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Bottom line : Area of dynamic networks
needs

-

mathematicians !



(One) Math Punchline

- Consider a sequence of growing network
models [Th : n= 13 in discrete time

- Fix your favorite empirical
quantity

of interest
e .g. #

of vertices of degree
= 10

-
N



- S# of vertices whose distance 2
neighborhood looks like X

-
> Y

N

Turns out : In many many
network models.

Continuous time branching processes
naturally

describe the limits of
such objects.



OUTLINE

& Motivation from one area : Attributed network models

Fundamental questions and hypothes is

- "News you can use
"

- Propogation of chaos ** CTBP - Math understanding

E Seed detection in dynamic networks

E Change point detection



SUMMARY FINDINGS 

# Dynamic network models are truly complicated
beasts. Simple rules give rise to complex phenomenon,

quite often hard to predict even from Simulation

# Owing either explicitly (construction of model) or

Implicitly (propogation of Chaos) dynamics often ↳"Internet"
driven towards evolution mechanisms in continuous

time branching processes . by Opte Project



SUMMARY FINDINGS CONTINUED 

# Continuous time branching processes
grow

exponentially (at some rate x)
while functionals

of interest(e.g . degree distribution ,
Page wank

scores) grow at a different
rate ((functional)

Asymptotics emerges from
the Interplay of

these two rates- Found on Twitter

- g - Michael Reuter



I. ATTRIBUTED NETWORK MODELS
Motivation

Most social networks Consist of vertices
with

attributes.

~ 3= attribute space. For
talk 3= 51 , 2 , .., 13

V= 1

- Typically these networks
are

- Dynamic
- connections modulated by

factors such as

across
- heterogeneity of connection propensities atributes
- time and path dependent
- Popularity bias

W= 0 .2



Number of FOLK THEOREMS

- Corresponding social networks play major role in

diffusion of Information

-
used by Companies via ranking/centrality algorithms

to find influential nodes and pay such

nodes to direct flow of information, effect

perception of specific groups etc

-

Example : Most centrality
scores have similiar

behavior for such networks



Related important question
-

- In many settings cannot
directly

observe network. Need to sample
from network

- Perhaps interested in a "rare" WebRDS from
University of Michiganminority Ann ArborI

- 2
. Asian Immigrant populations

in Research Mingle and Impact
of

GIOVANNA MERLI3DueCarol
,

StateCOVID etc in early 2020 [TED Moon



“Mechanistic network models from domains of 
complexity science can enable researchers to consider 
various hypothetical scenarios ... This allows to evaluate 
robustness of algorithms with regards to different 
aspects concerning minorities, for example fairness or 
discrimination.” 

.  F. Karimi, M. Oliveira, and M. Strohmaier: arxiv 2206:07113

Punchline -Has motivated a detailed development of
-

network models
that incorporate important functionals

in their evolution

- DeriveInsight about various phenomenon from these
models



Main model in town
Latent space S = [K ] = {1, 2, . . . ,K}.

Fix a probability measure ⇡ on S (density of different types).

Potentially asymmetric function  : S ⇥ S ! R+ (propensities of pairs of nodes to connect,
based on their attributes).

Preferential attachment parameter � 2 [0, 1].

Model class P (�,⇡,)

Vertices enter the system sequentially for n � 1 starting with a base connected graph G̃0.
Write vn for the vertex that enters at time n; every vertex vn has attribute distribution
a(vn) ⇠ ⇡ independent of

n
G̃s : 0  s  n � 1

o
.

For v 2 G̃n, let deg(v , n) = degree of v at time n.

Conditional on G̃n the probability that vn+1 connects to v 2 G̃n is given by:

P(vn+1  v |G̃n, a(vn+1) = a
?) =

(a(v), a?)[deg(v , n)]�
P

v02G̃n
(a(v 0), a?)[deg(v 0, n)]�

Will restrict to � = 1 in this talk. Will view as directed graphs with edges pointing from

children to parent.
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[UE for this talk]



Interpretation of Kernel

C( ) = Propensity of new
9 Vertex (type= CoRG1)

to connect to

existing verte

(type = Shibu)



Functionals of interest

Degree distribution of the graph: Fix k � 1. Nn(k) = # of vertices of degree k in Gn.
pn = {Nn(k)/n : k � 0} = empirical probability mass function.

Joint distribution of attributes and types: {n(·) = 1
n

P
v2Vn

�(deg(v),a(v)).

