

The first significant progress in the other direction was made in 2007 by
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The minimum modulus problem (Erdős, 1950)
Do there exist covering systems with distinct moduli such that the
minimum modulus is arbitrarily large?

There exists a system with minimum modulus 20 (Choi, 1971)

The first significant progress in the other direction was made in 2007 by
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The minimum modulus problem (Erdős, 1950)
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There exists a system with minimum modulus 24 (Morikawa, 1981)

The first significant progress in the other direction was made in 2007 by
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The minimum modulus problem (Erdős, 1950)
Do there exist covering systems with distinct moduli such that the
minimum modulus is arbitrarily large?

There exists a system with minimum modulus 25 (Gibson, 2006)

The first significant progress in the other direction was made in 2007 by
Filaseta, Ford, Konyagin, Pomerance and Yu:
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The minimum modulus problem

The minimum modulus problem (Erdős, 1950)
Do there exist covering systems with distinct moduli such that the
minimum modulus is arbitrarily large?

There exists a system with minimum modulus 40 (Nielsen, 2009)

The first significant progress in the other direction was made in 2007 by
Filaseta, Ford, Konyagin, Pomerance and Yu:
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The minimum modulus problem

The minimum modulus problem (Erdős, 1950)
Do there exist covering systems with distinct moduli such that the
minimum modulus is arbitrarily large?

There exists a system with minimum modulus 42 (Owens, 2014).

The first significant progress in the other direction was made in 2007 by
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Theorem (Filaseta, Ford, Konyagin, Pomerance and Yu, 2007)
Let A be a covering system with distinct moduli d1, . . . , dk >M . Then

k∑
i=1

1
di

>
logM log log logM

4 log logM .

They also proved the conjecture of Erdős and Graham.
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The minimum modulus problem (Erdős, 1950)
Do there exist covering systems with distinct moduli such that the
minimum modulus is arbitrarily large?

There exists a system with minimum modulus 42 (Owens, 2014).
The first significant progress in the other direction was made in 2007 by
Filaseta, Ford, Konyagin, Pomerance and Yu:
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The minimum modulus problem

Building on their work, Hough resolved the minimum modulus problem:

Theorem (Hough, 2015)
Every covering system with distinct moduli has minimum modulus 6 1016.

Sketch of the proof.

‘Reveal’ the arithmetic progressions ‘prime by prime’, and ‘track’ the
evolution of the uncovered set. The key idea is to define a probability
measure that distorts the space, blowing up the uncovered set, but
without increasing the measure of any single point too much.

We bound the (distorted) measure of the set covered when revealing the
prime p, and show that if the minimum modulus is sufficiently large, then
the total (distorted) measure removed can be made arbitrarily small.
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A geometric setting

Let S1, . . . , Sn be finite sets with at least two elements, and set

Qk = S1 × · · · × Sk

for each 1 6 k 6 n.

A hyperplane in Qn is a set

A = Y1 × · · · × Yn ⊂ Qn,

with each Yi either equal to Si or a singleton element of Si.

The set of fixed coordinates of A is

F (A) :=
{
k : Yk 6= Sk

}
.

We say that two hyperplanes A and A′ are parallel if F (A) = F (A′).
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A geometric theorem
The set of fixed coordinates of a hyperplane A = Y1 × · · · × Yn is

F (A) :=
{
k : Yk 6= Sk

}
,

and two hyperplanes A and A′ are parallel if F (A) = F (A′).

Theorem (Balister, Bollobás, M., Sahasrabudhe and Tiba, 2020+)
If |Sk| > 4k for all sufficiently large k, then there exists a constant C such
that the following holds. Let A be a collection of hyperplanes that cover
Qn = S1 × · · · × Sn. Then either two of the hyperplanes are parallel, or
there exists a hyperplane A ∈ A with F (A) ⊂ {1, . . . , C}.

This implies Hough’s theorem in the case of square-free moduli.

(Proof: Set Sk = {1, . . . , pk}, where pk is the kth prime, and use the
Chinese Remainder Theorem to map progressions to hyperplanes.)
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A picture of the geometric setting
Let S1, . . . , Sn be finite sets with at least two elements, and set

Qk = S1 × · · · × Sk

for each 1 6 k 6 n.

Qk−1 = S1 × · · · × Sk−1

Sk
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The distortion method (Hough, 2015)

We will reveal the hyperplanes in n rounds, and define a sequence of
probability measures P0, . . . ,Pn on Qn that gradually distort the space.

The measure Pk will depend on the hyperplanes with max(F (A)) 6 k,
i.e., those that were revealed in the first k rounds. It will be chosen so
that the Pk-measure of the set covered in the kth round is small.

However, it will be important that:

we do not change the measure of the set of already-covered points;

we do not increase the measure of any set too much.

Let Pk−1 be a probability measure on Qk−1. A natural way to define the
measure Pk on Qk would be to define Pk(x) = 0 if x is covered in step k,
and redistribute the removed measure over the remaining elements (taking
care not to change the measure of any Qk−1-measurable set).

However, it turns out to be simpler to do something more complicated!
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The distortion method (BBMST version)
Recall that Qk = Qk−1 × Sk, and for each x ∈ Qk−1 define

αk(x) :=
∣∣{y ∈ Sk : (x, y) ∈ Bk

}∣∣
|Sk|

,

where Bk is the set covered by the hyperplanes with max(F (A)) = k.

