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Abstract

We revisit the asymptotic analysis of probabilistic construction of adjacency matrices of ex-
pander graphs proposed in [4]. With better bounds we derived a new reduced sample complexity
for the number of nonzeros per column of these matrices, precisely d = O (logs(N/s)); as op-
posed to the standard d = O (log(N/s)). This gives insights into why using small d performed
well in numerical experiments involving such matrices. Furthermore, we derive quantitative
sampling theorems for our constructions which show our construction outperforming the ex-
isting state-of-the-art. We also used our results to compare performance of sparse recovery
algorithms where these matrices are used for linear sketching.

1 Introduction

Sparse binary matrices, say A ∈ {0, 1}n×N , with n� N are widely used in applications including
graph sketching [1, 21], network tomography [32, 14], data streaming [31, 25], breaking privacy
of databases via aggregate queries [19], compressed imaging of intensity patterns [16], and more
generally combinatorial compressed sensing [15, 33, 28, 8, 29, 30], linear sketching [25], and group
testing [18, 22]. In all these areas we are interested in the case where n � N , in which case A is
used as an efficient encoder of sparse signals x ∈ RN with sparsity s� n, where they are known to
preserve `1 distance of sparse vectors [7]. Conditions that guarantee that a given encoder, A, also
referred to as a sensing matrix in compressed sensing, typically include the the nullspace, coherence,
and the restricted isometry conditions, see [20] and references there in. The goal is for A to satisfy
one or more of these conditions with the minimum possible n, the number of measurements. For
uniform guarantees over all A, it has been established that n has to be Ω

(
s2
)
, but that with high

probability on the draw of random A, n can be O (s logN/n) for A with entries drawn from a
sub-gaussian distribution, see [20] for a review of such results. Matrices with entries drawn from
a Bernoulli distribution fall in the family of sub-gaussian but these are dense as opposed the the
sparse binary matrices considered here. For computational advantages, such as faster application
and smaller storage, it is advantageous to use sparse A in application [7, 4, 29].

Herein we consider the n achievable when A is an adjacency matrix of a expander graph [7],
expander graph will be defined in the next section. Hence the construction of such matrices can be
construed as either a linear algebra problem or equivalently a graph theory one (in this manuscript
we will focus more on the linear algebra discourse). There has been significant research on expander
graphs in pure mathematics and theoretical computer science, see [24] and references therein. Both
deterministic and probabilistic constructions of expander graphs have been suggested. The best
known deterministic constructions achieve n = O

(
s1+α

)
for α > 0 [23]. One the other hand random

constructions, first proven in [5], achieve the optimal n = O (s log (N/s)), precisely n = O(sd), with
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d = O (log (N/s)), where d is the left degree of the expander graph but also the number of ones
in each column of A, to be defined in the next section. However, to the best of our knowledge, it
was [4] that proposed a probabilistic construction that is not only optimal but also more suitable
to making quantitative statements where such matrices are applied.

This work follows the probabilistic construction proposed in [4] but with careful computation of

the bounds, is able to achieve n = O (s log (N/s)) with d = O
(

log(N/s)
log s

)
. We retain the complexity

of n but got a smaller complexity for d, which is novel. Related results with a similar d were derived
in [27, 2] but for structure sparse signals in the framework of model-based compressing sensing or
sketching. In that framework, one has second order information about x beyond simple sparsity,
which is first order information about x. It is thus expected and established that it is possible to
get a small n and hence a smaller d. Arguably, such a small complexity for d justifies in hindsight
fixing d to a small number in simulations with such A as in [4, 2, 29], just to mention a few.

The results derive here are asymptotic, though finite dimensional bounds follow directly. We
focus on for what ratios of the problem dimensions (s, n,N) does these results hold. There is almost
a standard way of interrogating such a question, i.e. phase transitions, probably introduced to the
compressed sensing literature by [17]. In other words, we derive sampling theorems numerically
depicted by phase transition plots about problem size spaces for which our construction holds. This
is similar to what was done in [4] but for comparison purposes we include phase transition plots
from probabilistic constructions by [11, 6]. The plots show improvement over these earlier works.
Furthermore, we show implications of our results for compressed sensing by using our results with
the phase transition framework to compare the performance of selected combinatorial compressed
sensing algorithms as is done in [4, 29].

