Living discreetly but thinking continuously

Dynamic network models and stochastic
approximation

Oxford discrete math and probability
seminar, June 2024.

Shankar Bhamidi
UNC Chapel Hill
Department of Statistics and OR



LT X

Motk + Prob obilify

Mﬂ- % da‘l’ama'c networks mesol s

matiemab tans!



- ConS(dhr 0 Agmence 94_ me,[-wb!k.
models in olistute Lime

—~ Fit Your #o‘\lon‘k €m)?iV"Cai WWQ‘Q.

03 Ink(?ﬁé
eq B of wechees % drgree = 10
Y\




_ (4 of verhices whose distante L A
'ne_;“j(«.bo(hood [ooks ke s *,
‘WHY

n

Continwshs$ time



m Motivahon ‘ﬁom one arta : Attvibated network models

7 >
—1\_-‘ 'SM oletedhon n dynamic networks

@ C/mnge Point detechon



SUMMARY FINDINGS

D DJnamiC netwerk models ave 'l‘vu’y Cow.Ph'(akcl
beasts. Simple vules give vise Fo (omplex phenomenon,
W‘t often havq +o predict Quen from Simulathon

! Owing either eyrlici-HJ ov
'"‘f“'—‘"tj dynamics oflew
drin towards ey oluftion Mmethanisms i Continuces
Hime branching processes.



E\_ Coutinuous Hwe branching Pprocesses grow
Cxponentially ( ) while fuuchonals B

of inkest
) §row at a AuFfecet ra i€
Asgmptohics emevyes f'ow\ Fha )m(fvf/ag of p—

Huse fwo vales



< Most Social networks Cowsist of verhies with

Atribuiles.
5: attvbute Space. For talk 3= {1,2,-. JI(}

~-

-

Typically +hese netwovks art

- 'Dyv\amic
— Cownethons modulated by Joctors Such as

of Counection fvofeusiﬁ'bs
and fm‘lx oufenolhl‘




L Cor(es‘»no(n.) Socca| nefworks Hag Maju vole Ja Go
0{1#051'00\ af "‘"F" motien g Ie
- Used by Comfamifs vig fauking/ Cg,,ﬁo’i@/ 4 /Govi s

Fo b_‘b\d [.“'F'IMIQH&' hbd!} q..d qu sucl r 1
nodes +o olreck f-fow of I;A'FofMah'ov\) Qf-f'!d'
?Qr(ll’?h’ov\ o-f SPfL.,;\-g J'Vours etc @

Bl Number of FOLK THEOREMS ‘ 4




- On maany sekings Caumot dacectly
0boServe netwevR . Nead fo .SQw',\Q
fpn networ <

L ?9( kc\’s (u‘-(ﬂskd In Q\‘YG“Q " &own
N\(,\o-‘ \"‘3 Uﬁﬁ\r{'ﬁ.)\’ .»g- “‘&\‘300
Ann Avior

. C_’Q A;(qu\ 3w~ni5ran‘|‘ Po‘m\qbw\s
\n Researcw Prangle awd 3“\‘”&" of
Cov\D e \w e&V() 2020 [ )



_Has wmohvated o datoiled Revelopwest of

networkk medels Hhat \V\(ov?wfk& l;nhr)m,{_ ly“hch’om\}

I - 4 A 1Y oluthon

-~ Devive Insight about vauious phenomeuon ﬂm Huase
wrod e(s



Main model in town
@ Latentspace S = [K] = {1,2,...,K}.

@ Fix a probability measure o on S (density of different types).

@ Potentially asymmetric function s : S x S — R.. (propensities of pairs of nodes to connect,
based on their attributes).

@ Preferential attachment parameter v € [0, 1]. r K 5 ‘D( ‘ﬂu's "fﬂ'k]

Model class Z (v, m, k)

@ Vertices enter the system sequentially for n > 1 starting with a base connected graph Gj.
Write v, for the vertex that enters at time n; every vertex v, has attribute distribution
a(vn) ~ w independent of {(js :0<s<n-1 }

@ For v € Gp, let deg(v, n) = degree of v at time n.