In words, αk(x) is the proportion of the ‘fibre’

Fx :=
{
(x, y) : y ∈ Sk

}
⊂ Qk

that is covered in round k. Fix δ > 0, and define Pk as follows:

If αk(x) 6 δ, then we set Pk(x, y) = 0 for every element of Fx ∩Bk,
and increase the measure proportionally on the rest of Fx;
If αk(x) > δ, then we ‘cap’ the distortion by increasing the measure
at each point of Fx \Bk by a factor of 1/(1− δ), and decreasing the
measure on points of Fx ∩Bk by a corresponding factor.
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The distortion method (key lemma)

Lemma
Let A be a collection of hyperplanes in Qn = S1 × · · · × Sn. If

1
4δ(1− δ)

n∑
k=1

Ek−1
[
αk(x)2] < 1,

then A does not cover Qn.

Proof.
A simple calculation (using the inequality max{a− b, 0} 6 a2/4b) gives

Pk(Bk) 6
Ek−1

[
αk(x)2]

4δ(1− δ) .

Hence
∑

k Pn(Bk) =
∑

k Pk(Bk) < 1, and so A does not cover Qn.
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The distortion method (bounding the moments of αk)
To deduce the theorem, it only remains to bound, for each 1 6 k 6 n, the
second moment of αk(x) with respect to the measure Pk−1.

Lemma
Let A be a collection of hyperplanes in Qn = S1 × · · · × Sn, no two of
which are parallel. Then, for each 1 6 k 6 n,

Ek−1
[
αk(x)2] 6 1

|Sk|2
k−1∏
j=1

(
1 + 3

(1− δ)|Sj |

)
.

Proof.
A straightforward induction shows that if F (A) ⊂ [k], then

Pk(A) 6
∏

j∈F (A)

1
(1− δ)|Sj |

.

The lemma now follows from a simple union bound.
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The distortion method (completing the proof)

Theorem (Balister, Bollobás, M., Sahasrabudhe and Tiba, 2020+)
If |Sk| > (3 + ε)k for all k > k0, then there exists C = C(ε, k0) such that
the following holds. Let A be a collection of hyperplanes that cover
Qn = S1 × · · · × Sn. Then either two of the hyperplanes are parallel, or
there exists a hyperplane A ∈ A with F (A) ⊂ {1, . . . , C}.

Proof.
The previous lemma gives (via a straightforward calculation)

1
4δ(1− δ)

n∑
k=C

Ek−1
[
αk(x)2] 6 n∑

k=C

O
(
k−(1+ε)) < 1

if C is sufficiently large.

Moreover, if F (A) 6⊂ {1, . . . , C} for every A ∈ A,
then αk(x) = 0 for every 1 6 k 6 C and x ∈ Qk−1.
By the Key Lemma, it follows that A does not cover Qn, as required.
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The density of the uncovered set

Theorem (Filaseta, Ford, Konyagin, Pomerance and Yu, 2007)
If n� exp

(
logC log logC

)
, then for any system of arithmetic

progressions with distinct moduli d1, . . . , dk ⊂ [n,Cn], the uncovered set
has density at least (

1 + o(1)
) k∏

i=1

(
1− 1

di

)
.

Question (Filaseta, Ford, Konyagin, Pomerance and Yu, 2007)
If a covering system has distinct moduli d1, . . . , dk satisfying

d1, . . . , dk >M and
k∑

i=1

1
di
< C,

does it follow that the uncovered set has density at least δ = δ(C) > 0?

Theorem (Balister, Bollobás, M., Sahasrabudhe and Tiba, 2020+)
For every M > 0 and δ > 0, there exists a finite collection of arithmetic
progressions with distinct moduli d1, . . . , dk >M , such that

k∑
i=1

1
di
< 1

and the density of the uncovered set is less than δ.
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The density of the uncovered set

Theorem (Balister, Bollobás, M., Sahasrabudhe and Tiba, 2020+)
Let χ be the multiplicative function defined by

χ(pi) = 1 + (log p)4

p

for all primes p and integers i > 1. There exists M > 0 so that for any
system of arithmetic progressions with distinct moduli d1, . . . , dk >M , if

C =
k∑

i=1

χ(di)
di

,

then the density of the uncovered set is at least e−4C .

The function χ cannot be replaced by one of the form χ(pi) = 1 +O(1/p).
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Some additional consequences

Conjecture (Schinzel, 1967)
In any covering system, one of the moduli divides another.

Theorem (Balister, Bollobás, M., Sahasrabudhe and Tiba, 2020+)
In any covering system, one of the moduli divides another.

The Erdős–Selfridge problem
Does there exist a covering system with all moduli distinct and odd?

Theorem (Balister, Bollobás, M., Sahasrabudhe and Tiba, 2020+)
In any covering system with distinct odd moduli, the least common
multiple of the moduli is divisible by either 9 or 15.

Theorem (Balister, Bollobás, M., Sahasrabudhe and Tiba, 2020+)
No covering system exists with distinct odd square-free moduli.
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The Erdős–Selfridge problem
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Theorem (Hough and Nielsen, 2019)
In any covering system with distinct odd moduli, one of the moduli is
divisible by 3.
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Thank you!
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