The manuscript is organized as follows. Section 1 gives the introduction; while Section 2 sets
the notation and defines some useful terms. The main results are stated in Section 3 and the details
of the construction is given in Section 4. This is followed by a discussion in Section 5 about our
results, comparing them to existing results and using the results to compare the performance of
some combinatorial compressed sensing algorithms. In Section 6 we state the remaining proofs of
theorems, lemmas, corollaries, and propositions used in this manuscript. After this section is the
conclusion in Section 7. We include an appendix in Section 8, where we summarized key relevant
materials from [4], and showed the derivation of some bounds used in the proofs.

2 Preliminaries

2.1 Notation

Scalars will be denoted by lowercase letters (e.g. k), vectors by lowercase boldface letters (e.g., x),
sets by uppercase calligraphic letters (e.g., S) and matrices by uppercase boldface letters (e.g. A).
The cardinality of a set S is denoted by |S| and [N ] := {1, . . . , N}. Given S ⊆ [N ], its complement
is denoted by Sc := [N ] \ S and xS is the restriction of x ∈ RN to S, i.e. (xS)i = xi if i ∈ S and
0 otherwise. For a matrix A, the restriction of A to the columns indexed by S is denoted by AS .
For a graph, Γ(S) denotes the set of neighbors of S, that is the nodes that are connected to the
nodes in S, and eij = (xi, yj) represents an edge connecting node xi to node yj . The `p norm of a

vector x ∈ RN is defined as ‖x‖p :=
(∑N

i=1 x
p
i

)1/p
.

2.2 Definitions

Below we give formal definitions that will be used in this manuscript.
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Definition 2.1 (`p-norm restricted isometry property). A matrix A satisfies the `p-norm restricted
isometry property (RIP-p) of order s and constant δs < 1 if it satisfies the following inequality.

(1− δs) ‖x‖pp ≤ ‖Ax‖pp ≤ (1 + δs) ‖x‖pp, ∀ s–sparse x. (1)

The most popular case is RIP-2 and was first proposed in [12]. Typically when RIP is mentioned
without qualification, it means RIP2. In the discourse of this work though RIP-1 is the most
relevant. The RIP says that A is a near-isometry and it is a sufficient condition to guarantee exact
sparse recovery in the noiseless setting (i.e. y = Ax); or recovery up to some error bound, also
referred to as optimality condition, in the noisy setting (i.e. y = Ax + e, where e is the bounded
noise vector). we define optimality condition more precisely below.

Definition 2.2 (Optimality condition). Given y = Ax+e and x̂ = ∆ (Ax + e) for a reconstruction
algorithm ∆, the optimal error guarantee is

‖x̂− x‖p ≤ C1σs(x)q + C2‖x‖p , (2)

where C1, C2 > 0 depend only on the RIP constant (RIC), i.e. δs, and not the problem size,
1 ≤ q ≤ p ≤ 2, and σs(x)q denote the error of the best s-term approximation in the `q-norm, that
is

σs(x)q := min
s−sparse z

‖z− x‖q . (3)

Equation (2) is also referred to as the `p/`q optimality condition (or error guarantee). Ideally,
we would like `2/`2, but the best provable is `2/`1 [12], weaker than this is the `1/`1 [7], which is
what is possible with the A considered in this work.

To aid translation between the terminology of graph theory and linear algebra we define the set
of neighbors in both notation.

Definition 2.3 (Definition 1.4 in [4]). Consider a bipartite graph G = ([N ], [n], E) where E is the
set of edges and eij = (xi, yj) is the edge that connects vertex xi to vertex yj. For a given set of left
vertices S ⊂ [N ] its set of neighbors is Γ(S) = {yj |xi ∈ S and eij ∈ E}. In terms of the adjacency
matrix, A, of G = ([N ], [n], E) the set of neighbors of AS for |S| = s, denoted by As, is the set of
rows with at least one nonzero.

Definition 2.4 (Expander graph). Let G = ([N ], [n], E) be a left-regular bipartite graph with N left
vertexes, n right vertexes, a set of edges E and left degree d. If, for any ε ∈ (0, 1/2) and any S ⊂ [N ]
of size |S| ≤ k, we have that |Γ(S)| ≥ (1−ε)d|S|, then G is referred to as a (s, d, ε)-expander graph.