@ Conditional on Gy, the probability that Vni+1 CONNectsto v € Gn is given by:

r(a(v), a*)[deg(v, M]”

e V|g~n’ avret) = &) = Zv'eg“,, w(a(v’), a*)[deg(v/, n)]Y

Will restrict to v = 1 in this talk. Will view as directed graphs with edges pointing from
children to parent.
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Functionals of interest

@ Degree distribution of the graph: Fix k > 1. Ny(k) = # of vertices of degree k in Gp.
pn = {Na(k)/n: k > 0} = empirical probability mass function.

@ Joint distribution of attributes and types: () = 13 2ovev, O(deg(v),a(v))-

@ Page rank scores for directed graph G = (V, £) with damping factor c € (0, 1)=
stationary distribution (Rv ¢ : v € G) of following random walk: at each step, with probability
¢, follow an outgoing edge (uniform amongst available choices) from current location in the
graph. With probability 1 — ¢, restart at uniformly selected vertex in entire graph. Given by
linear system of equations:

1-c Ru,c
Ryc = +e > : (1)
. +
n UEN — (V) d (U)
where N/~ (v) is the set of vertices with edges pointed at v and d*(u) is the out-degree of

vertex u. € Caw Shuai liavly [osk of Joint disha be{‘hyl"q-n :;Hvﬂak
e Yau
Methodological questions: how do centrality measures (degree centra/ityc page ran

scores) vary by attribute type?
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Basic assumption and setup for results

@ Assume w({a}) >0Vaec Sandkzp >0VabeS.
@ For talk assume v = 1 (Linear preferential attachment).
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Model class %

Model inputs
Kernel x and weight measure v.

Attributed network model {G, : n > 0}

_ g AN rw(a(v), a*)v(a*)[deg(v, n)]”
P (a(Vn+1) =a,Vpy1 ~ V|gn) = Zae[K] Zv’eén v(a)x(a(v'), a)[deg(V/, n)]v.

Seems like a mess: types of new vertices tightly coupled with the evolution of the entire process. l
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Rationale and math curiosity question

@ % can be simulated via dynamics where every vertex essentially behaves independently
@ Suppose one wanted to simulate model class % starting from one vertex of type a, then:

@ Every vertex v that enters the system (starting with the root of type a) gives birth in
continuous time independently to child nodes with attributes, connected to the vertex.

@ For a node of type a, conditional on its degree d, the rate of reproduction of a child node of
type @ is v(a)x(a, @)d*.
Write {BP(t) : t > 0} for the (continuous time) process. For n > 1, T, be the (random) time such

that the size |BP(Th)| = n. Then easy to check that {BP(T,) : 1 < n < N} has the same
distribution as {G,, :1<n< N} ~ U(y, v, K).

| \

Math curiosity question

Suppose we can choose v such that “asymptotically” composition of population is approximately
7. Are the two model classes & and % “similar’?
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Basic punchline of the entire Attributed network models

Answer to math curiosity question = YES. Can carry out the entire program, so that
asymptotics of all functionals of interest derivable from the “easier to simulate” model
class U .

9(7’7"’"3) H V(’Yaﬂ"n)

271 \L
v

Asymptotics <— % (v,v, k)
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Walking the path
Twputrs: TT  and

Let P(S) denote the space of all probability measures on S. Define (in the interior of
P(S)) the function:

Valy) =1 -3 X (logm) +log(3 ymk,))

JES keP

Fundamental Lemma (Jordan (2013), EJP)
Under above Assumptions, V:(-) has a unique minimizer
n:=n(xw) = (n1(7), ..., nk(7)) in the interior of P(S).