Page rank scores for directed graph G = (V, E) with damping factor c 2 (0, 1)=
stationary distribution (Rv,c : v 2 G) of following random walk: at each step, with probability
c, follow an outgoing edge (uniform amongst available choices) from current location in the
graph. With probability 1 � c, restart at uniformly selected vertex in entire graph. Given by
linear system of equations:

Rv,c =
1 � c

n
+ c

X

u2N�(v)

Ru,c

d+(u)
(1)

where N�(v) is the set of vertices with edges pointed at v and d+(u) is the out-degree of
vertex u.

Methodological questions: how do centrality measures (degree centrality; page rank

scores) vary by attribute type?
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[can Similiarly look at joint distin betweenattribute]



Main issue: math tractability for 
functional of interest

P ="Please analyze this
"

model

U = "Useful (maybe)"



Basic assumption and setup for results

Assume ⇡({a}) > 0 8a 2 S and a,b > 0 8a, b 2 S.

For talk assume � = 1 (Linear preferential attachment).
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Model class U

Model inputs
Kernel  and weight measure ⌫.

Attributed network model
�
G̃n : n � 0

 

P
⇣

a(vn+1) = a
?, vn+1  v |G̃n

⌘
:=

(a(v), a?)⌫(a?)[deg(v , n)]�
P

a2[K ]

P
v02G̃n

⌫(a)(a(v 0), a)[deg(v 0, n)]�
.

YUCK!
Seems like a mess: types of new vertices tightly coupled with the evolution of the entire process.
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Rationale and math curiosity question

U can be simulated via dynamics where every vertex essentially behaves independently

Suppose one wanted to simulate model class U starting from one vertex of type a, then:

Every vertex v that enters the system (starting with the root of type a) gives birth in
continuous time independently to child nodes with attributes, connected to the vertex.

For a node of type a, conditional on its degree d , the rate of reproduction of a child node of
type a0 is ⌫(a)(a, a0)d↵.

Write {BP(t) : t � 0} for the (continuous time) process. For n � 1, Tn be the (random) time such
that the size |BP(Tn)| = n. Then easy to check that {BP(Tn) : 1  n  N} has the same
distribution as

n
G̃n : 1  n  N

o
⇠ U (�, ⌫,).

Math curiosity question
Suppose we can choose ⌫ such that “asymptotically” composition of population is approximately
⇡. Are the two model classes P and U “similar”?
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Basic punchline of the entire Attributed network models

Answer to math curiosity question = YES. Can carry out the entire program, so that

asymptotics of all functionals of interest derivable from the “easier to simulate” model

class U .
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Walking the path

Let P(S) denote the space of all probability measures on S. Define (in the interior of
P(S)) the function:

V⇡(y) := 1 � 1
2

X

j2S

⇡j

 
log(yj) + log(

X

k2P

ykk,j)

!

Fundamental Lemma (Jordan (2013), EJP)
Under above Assumptions, V⇡(·) has a unique minimizer
⌘ := ⌘(⇡) = (⌘1(⇡), . . . , ⌘K (⇡)) in the interior of P(S).

⌫b :=
⇡bP

K

l=1 l,b⌘l

, �a,b := a,b⌫b, �a :=
KX

b=1

�a,b = 2 � ⇡a

⌘a

,
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Goal model class P

Inputs : J and K

1

=>

-



Algorithm
-

Model class 11 with parameters
- Consider

8 andS

- Easy to
simulate as

a branching process

(in Continuous time)
.

Individuals behave

independently
- Anything else

??



Main result 1 (all joint work with Nelson Antunes, Sayan Banerjee,
Vladas Pipiras)

Theorem (2023) for � = 1
Asymptotics for all “local” functionals of model class P can be obtained from model
class U with above choice of ⌫. For example, pick a vertex at random in Gn ⇠ P and
consider the descendant subtree of that vertex. Then the distribution of this
descendant subtree converges to the following:

Pick A ⇠ ⇡.

Start a branching process simulating model class U (1,⌫,) starting from a single
vertex of type A.

Run this simulation for ⌧ = Exponential random variable with rate = 2.

Under the hood: associated branching process U grows at rate � = 2: Simulation

takes ⇡ 1
2 log n in the computer to generate network of size n.
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Implications: Asymptotics for degree distribution

Branching process grows like e
2t

. For a vetex of type a, Number of children = degree+1

grows like e
�at

. Interplay gives the following:

Degree distribution
For each a 2 [K ], pa

n ! pa
1 where the tail pmf is given by

p̄a

1(k) =
�
⇣

1 + 2
�a

⌘
�(k + 1)

�
⇣

k + 1 + 2
�a

⌘ , k � 0.

