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Q: Which graphs are reconstructible?

D
( )

=
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Conjecture (Kelly-Ulam 1941). Every graph with at least 3 vertices is reconstructible.

There are many partial results reconstructing parameters and classes such as:

• # vertices

• # edges, degree sequence, regular graphs, subgraph counts, connectedness,

disconnected graphs, trees (Kelly 1942, 1957)

• connectivity, unicyclic graphs (Manvel 1969, 1976)

• Tutte poly, chromatic poly, characteristic poly (Tutte 1967, 1979)

• outerplanar graphs (Giles 1974) maximal planar graphs (Fiorini, Lauri 1981)

• planarity (Bilinski, Kwon, Yu 2006)

Also verified for graphs on up to 13 vertices (McKay 2021).
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From literature

Example:

• # vertices = 3 + 1 = 4

• # edges = 8
4−2

= 4

• Degrees are 2, 2, 2, 2

So G ∼= C4!
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Type 1: Changing up the definition of a card

• Vertex reconstruction

– Card: delete one vertex and incident edges

– (Kelly-Ulam 1941) Every graph with at least 3 vertices is (vertex-) recon-

structible

• Edge reconstruction

– Card: delete one edge

– (Harary 1964) Every graph with at least 4 edges is edge-reconstructible

• Switching reconstruction

– Card: pick a vertex, switch neighbours and non-neighbours

– Graphs on n vertices with n 6≡ 0 (mod 4) are switching-reconstructible

– (Stanley 1985) Every graph with at least 5 vertices is switching-reconstructible
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Variations on a theme of reconstruction

Type 2: Making the classical problem harder

• Set reconstruction

– Card: delete one vertex and incident edges, Deck: set of cards

– (Harary 1964) Every graph with at least 4 vertices is set-reconstructible

• Other incomplete decks

– Given information about visible cards

– (Harary and Palmer 1966) Trees are leaf-reconstructible.

– (Bollobás 1990) Almost every graph has reconstruction number three.

• Missing cards

• Small cards
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Definition. The `-deck D`(G) of a graph G is the multiset of all induced subgraphs

of G on ` vertices. i.e. D`(G) = {G[A] : A ⊂ V (G), |A| = `} (multiset!)

Note that D(G) = Dn−1(G) where n = |V (G)|

Lemma (Kelly). Let ` ∈ N, and H be a graph on at most ` vertices. For any graph

G, the number of copies of H in G is reconstructible from D`(G). In particular, it is

given by ∑
C∈D`(G)(# copies of H in C)(

n−|V (H)|
`−|V (H)|

) .

So D`(G) determines D`−1(G) for all 2 ≤ ` ≤ n − 1.

Q: For a parameter or class that is reconstructible from D(G), what is the smallest `

for which it is also reconstructible from D`(G)?
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• (Manvel 1974) For graphs of order n ≥ 6, connected graphs, acyclic graphs,

bipartite graphs, regular graphs and unicyclic graphs are recognisable from the

(n − 2)-deck.

• Degree sequence can be reconstructed from the `-deck for ` ≥ n − 2 (Chernyak

1982), ` ≥ n − 3 (Kostochka, Nahvi, West, Zirlin 2020), asymptotic ` ∼ (1− 1/e)n

(Taylor 1990)

• Connectedness of an n-vertex graph can be reconstructed from the `-deck for

` ≥ n − 3 (Kostochka, Nahvi, West, Zirlin 2020), n − ` ≤ (1 + o(1))
√

2 log n
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(Spinoza and West 2019)

• (Giles 1976) Trees on at least 6 vertices can be reconstructed from the (n− 2)-

deck

• (McMullen and Radziszowski 2007) Every graph with 6 ≤ n ≤ 9 is reconstructible

from the (n − 2)-deck.

• (Kostochka, Nahvi, West, Zirlin 2021) 3-regular graphs are reconstructible from

the (n − 2)-deck.
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Theorem. For n ≥ 3, the degree sequence of an n-vertex graph can be reconstructed

from the `-deck for any ` ≥
√

2n log(2n).

Key algebraic tool:

Theorem (Borwein, Erdélyi and Kós). Suppose that the complex polynomial

p(z) :=
n∑
j=0

ajz
j

has k positive real roots. Then

k2 ≤ 2n log

(
|a0|+ |a1|+ · · ·+ |an|√

|a0an|

)
.
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Theorem. For n ≥ 3, the degree sequence of an n-vertex graph can be reconstructed

from the `-deck for any ` ≥
√

2n log(2n).

Key algebraic tool:

Theorem (Borwein and Ingalls). Let α, β ∈ {0, . . . , n}m be two sequences that are

not related to each other by a permutation. If(α1

j

)
+ · · ·+

(αm
j

)
=
(β1

j

)
+ · · ·+

(βm
j

)
for all j ∈ {0, . . . , r}, (1)

then r + 1 ≤
√

2n log(2m).