T

Vb '= x> ¢a,b ‘= Ka,bVp, ¢a = Z¢ab =8==
21t Kb TNa
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Main result 1 (all joint work with Nelson Antunes, Sayan Banerjee,
Vladas Pipiras)

Theorem (2023) for v = 1
Asymptotics for all “local” functionals of model class & can be obtained from model
class % with above choice of v. For example, pick a vertex at random in G, ~ & and
consider the descendant subtree of that vertex. Then the distribution of this
descendant subtree converges to the following:

@ Pick A ~ 7.

@ Start a branching process simulating model class % (1, v, ) starting from a single
vertex of type A.

@ Run this simulation for 7 = Exponential random variable with rate = 2.

Under the hood: associated branching process 2/ grows at rate A = 2: Simulation
takes ~ % log n in the computer to generate network of size n.
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Implications: Asymptotics for degree distribution

Branching process grows like €*'. For a vetex of type a, Number of children = degree+1
grows like e*a'. Interplay gives the following:

Degree distribution

For each a € [K], pi — p2, where the tail pmf is given by

F(1+é)l‘(k+1)
rk+1+2)

P (k) =

In particular p2, (k) ~ k'%/%2 as k — cc.

o

Previous derived in 2013 by Jordan using stochastic approximation techniques. Part of
the methodological contribution of our work is to show, stochastic approximation
techniques can be used to track evolution of motif counts.~> €9- Pren
avy s\ qrq awd
Ahbute sheucturs
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News you can use

Degree distribution tails does depend on the attribute type. Thus potentially, degree
centrality scores depend in a non-trivial manner on the type of a vertex.
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Implications 2: Page rank scores for model class &

@ Recall Gy is directed with edges from child to parent. For v € G, let Pj(v, n) denote the
number of directed paths of length / that end at v in G,. Since G, is a directed tree, easy to
check PageRank scores have the explicit formulae:

(1-0 o
Ry.c(n) = — 1+> cPv,n)|.
=1
@ Stare at this formula: suggests connection to percolation, where each edge retained with
probability ¢, deleted with probability 1 — c.

@ Easier to formulate results in terms of the graph normalized PageRank scores
{Rv,c(n): v e Gn}={nRyc(n):vegn}

@ Empirical distribution of normalized PageRank scores,

finpr =" 6{Rvc(n)}.

veGn
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Percolation on branching process for model class %

@ Consider BP34(-), branching process started with one vertex of type a.

0 Ry o(t)=(1—c)(1+37cPy(t).
o Define “limit” Ry o = Ry o(7) = (1 — ¢) (1 + 372 ¢/Pro(7)) .

@ As before 7 is an exponential rate two random variable.

Weird matrix associated with %/

M© — (ME;{ by = Cab+ bal {a= b})

abe[K]

Ac= Perron-Frobenius eigen-value of M(©).
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Interpretation of ¢ t again Cowmes &m wodel class @

Fix a € [K] and damping factor ¢ € (0,1). For any t > 0, write BP$(t) for the connected cluster of
the root (which is also a tree) when we retain each edge e € BP4(t) with probability ¢ and delete

with probability (1 — ¢), independently across edges. Write {BPS(t) : t > 0} for the corresponding
non-decreasing rooted tree value process. Let Z5(t) = |BPS(t)] for the size of the cluster at time t.

Turns out: BPS(+) is also a branching process. ¢ is the rate of growth of BPS(-) i.e.
BPS()| ~ et
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Implications: page rank asymptotics

Page rank asymptotics

For every continuity point r of the distribution of R . under P

n~' 3" 1{a(v) = a,Rv.e(n) > r} — maPa(Ry ¢ > 1).
vEGn

Further there exists constants By < B> < oo such that for any attribute:

Bir=2/%c <Pa(Ry ¢ >r) < Bor=2/%e

News you can use: Page rank score distributions do not depend on the attribute type. Negates
some of the standard assumptions in social networks.
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Network sampling schemes

@ Uniform node sampling (41): Here one picks a vertex uniformly at random from Gp.