In particular pa
1(k) ⇠ k

1+2/�a as k ! 1.

Previous derived in 2013 by Jordan using stochastic approximation techniques. Part of

the methodological contribution of our work is to show, stochastic approximation

techniques can be used to track evolution of motif counts.
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-> e.g . thus of
any shadeanda-attribute



News you can use

Degree distribution tails does depend on the attribute type. Thus potentially, degree

centrality scores depend in a non-trivial manner on the type of a vertex.
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Implications 2: Page rank scores for model class P

Recall Gn is directed with edges from child to parent. For v 2 Gn, let Pl (v , n) denote the
number of directed paths of length l that end at v in Gn. Since Gn is a directed tree, easy to
check PageRank scores have the explicit formulae:

Rv,c(n) =
(1 � c)

n

 
1 +

1X

l=1

c
l
Pl (v , n)

!
.

Stare at this formula: suggests connection to percolation, where each edge retained with

probability c, deleted with probability 1 � c.

Easier to formulate results in terms of the graph normalized PageRank scores
{Rv,c(n) : v 2 Gn} = {nRv,c(n) : v 2 Gn}.

Empirical distribution of normalized PageRank scores,

µ̂n,PR := n
�1
X

v2Gn

� {Rv,c(n)} .
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Algorithm

->Go back to model
class I

-> Consider percolation
on I

-> Turns
out : This

can again be
viewed as a

different Branching
process . Easy"

to analyze .

Punchline : Asymptotics about
10 follow

->-

from U .



Percolation on branching process for model class U

Consider BPa(·), branching process started with one vertex of type a.

R;,c(t) = (1 � c)
�
1 +

P1
l=1 cl Pl,;(t)

�
.

Define “limit” R;,c = R;,c(⌧) = (1 � c)
�
1 +

P1
l=1 cl Pl,;(⌧)

�
.

As before ⌧ is an exponential rate two random variable.

Weird matrix associated with U
M(c) =

⇣
M(c)

(a,b) := c�a,b + �a11 {a = b}
⌘

a,b2[K ]
.

�c= Perron-Frobenius eigen-value of M(c).
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Interpretation of �c

Fix a 2 [K ] and damping factor c 2 (0, 1). For any t � 0, write BPc
a(t) for the connected cluster of

the root (which is also a tree) when we retain each edge e 2 BPa(t) with probability c and delete
with probability (1 � c), independently across edges. Write {BPc

a(t) : t � 0} for the corresponding
non-decreasing rooted tree value process. Let Zc

a(t) = |BPc
a(t)| for the size of the cluster at time t .

Turns out: BPc
a(·) is also a branching process. �c is the rate of growth of BPc

a(·) i.e.

|BPc
a(·)| ⇡ e�c t
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[again comes from model class IL]



Implications: page rank asymptotics

Page rank asymptotics
For every continuity point r of the distribution of R;,c under Pa

n
�1
X

v2Gn

11 {a(v) = a,Rv,c(n) > r} P�! ⇡aPa(R;,c > r).

Further there exists constants B1 < B2 < 1 such that for any attribute:

B1r
�2/�c  Pa(R;,c > r)  B2r

�2/�c

News you can use: Page rank score distributions do not depend on the attribute type. Negates

some of the standard assumptions in social networks.
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Network sampling schemes

1 Uniform node sampling (U): Here one picks a vertex uniformly at random from Gn.

2 Sampling proportional to degree (D): Pick a vertex uniformly at random and then pick a
neighbor of this vertex uniformly at random.

3 Sampling proportional to in-degree (ID): Pick a vertex at random and then select the
parent; by convention, if the root is picked (which happens with probability oP(1) as n ! 1)
then select the root.
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Network sampling schemes contd

4 Sampling proportional to Page rank (PRc): Fix a damping factor c and sample a vertex
with probability proportional to the page rank scores {Rv,c : v 2 Gn}. In the context of the
(tree) network model {Gn : n � 1} starting with a single root at time zero, by work of
Chebolu+Melsted: this can be accomplished by the following “local” algorithm:

1 Pick a vertex uniformly V at random from Gn.
2 Independently let G ⇠ Geom(1 � c)� 1 (here Geom(·) is a Geometric random variable

with prescribed parameter with support starting at one).
3 Starting from V Traverse G steps towards the root (i.e. using the directions of edges in

Gn from child to parent), stopping at the root, if the root is reached before G steps.