The ε is referred to as the expansion coefficient of the graph. A (s, d, ε)-expander graph, also called
an unbalanced expander graph [7] or a lossless expander graph [13], is a highly connected bipartite
graph. We denote the ensemble of n × N binary matrices with d ones per column by B(N,n; d),
or just B to simplify notation. We also will denote the ensemble of n × N adjacency matrices of
(s, d, ε)-expander graphs as E(N,n; s, d, ε) or simply E.

3 Results

The main result of this work is formalized in Theorem 3.1, which is an asymptotic result, where
the dimensions grow while their ratios remain bounded. This is also referred to as the propoational
growth asymptotics [10, 3].
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Theorem 3.1. Consider ε ∈ (0, 1
2) and let d, s, n,N ∈ N, a random draw of an n × N matrix A

from B, i.e. for each column of A uniformly assign ones in d out of n positions, as (s, n,N)→∞
while s/n ∈ (0, 1) and n/N ∈ (0, 1), with probability approaching 1 exponentially, the matrix A ∈ E
with

d = O
(

log (N/s)

ε log s

)
, and n = O

(
s log (N/s)

ε2

)
. (4)

The proof of this theorem is found Section 6.1. It is worth emphasizing that the complexity of
d is novel and it is the main contribution of this work.

Furthermore, in the proportional growth asymptotics, i.e. as (s, n,N)→∞ while s/n→ ρ and
n/N → δ with ρ, δ ∈ (0, 1), for completeness, we derived a phase transition function (curve) in
δρ-space below which Theorem 3.1 is satisfied with high probability and the reverse is true. This
is formalized in the following lemma.

Lemma 3.1. Fix ε ∈ (0, 1
2) and let d, s, n,N ∈ N, as (s, n,N) → ∞ while s/n → ρ ∈ (0, 1) and

n/N → δ ∈ (0, 1) then for ρ < (1− γ)ρBT (δ; d, ε) and γ > 0, a random draw of A from B implies
A ∈ E with probability approaching 1 exponentially.

The proof of this lemma is given in Section 6.2. The phase transition function ρBT (δ; d, ε) turned
out to be significantly higher that those derived from existing probabilistic constructions, hence
our results are significant improvement over earlier works. This will be graphically demonstrated
with some numerical simulations in Section 5.

4 Construction

The standard probabilistic construction is for each column of A to uniformly assign ones in d out of
n positions; while the standard approach to derive the probability bounds is to randomly selected
s columns of A indexed by S and compute the probability that |As| < (1− ε)ds, then do a union
bound over all sets S of size s. Our work in [4] computed smaller bounds than previous works based
on a dyadic splitting of S and derived the following bound. We changed the notation and format
of Theorem 1.6 in [4] slightly to be consistent with the notation and format in this manuscript.

Theorem 4.1 (Theorem 1.6, [4]). Consider d, s, n,N ∈ N, fix S with |S| ≤ s, let an n×N matrix
A be drawn from B, then

Prob (|As| ≤ as) < pn(s, d) · e[n·Ψn(as,...,a1)] (5)

with a1 := d, and the functions defined as

pn(s, d) =
2

25
√

2πs3d3
, and (6)

Ψn (as, . . . , a1) =
1

n

[
3s log(5d) +

∑
i∈Ω

s

2i
ψi

]
, for Ω = {2j}log2(s)−1

j=0 , (7)

where

ψi = (n− ai) · H
(
a2i − ai
n− ai

)
+ ai · H

(
a2i − ai
ai

)
− n · H

(ai
n

)
, (8)

and H(·) is the Shannon entropy in base e logarithms, and the index set Ω = {2j}log2(s)−1
j=0 .
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a) If no restriction is imposed on as then the ai for i > 1 take on their expected value âi given
by

â2i = âi

(
2− âi

n

)
, for i ∈ {2j}log2(s)−1

j=0 . (9)

b) If as is restricted to be less than âs, then the ai for i > 1 are the unique solutions to the
following polynomial system

a3
2i − 2aia

2
2i + 2a2

i a2i − a2
i a4i = 0, for i ∈ {2j}log2(s)−2

j=0 , (10)

with a2i ≥ ai for each i.

In this work, based on the same approach as in [4], we derive new expressions for the pn(s, d)
and Ψn (as, . . . , a1) in Theorem 4.1, i.e. (6) and (7) respectively, and provide a simpler bound for
the improved expression of Ψn (as, . . . , a1).