@ Sampling proportional to degree (D): Pick a vertex uniformly at random and then pick a
neighbor of this vertex uniformly at random.

@ Sampling proportional to in-degree (3): Pick a vertex at random and then select the
parent; by convention, if the root is picked (which happens with probability op(1) as n — oo)
then select the root.
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Network sampling schemes contd

© Sampling proportional to Page rank (3393,): Fix a damping factor ¢ and sample a vertex
with probability proportional to the page rank scores {fiv,c : v € Gn}. In the context of the
(tree) network model {Gn : n > 1} starting with a single root at time zero, by work of
Chebolu+Melsted: this can be accomplished by the following “local” algorithm:

@ Pick a vertex uniformly V at random from Gp.

@ Independently let G ~ Geom(1 — ¢) — 1 (here Geom(-) is a Geometric random variable
with prescribed parameter with support starting at one).

@ Starting from V Traverse G steps towards the root (i.e. using the directions of edges in
Gn from child to parent), stopping at the root, if the root is reached before G steps.

@ Fixed length sampling (393,,): Fix M > 0. Consider the same implementation of the page
rank scheme but here the halting distribution is taken to be G = M. Abusing notation, we use
PR, to denote this sampling scheme.
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Markov chain description of functionals

Define matrix

¢a b )
M= (M = 7 .
( (a,b) 2 — ¢a a,be[K]

Turns out this has Perron-Frobenius eigen-value =1. Let W = (W, W5, ..., Wx) denote the
corresponding right eigen-vector, normalized so that Zae[K] maWa = 1. Consider the Markov
chain S := {S; : n > 0} on [K] with transition probability matrix

. . N LAY .
B(S1 =) =S =/1S =)= =, jelK]
1

Write E? for the expectation operator under PS.
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Implications for network sampling

@ Under uniform sampling P (a( V) = b|Gn) &5 7.
@ Under sampling proportional to degree Ps (a( Vi) = b|Gn) 25 np.

@ Under sampling proportional to in-degree,

Pao(a( V) = blGn) &3 npdp = mp = mpWpEp

Vg

$b
2—¢p

1

@ Under sampling proportional to Page-Rank, letting G ~ Geom(1 — ¢) — 1 independent of S,

Vs,

Pgion, (a(Vin) = blgn) 2 mpWpED

Since S has stationary distribution {72V, : a € [K]},

lim lim Py (a(Vn) = b|Gn) 255 mpWy.

cT1 n—oo

@ Under fixed length walk sampling,

Possr,, (a(Vi) = blGn) 22 mpW,ER

Vs,
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care? Sampling of rare minorities

Consider the specific case of model class & with two classes 1, 2 with,

1 1
= (k(i, ] A , 0,1 2
w = (k(i,/))1<ij<2 (a 1) ™= 11 0( )- (2)
We will be interested in the specific case where 6 — 0, more specifically in the setting
0 :=0(a) = DVa,

where D > 0 is a fixed constant and where a | 0. Thus,

@ Type 1 vertices are relatively rare compared to type 2 vertices; we will often refer to type 1
vertices as minorities and type 2 as majorities.

@ Newly entering majority vertices into the population have equal propensity to connect to
minority or majority vertices. Minorities have (relatively) much higher propensity to connect
to other minority vertices, as compared to majority vertices.
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Implications

Asal0:

@ Under uniform node sampling,
Py (a(Va) = 1|Gn) &5 Dva+ O(a).
@ For sampling proportional to degree,
Po(a(Vn) = 1|Gn) 25 2Dva— (4D + %)a+ o(a*/?).
@ For random in-degree based sampling,
Py (a(Va) = 1|Gn) 2% 3Dva+ O(a).