4 Fixed length sampling (PRM): Fix M � 0. Consider the same implementation of the page
rank scheme but here the halting distribution is taken to be G ⌘ M. Abusing notation, we use
PRM to denote this sampling scheme.
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Will skim
next two

slides

Bottom
line : Get explicit

formulae for biss

-

of various
network sampling

schemes.

-> All using
U



Markov chain description of functionals

Define matrix
M =

✓
M(a,b) :=

�a,b

2 � �a

◆

a,b2[K ]

.

Turns out this has Perron-Frobenius eigen-value =1. Let  = ( 1, 2, . . . , K ) denote the
corresponding right eigen-vector, normalized so that

P
a2[K ] ⇡a a = 1. Consider the Markov

chain S := {Sn : n � 0} on [K ] with transition probability matrix

PS
i
(S1 = j) := PS(S1 = j|S0 = i) =

Mi,j j

 i

, j 2 [K ].

Write ES
i

for the expectation operator under PS
i

.
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Implications for network sampling from P

1 Under uniform sampling PU(a(Vn) = b|Gn)
a.s.�! ⇡b .

2 Under sampling proportional to degree PD(a(Vn) = b|Gn)
a.s.�! ⌘b .

3 Under sampling proportional to in-degree,

PID(a(Vn) = b|Gn)
a.s.�! ⌘b�b = ⇡b

�b

2 � �b

= ⇡b bES
b

"
1
 S1

#
.

4 Under sampling proportional to Page-Rank, letting G ⇠ Geom(1 � c)� 1 independent of S,

PPRc
(a(Vn) = b|Gn)

a.s.�! ⇡b bES
b

"
1
 SG

#
.

Since S has stationary distribution {⇡a a : a 2 [K ]},

lim
c"1

lim
n!1

PPRc
(a(Vn) = b|Gn)

a.s.�! ⇡b b.

5 Under fixed length walk sampling,

PPRM
(a(Vn) = b|Gn)

a.s.�! ⇡b bES
b

"
1
 SM

#
.
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Why care? Sampling of rare minorities

Consider the specific case of model class P with two classes 1, 2 with,

 = ((i, j))1i,j2 =

 
1 1
a 1

!
, ⇡ =

1
1 + ✓

(✓, 1). (2)

We will be interested in the specific case where ✓ ! 0, more specifically in the setting

✓ := ✓(a) = D
p

a,

where D > 0 is a fixed constant and where a # 0. Thus,

1 Type 1 vertices are relatively rare compared to type 2 vertices; we will often refer to type 1
vertices as minorities and type 2 as majorities.

2 Newly entering majority vertices into the population have equal propensity to connect to
minority or majority vertices. Minorities have (relatively) much higher propensity to connect
to other minority vertices, as compared to majority vertices.

Shankar Bhamidi (UNC Chapel Hill) Dynamic networks and math 20 / 21



Implications

As a # 0:

1 Under uniform node sampling,

PU(a(Vn) = 1|Gn)
a.s.�! D

p
a + O(a).

2 For sampling proportional to degree,

PD(a(Vn) = 1|Gn)
a.s.�! 2D

p
a � (4D

2 +
1
2
)a + O(a3/2).

3 For random in-degree based sampling,

PID(a(Vn) = 1|Gn)
a.s.�! 3D

p
a + O(a).

4 For Page-rank based sampling (both Geometric and fixed node implementations):

lim
c"1

lim
n!1

PPRc
(a(Vn) = 1|Gn) =

2D2 � 1
2 +

r⇣
(2D2 � 1

2 )
2 + 4D2

⌘

2D2 + 1
2 +

r⇣
(2D2 � 1

2 )
2 + 4D2

⌘ + O(
p

a)

= lim
M"1

lim
n!1

PPRM
(a(Vn) = 1|Gn)
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Insight gleaned from above analysis 

Long range dependence!

- In the "natural"
time-scale of the above models,

processes grow exponentially

-
"Should imply" : Signature of

the seed of the network

should "persist" for
a long time.

Should make "estimating" initial seed when
one

has no temporal Information "doable"

should make change point detection
"harder"



Change Point Detection

Source : Associated Press



Our motivation in words

-Suppose you have temporal network data.

- Ex : Adjacency matrix at all or sub-sample of time
points

- Ex : Time series observations at each mode etc

- suppose network experiences a shock at some point.