Idea:

• Set αi = d(vi), i ∈ [n]

• Count stars of all sizes up to K1,`−1 using Kelly’s lemma

• This reconstructs
(
α1

j

)
+ · · ·+

(
αn
j

)
for j = 0, j = 1, j ∈ {2, . . . , `− 1}
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(Results with Groenland, Johnston, Scott 2021+)

Theorem. For n ≥ 3, the degree sequence of an n-vertex graph can be reconstructed

from the `-deck for any ` ≥
√

2n log(2n).

Improves upon ` ≥ n − 2 (Chernyak), ` ≥ n − 3 (Kostochka, Nahvi, West, Zirlin),

asymptotic ` ∼ (1− 1/e)n (Taylor)

Theorem. For n ≥ 3, the connectedness of an n-vertex graph can be reconstructed

from the `-deck provided ` ≥ 9n/10.

Improves upon n − ` ≤ (1 + o(1))
√

2 log n
log(log n)

(Spinoza and West)

Theorem. For all n ≥ 3, any n-vertex tree is reconstructible from the `-deck whenever

` > 8
9
n + 4

9

√
8n + 5 + 1.

Improves upon ` ≥ n − 2 (Giles)
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Conjecture (Nýdl 1990). Trees with at least 6 vertices are reconstructible from the

`-deck whenever ` ≥ bn/2c+ 1.

Theorem (Groenland, Johnston, Scott, T. 2021+). For any n ≥ 3, any n-vertex tree

is reconstructible from the `-deck whenever ` > 8
9
n + 4

9

√
8n + 5 + 1.

Recognition
�
�
��3

Weak reconstruction
Q

Q
QQk



Small cards - specialising to trees
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Conjecture (Nýdl 1990). Trees with at least 6 vertices are reconstructible from the

`-deck whenever ` ≥ bn/2c+ 1.

Theorem (Groenland, Johnston, Scott, T. 2021+). For any n ≥ 3, any n-vertex tree

is reconstructible from the `-deck whenever ` > 8
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Q
QQk

• Enough to have ` ≥ 2n+4
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• (Kostochka, Nahvi, West, Zirlin 2021+)
In fact, ` ≥ bn/2c+ 1 is enough

High diam
�
�
�
�3

Low diam
Q
Q

Q
Qk

Extension counting

6

(Greenwell-Hemminger)
Max subgraph counting

6
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Proof outline - low diameter

Suppose the longest path has length k odd. We want k small enough that we can

see the longest path on a single card.

and

If there is only one Pk+1, we can reconstruct branches off the centre by counting

maximal copies of

Essence of Lemma (Greenwell-Hemminger). We can reconstruct the number of

maximal copies of these two subgraph types from D`(G) provided the whole subgraph

is small enough to be seen on a single card + unique extension condition.



Proof outline - low diameter

Suppose the longest path has length k odd. We want k small enough that we can

see the longest path on a single card.

+
×

For every possible rooted tree B, we count the number of branches isomorphic to B

once per longest path.

i.e. (# branches at c isomorphic to B) × (# Pk+1 in T ) which can be found by:
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Aside: extension counting

Definition. Given a graph H, a H-extension is a pair He = (H+, A) where H+ is a

graph and A ⊆ V (H+) is a subset of vertices with H+[A] ∼= H.

Special case: leaf extension

The (closed) d-ball of an induced subgraph H of a graph G is

Bd(H,G) = G[{v ∈ V (G) : dG(v,H) ≤ d}]

Let md(He, G) = number of copies of H in G whose d-ball is isomorphic (as an

H-extension) to He

Lemma. Let `, d ∈ N and let G be a graph on at least `+ 1 vertices. For any graph

H on at most `− 1 vertices, at least one of the following conditions must hold:

1. There is a copy of H in G whose d-ball in G has at least ` vertices.

2. For any H-extension He, we can reconstruct md(He, G) from the `-deck of G.
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Proof outline - high diameter

Re

R
S

Se

A good pair of
leaf extensions

To find candidates for good pairs:

• List subtrees R ⊂ T s.t. the neighbourhood around at least one copy of R in T

contains only extra one vertex and one edge.

• Look at all pairs R,S with |V (R)|+ |V (S)| = n.

To test whether Re and Se glue to form T :

#Re in T = (#Re in S) or (#Re in S +1)

The extra copy of Re given by this +1 can only come from being a good pair!

Essence of Lemma (Extension-counting). We can count subtrees R whose 1-nbhd

has exactly one extra edge and vertex (i.e. Re) provided all nbhds of copies of R are

small enough to fit on a single card.
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Missing cards

From the full deck, we can reconstruct # edges, connectedness, planarity, ...

• (Myrvold 1988) Any n − 1 cards determine the number of edges and the degree

sequence.

• (Brown, Fenner 2018) Any n − 2 cards determine the number of edges.

• (Groenland, Guggiari, Scott 2021) Any n− 1
20

√
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Theorem 1 (Groenland, Johnston, Kupavskii, Meeks, Scott, T.). For any surface

S, there is an ε > 0 such that for any n-vertex graph embeddable on S, the degree

sequence is reconstructible from any (1− ε)n cards.

• G1 = K1,p+1 tK1,p+1 tK1,p−1 and G2 = K1,p+1 tK1,p tK1,p

• Change K1,? to K2,?

Q: Can we reconstruct the degree sequence from n − 2 cards in general?