@ For Page-rank based sampling (both Geometric and fixed node implementations):

o 2D2—%+\/((2D2—%)2+4D2>
lim lim_Pasor, (&(Vn) = 1|Gn) =

+0(Va)
2p2 + % + \/((2D2 - 12+ 4D2)

- Jin f P, () = 116

Shankar Bhamidi (UNC Chapel Hill) Dynamic networks and math



b jn the “pofural’' Fime-scale of +he abowe models,
Fracessos Jrow %Poﬁenh‘allg'

. Si‘jmﬁurc of The seed of the refwork
S‘\W\‘d ¥ PPrSiS“'” 'f-o-r a /0'9 +ime.

Shoulod make fsﬁ'mqh‘vu" mibal Seed when one
has ho femporal (aformation “oloabje”

Shouldd malce change point defecron “Aardec!

-



Chomge foint Lefection

U.S. life expectancy
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Change point estimator

hn/n

dn(n/hn)

Nonparametric change point estimator

Fix any two sequences h, — oo, by — oo: —Lﬂ — 0, To‘}ﬁ;‘ — 0. Define

o= Dn(k, ,) Dn(k, T/, 1)
e mnllass U o—k Lnt) Ln/hn] s
n=infdt> hn kz=l:) = n/hn =

Then T» L e




Simulations

Affine to square root (100 simulations)

10/90th percentiles of estimated change point
(103667, 106149]

mean and 10/90th percentiies curves

Figure: n =2 %105,y = 0.5, fo(i) = i + 2, (i) = Vi + 2, hn = loglog n, by = n!/ o8 lgn

Dalk, T/ ) n
loglogn

.k | Dn(k, T8)
dn(m) :=22 =iy cma,
k=0 L "




The big bang model: What if the change happened very early in the
system?

Figure: Big Bang: Getty images

Fix functions fy, f; : {0,1,2,...} - Ry and~y € (0,1). Let 6 = (f, f1, ).

@ Time 1 < m < n” Vertices perform attachment with probability proportional to fy(out — deg).

@ Time n” < m < n Vertices perform attachment with probability probability proportional to
f (out — deg).

Shankar Bhamidi (UNC Chapel Hill) Long range dependence in evolving networks



Change point detection: Quick big bang

Result 1
@ Here change point at n” (e.g. v/n).
@ Here
Na(K) »
— = il
namely the degree distribution of the model run purely with attachment function f;

| \

So what changes?
@ Uniform ~ Linear: fy = 1 whilst f;(k) = k + 1 + « for fixed a > 0. Then for wp 1 oo,

1—v
n2+a logn 1—9
T« Mp(1) < nzFa (log n)°.

wn
© Linear ~~ Uniform: fo(k) = k + 1 + o whilst f;(-) = 1.

nT;L logn
@ e

M LOBN < Mn(1) < = (og )2
n

© Linear ~ Linear: fy(k) = k + 1 + a whilst f; (k) = k + 1 + 8 where a # 8. Then
Mp(1)/n(@6) is tight where

22+8)+ (1 =72 +a)

(e, B) == (5)
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Formal setup (Bubeck,Devroye,Lugosi Mossel,Miklos, Jog, L

Setup:
@ G: space of equivalence classes (upto isomorphisms) of finite unlabelled graphs.
@ For finite labelled graph G: G° for the isomorphism class of G in G.

@ Root finding algorithm: Fix K > 1 and a mapping Hk on G that takes an input finite
unlabelled graph g € G and outputs a subset of K vertices from g.

Root finding algorithms

Let {Gn : n > 0} be a sequence of growing random networks. Fix0 < e <1and K > 1. A
mapping H is called a budget K root finding algorithm with error tolerance ¢ for the sequence of
networks if,

. ® .

I;_)rggéf]P’U € Hk(Gp)) > 1—=.