-Cam we detect this change point from observations?
- Changes in structural properties of the system ?



Recall : Probabilistic foundations

- Network model : Fix attachment function f . Start with singe seed.
s

- At each stage new vertex
enters system. Connects to one pre-existing
M

vertex

- Probability connecting to a vertex u in the system proportional

to f(degreecus)·

- In = network of size e



Example F(k) =R +2 Preferential attachment



known results for f(k)=R+2

- Np(h) = # of vertices of degreek
in In

Nach)
- Po

- Degree =
2+3

pa+3 exponent

2
- max-degree = Mne



Example f dand change point model

- Fix Ut(0, 1) .

-for tell , n8] , network
uses attachment function

f(x) = k +G

- For te [nUH, n]
,
network uses

g(k) = k + B



Any guesses on the degree exponent
?

f g
- D

O j 1
n

1 my
Recall under no change

Guesses ? f(r) = R+2
-

degree exponent = 2+3

g(k) = k+B

degree exponent = B+3



Always

Punchline of the Theorems
f g
•→ •

0 8 1-

1 ns
n

Irrespective of how small 8 is (e.g 8=-01 or

8=-00000001 ) , the initializer function

wins to



-dand change point model

- Fix Ut(0, 1) .

-for tell , n8] , network
uses attachment function

f(k) = general function

- For te [nUH, n]
,
network uses

g(k) = general function



& Ent En↑
h & h

g



Fix te So, 1) . Let Nent) = # vertices of
degreek in Int

Theorem [Banerjee, B, Carmichael]
-

under conditions on fandg F explict probability
mass functions &(Prct)R21 : + [0, 13

such

that

set(Nu-Pa)T



Theorem /Banerjee, B, Carmichael]

Under above technical conditions
on f &g,

irrespective of how small J is f always

wins !
- So if digree exponent with

and

no change point is 8 So is the

model with change point.



Change point estimator : For each te(0, 1) Compare
-

(nt))R21
With the degree distribution

degree distin (No
-

nt

when network is of sizeM (reallansee
n)

and become alarmed the first time there seems

to be a big change in degree disten.





Lots of open problems



The big bang model: What if the change happened very early in the
system?

Figure: Big Bang: Getty images

Fix functions f0, f1 : {0, 1, 2, . . .} ! R+ and � 2 (0, 1). Let ✓ = (f0, f1, �).

Model
Time 1  m  n� Vertices perform attachment with probability proportional to f0(out � deg).

Time n� < m  n Vertices perform attachment with probability probability proportional to
f1(out � deg).
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Change point detection: Quick big bang
Result 1

Here change point at n� (e.g.
p

n).

Here
Nn(k)

n
P�! p1

k

namely the degree distribution of the model run purely with attachment function f1

So what changes?
1 Uniform Linear: f0 ⌘ 1 whilst f1(k) = k + 1 + ↵ for fixed ↵ > 0. Then for !n " 1,

n
1��
2+↵ log n

!n
⌧ Mn(1) ⌧ n

1��
2+↵ (log n)2.

2 Linear Uniform: f0(k) = k + 1 + ↵ whilst f1(·) ⌘ 1.

n
�

2+↵ log n
!n

⌧ Mn(1) ⌧ n
�

2+↵ (log n)2.

3 Linear Linear: f0(k) = k + 1 + ↵ whilst f1(k) = k + 1 + � where ↵ 6= �. Then
Mn(1)/n⌘(↵,�) is tight where

⌘(↵,�) :=
�(2 + �) + (1 � �)(2 + ↵)

(2 + ↵)(2 + �)
. (5)
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https://theconversation.com/patient-zero-why-its-such-a-toxic-term-134721

seed detection in evolving networks



Our motivation in words

- Dynamic network started
with a single node ("Patient zero")

or seed graph at time
zero.

- Observe network when it is of large size e.g
. n= 106

with no temporal information only network topology
ladjacency matrix)

- Have a fixed budget say K= 30.

-G : Output 30 vertices such that with high prob seed is in the
output.

-

->

-



Probabilistic foundations

- Network model : Fix attachment function f . Start with singe seed.
s

- At each stage new vertex
enters system. Connects to one pre-existing
M

vertex

- Probability connecting to a vertex u in the system proportional

to f(degreecus)·

- In = network of size e



Example : f = 1 (Random recursive free)
-

o



SIMULATION (n = 3000 ? )



Example f(k) =R Preferential attachment
-

O



Simulation (n = 5000)



Formal setup (Bubeck,Devroye,Lugosi Mossel,Miklos, Jog, Loh, . . . )

Setup:

G: space of equivalence classes (upto isomorphisms) of finite unlabelled graphs.

