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The limit as a Gaussian field

The local limit of random eigenfunctions of ∆ as λ→∞ is
given by a Gaussian field φ of covariance

Cov[φ(x), φ(y)] = J0(‖y − x‖)

The covariance oscillates, and decays as 1/
√
‖y − x‖.
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Local limit on the sphere
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One large connected component
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Random polynomial

Define a random homogeneous polynomial on R3 by

Pd(X) =
∑
|I|=d

aI

√
(d+ 2)!

I!
XI

where the aI are i.i.d. Gaussians.

Restrict it to the unit sphere.
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Restriction to the sphere (d=30)

12/44



Restriction to the sphere (d=100)
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Restriction to the sphere (d=200)
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Restriction to the sphere (d=1000)
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Restriction to the sphere (d=5000)
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Restriction to the sphere (d=10000)
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Restriction to the sphere (d=20000)
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The limit as a Gaussian field

The limit is a stationary centered Gaussian field ψ on R2, with
covariance given by

Cov[ψ(x), ψ(y)] = exp(−‖y − x‖2/2).

In particular, the covariance is positive and decays very fast.
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Local limit as d→∞
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The limit as a Gaussian field

Qd(x, y) =
∑
i+j6d

aij

√
(d+ 2)!

i!j!(d− i− j)!
xiyj

Rescale by a factor
√
d:

Qd(x/
√
d, y/

√
d) '

∑
i+j6d

aij√
i!j!
xiyj

In the limit d→∞:

ψ(x, y) =
∑
i,j>0

aij√
i!j!
xiyj
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Comparison between the two models
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A large connected component in ψ
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The same, and a critical percolation cluster
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The Bogomolny-Schmidt conjecture

Conjecture
The nodal lines of φ (and ψ) converge, in the scaling limit, to
the same conformally invariant object as interfaces of critical
percolation; in particular, asymptotic crossing probabilities
are given by Cardy’s formula.
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Percolation



Percolation (p = 0.3)
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Percolation (p = 0.4)
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Percolation (p = 0.45)
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Percolation (p = 0.5)
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Percolation (p = 0.55)
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Percolation (p = 0.6)
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Percolation (p = 0.7)
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Percolation : classical results

• Kesten (1980) : pc = 1/2
• For p < pc, sub-critical regime :

• All clusters are a.s. finite
• P[0←→ x] ≈ exp(−λp‖x‖)
• Largest cluster in Λn has diameter ≈ log n

• For p > pc, super-critical regime :
• There exists a.s. a unique infinite cluster
• P[0←→ x, |C(x)| <∞] ≈ exp(−λp‖x‖)
• Largest finite cluster in Λn has diameter ≈ log n

• At p = pc, critical regime :
• All clusters are a.s. finite
• P[0←→ x] ≈ ‖x‖−5/24

• Largest cluster in Λn has diameter ≈ n
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Our aim

We want to show in as much generality as possible that level
sets of continuous random fields exhibit the same kind of
phase transition at level 0.

To do that: show that the level set of level 0 looks qualitatively
much like critical percolation (kind of “weak
Bogomolny-Schmidt”) as a first step.

Note: Muirhead, Rivera, Vanneuville and Köhler-Schindler show
that 0 is indeed the critical level under minimal assumptions
(in particular, negative correlations are not excluded).
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Relevant features of critical percolation (RSW estimates)

Theorem (Box-crossing property (BXP))
For every λ > 0 there exists c ∈ (0, 1) such that for all n large
enough,

c 6 Ppc [LR(λn,n)] 6 1− c.

Theorem (Arm probability estimates (WB))
There exists K > 0 such that for every n,

Ppc [0←→ ∂Λn] 6 Kn−1/K ,

Ppc [0
6←→ ∂Λn] 6 Kn−2−1/K

BG2016: get BXP and WB for Bargman-Fock field; aim is to prove
them for general fields.
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Russo-Seymour-Welsh



Russo-Seymour-Welsh for critical percolation

Theorem (RSW)
For every λ > 0 there exists c ∈ (0, 1) such that for all n large
enough,

c 6 Ppc [LR(λn,n)] 6 1− c.

The case λ = 1 is easy by duality; it is enough to know how the
estimate for one value of λ > 1 and then to glue the pieces.
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Russo-Seymour-Welsh: proof (long rectangles by FKG)

Rh
2Rh

1
RRv

2

π(R) > π(R1)×
1
2
× π(R2)× · · ·
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Russo-Seymour-Welsh: proof (λ = 3/2)
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Russo-Seymour-Welsh for the field ψ

Main tools used are decorrelation and the FKG inequality:
increasing events are positively correlated.

Theorem (B., Gayet, 2017)
The field ψ satisfies RSW.

A few consequences:

• The set {z : ψ(z) > 0} has no unbounded component
• Neither do {z : ψ(z) < 0} and {z : ψ(z) = 0}
• The universal critical exponents are the same as for
percolation

• ψ = 0 is the critical level [Rivera-Vanneuville]
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Negatively correlated discrete fields



Russo-Seymour-Welsh along families of models

Theorem (B., Gayet — WIP)
Let (Pu) be a one-parameter family of discrete site models
satisfying the following assumptions:

• symmetry and self-duality;
• uniformly good decorrelation;
• the Gibbs property;
• RSW estimates at parameter u = 0.

Then, RSW estimates hold uniformly for all u ∈ (−ε, ε).

This applies in particular to Ising with possibly negative β.
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Key step in the proof
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Key step in the proof

Lemma (sketch)

π(L) > π(R1)π(R2)− 3θ(`, L)− β(`, L)

with the following quantities in the error term:

• θ(`, L) is the smallest total variation distance between our
model and an `-dependent model inside the box of size L

• β(`, L) is an upper bound on the probability that a quad
between scales ` and L is not crossed by an open path (we
are happy if it behaves like (`/L)−η for some positive η)

Then, assume RSW at one scale, estimate β at the next scale,
and use the estimate to obtain RSW at the next scale.
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More detail on the error term β

• A quad is a simply connected region in the plane with two
marked intervals along its boundary; it is crossed by a
configuration if these two intervals are connected by an
open path contained in the quad;

• Q(r,R, L) is the collection of all quads contained in the
box ΛL, and crossing some annulus of radii r and R;

• Q(r,R, L, L′) is the collection of all “stochastic” algorithms
on ΛL′ returning either a quad in Q(r,R, L) containing no
revealed bit, or ∅; these are maps

{±}ΛL′ → Q(r,R, L)

• The bad set B(Φ) of an algorithm Φ ∈ Q(r,R, L, L′) is the
collection of all configurations ω on ΛL′ for which Φ(ω) is
(nonempty and) crossed
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More detail on the error term β

• The badness of Φ, relative to a probability measure P on
configurations, is P[B(Φ)] i.e. the probability that Φ returns
a quad that happens to be crossed

• βP(r,R, L, L′) is the largest of all the badnesses of all
elements of Q(r,R, L, L′) relative to P. It depends
continuously on P (for total variation)

• If P has the Gibbs property, βP(r,R, L, L′) = βP(r,R, L, L′′) as
soon as both L′ and L′′ are larger than L

• The model is (L, η)-good if

∀r,R < L, βP(r,R, L) 6 η−1(r/R)η

• Main scheme: for large L, (L, η)-good =⇒ (L1+c, η)-good
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