Question: can we choose K independent of n? Dependence on e ?
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Related notion: Robustness (Morters-Dietri

Fix K > 1 and a network centrality measure W. For a family of network models {Gn : n > 1} say
that this sequence is (V, K) persistent if 3 n* < co a.s. such that for all n > n* the optimal K
vertices (v1,w(G5), vo,w(G5), - - -, Vk,w(G5)) remain the same and further the relative ordering
amongst these K optimal vertices remains the same.

Example: If degree centrality was persistent this implies, the identity of the maximal degree vertex
becomes fixed within finite time and no other vertex can overtake the degree of this vertex after
this time.

Such phenomenon once again a hallmark of long range dependence.
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Centroid centrality sufficiency bounds

fechni ot

Banerjee and B(2020)

Under abeve assumptions:

@ Suppose for some C; > 0, 3 > 0, f satisfies f, < f(i) < C;-i+ Bforalli > 1. Then 3
positive constants Cy, Co such that for any error tolerance 0 < ¢ < 1, the budget
requirement satisfies,

exp(y/Cz log 1/¢).

Q If further the attachment function f is in fact bounded with f(i) < f* for all i > 1 then one has
for any error tolerance 0 < e < 1,

Ku(e) = £(2Ci+B)/fe +B)/ 1,

C
Ku(e) < ﬁ exp(1/Cz log 1/e).




Centroid centrality necessary bounds ﬁl

© If3C; >0and B > 0suchthat f(i) > C; - i+ g forall i > 1 then 3 a positive constant C}
such that for any error tolerance 0 < ¢ < 1,

/

1
Ku(€) 2 e mymy

@ For general f one has for any error tolerance 0 < € < 1,
/

C1
Ku(€) 2 7y
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@ Uniform attachment: f(k) = 1
CI
9 < Ku(e) < D exply] Calog 1)
€ (> (>

@ Pure Preferential attachment: /(k) = k

o Affine preferential attachment: (k) = k +

/

C C 1
—5 < Ku(e) < —5 exp(4/ Ca log -).
e1+8 e 1+B 2

@ Sublinear preferential attachment:

C| C 1
o < Ky(e) < 2z exp(y/ Cz log ;)




Disadvantages of Centroid centrality

@ Essentially need quite precise information of entire network
@ Natural question: How do more local measures like degree centrality perform? Does there
exist a persistent hub (i.e. maximal degree vertex fixates within finite time)?

@ Fake popularity: Suppose i-th vertex enters the system with m; edges that it attaches to the
current existing system (again with popularity of vertices measured via some function f).
How quickly does m; 1 oo to break persistence phenomenon?
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Assumptions and notation

@ f. :=infi>q f(i) > 0O; further at most linear growth (i) < Cy(i).
° X% % = 6%

0 K(t) = dp0 0 '(1),t > 0.

© dmax(n) := maxo<k<n dk(n).

@ Index of the maximal degree:

Iy :=inf{0 < i< n:dj(n) > di(n) forallj < n}.
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Persistence of hubs

Banerjee + B(2020)
Under a few technical assumptions on f and f is increasing:

@ Suppose P,(c0) < oo (e.g9. f(k) = k= for a € (1/2,1]) and that lim sup,,_, o, 4:;;’;’,’7’) < A
Then a persistent hub emerges almost surely in the random graph sequence

Do not need increasing assumption for trees.

n
/So\ < ,m"

]
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Lack of persistence

Banerjee + B(2020)

@ Assume ®,(o0) = oo (e.9. f(k) = k< for o € (0,1/2)) and (we are working in the tree case)
and f(k) — oo as k — oo. Then index of maximal degree satisfies:

logZy P, A
K (;—* log n) 2
where A\* is the Malthusian rate of growth of the continuous time embedding.
@ For f(k) = k< for a € (0,1/2),

as n — oo.

1
log Z} A¥)T=a
o8 n_ 5 ( )2 , asn— oo.
(log n) =2
Inspired by Morters and Dietrich who proved similar results for a different evolving network

model.
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ANY
QUESTIONS ?