For finite labelled graph G: G� for the isomorphism class of G in G.

Root finding algorithm: Fix K � 1 and a mapping HK on G that takes an input finite
unlabelled graph g 2 G and outputs a subset of K vertices from g.

Root finding algorithms
Let {Gn : n � 0} be a sequence of growing random networks. Fix 0 < " < 1 and K � 1. A
mapping HK is called a budget K root finding algorithm with error tolerance " for the sequence of
networks if,

lim inf
n!1

P(1 2 HK (G�
n )) � 1 � ".

Question: can we choose K independent of n? Dependence on "?
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class of seed detection algorithms

- Centrality based measures

- for each vertex obtain some measure of
centrality.

so collection of numbers [P()
: v= vertex in En3

- Example :
- Degree centrality : $14) = degree ofa
- zigen-vector centrality
- Centroid or Jordan centrality



ALGORITHM

- Suppose budget = K

- Output the "top"/vertices(Could
be smallest or

largest depending
on the measure)

- say that above has error tolerance E if

lim IP(seed E outputed set of In-



Fundamentalquestions

- for given error
tolerance &(e .g . E =

- 01)

can we select K independent of n= size of
network ?

-

How da K = K(E) depend on E ?

- to t0



Related notion: Robustness (Morters-Dietrich; Jog-Loh)

Persistence
Fix K � 1 and a network centrality measure  . For a family of network models {Gn : n � 1} say
that this sequence is ( ,K ) persistent if 9 n⇤ < 1 a.s. such that for all n � n⇤ the optimal K
vertices (v1, (G�

n ), v2, (G�
2 ), . . . , vK , (G�

n )) remain the same and further the relative ordering
amongst these K optimal vertices remains the same.

Example: If degree centrality was persistent this implies, the identity of the maximal degree vertex
becomes fixed within finite time and no other vertex can overtake the degree of this vertex after
this time.

Such phenomenon once again a hallmark of long range dependence.
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Jordan or centroid centrality*

$2) = size of the largest
subterr of a child

of o

①(v)=9

* Only works for frees. First analysed
by Bubeck-Devroye

- Lugosi .



canical







Disadvantages of Centroid centrality

Essentially need quite precise information of entire network

Natural question: How do more local measures like degree centrality perform? Does there
exist a persistent hub (i.e. maximal degree vertex fixates within finite time)?

Fake popularity: Suppose i-th vertex enters the system with mi edges that it attaches to the
current existing system (again with popularity of vertices measured via some function f ).
How quickly does mi " 1 to break persistence phenomenon?
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Assumptions and notation

f⇤ := inf i�0 f (i) > 0; further at most linear growth f (i)  Cf (i).
P1

i=0
1

f (i) = 1.

�k (x) =
R x

0
1

f k (z)dz.

K(t) = �2 � ��1
1 (t), t � 0.

dmax (n) := max0kn dk (n).

Index of the maximal degree:

I⇤
n := inf{0  i  n : di (n) � dj (n) for all j  n}.
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Persistence of hubs

Banerjee + B(2020)
Under a few technical assumptions on f and f is increasing:

Suppose �2(1) < 1 (e.g. f (k) = k↵ for ↵ 2 (1/2, 1]) and that lim supn!1
�1(mn)
log sn

 1
8Cf

.

Then a persistent hub emerges almost surely in the random graph sequence

Do not need increasing assumption for trees.
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Lack of persistence

Banerjee + B(2020)

Assume �2(1) = 1 (e.g. f (k) = k↵ for ↵ 2 (0, 1/2)) and (we are working in the tree case)
and f (k) ! 1 as k ! 1. Then index of maximal degree satisfies:

log I⇤
n

K
⇣

1
�⇤ log n

⌘ P�!
�⇤2

2
, as n ! 1.

where �⇤ is the Malthusian rate of growth of the continuous time embedding.

For f (k) = k↵ for ↵ 2 (0, 1/2),

log I⇤
n

(log n)
1�2↵
1�↵

P�!
(�⇤)

1
1�↵

2
, as n ! 1.

Inspired by Morters and Dietrich who proved similar results for a different evolving network
model.
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ANY         
QUESTIONS ?

Thank you for your attention
!