Lemma 4.1. Theorem 4.1 holds with the functions

pn(s, d) = 2−3s9/2e1/4 , (11)

Ψn (as, . . . , a1) =
1

n

[
3 log 2

2
log2

2 s+

(
log2 s−

3

2

)
log as +

∑
i∈Ω

s

2i
ψi

]
, for Ω = {2j}log2(s)−1

j=0 .

(12)

The proof of the lemma is given in Section 6.3. Asymptotically, the argument of the exponential
term in the bound of the probability in (5) of Theorem 4.1, i.e. Ψn (as, . . . , a1) in (12) is more
important than the polynomial pn(s, d) in (11) since the exponential factor will dominate the
polynomial factor. The significance of the lemma is that Ψn (as, . . . , a1) in (12) is smaller than
Ψn (as, . . . , a1) in (7) since 3 log 2

2 log2
2 s +

(
log2 s− 3

2

)
log as in (12) is asymptotically smaller than

3s log(5d) in (7), because the former is O(polylogs) while the latter is O(s), since we consider
as = O(s).

Recall that we are interested in computing Prob (|As| ≤ as) when as = (1 − ε)ds. This means
having to solve the polynomial equation (10) to compute as small a bound of Ψn ((1− ε)ds, . . . , d)
as possible. We derive an asymptotic solution to (10) for as = (1 − ε)ds and use that solution to
get the following bounds.

Theorem 4.2. Consider d, s, n,N ∈ N, fix S with |S| ≤ s, for η > 0, β ≥ 1, and ε ∈
(
0, 1

2

)
, let an

n×N matrix A be drawn from B, then

Prob (|As| ≤ (1− ε)ds) < pn(s, d, ε) · exp [n ·Ψn (s, d, ε)] (13)

where

pn(s, d, ε) =
4
√
e · slog2(1−ε)+3√
26(1− ε)3d3

, (14)

Ψn (s, d, ε) ≤ − 1

2n

[
ηβ−1(β − 1)(1− ε)ds log2(s/2)− (5 log 2) log2

2 s− 2 log d log2 s
]
. (15)

The proof of this theorem is also found in Section 6.5. Since Theorem 4.2 holds for a fixed S of
size at most s, if we want this to hold for all S of size at most s, we do a union bound over all S
of size at most s. This leads to the following probability bound.
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Theorem 4.3. Consider d, s, n,N ∈ N, and all S with |S| ≤ s, for τ > 0, and ε ∈
(
0, 1

2

)
, let an

n×N matrix A be drawn from B, then

Prob (|As| ≤ (1− ε)ds) < pN (s, d, ε) · exp [N ·ΨN (s, d, ε)] , (16)

where

pN (s, d, ε) =
5 · 4
√
e · slog2(1−ε)+5/2√

210(1− ε)3d3π(1− s/N)
, (17)

ΨN (s, d, ε) ≤ − s

N
log
( s
N

)
+

s

N
− τ(1− ε)d

2 log 2

s

N
log
(s

2

)
+ o(N) . (18)

Proof. Applying the union bound over all S of size at most s to (13) leads to the following.

Prob (|As| ≤ (1− ε)ds) <
(
N

s

)
pn(s, d, ε) exp [n ·Ψn (s, d, ε)]. (19)

Then we used the upper bound of (143) to bound the combinatorial term
(
N
s

)
in (19). After some

algebraic manipulations, we separated the the polynomial term, given in (17), from the exponential
terms whose exponent is

ΨN (s, d, ε) := H
( s
N

)
+
n

N
Ψn (s, d, ε) . (20)

We upper bound ΨN (s, d, ε) in (18) by upper bounding H
(
s
N

)
with − s

N log
(
s
N

)
+ s

N and the
upper bound of Ψn (s, d, ε) in (15). The o(N) decays to zeros with N and its a result of dividing
the polylogarithmic terms of s in (15), and τ = ηβ−1(β − 1) in (15). This concludes the proof.

The next corollary easily follows from Theorem 4.3 and it is equivalent to Theorem 3.1. Its
statement is that if the conditions therein holds, then the probability that the cardinality of the set
of neighbors of any S with |S| ≤ s is less than (1− ε)ds goes to zero as dimensions of A grows. On
the other hand, the probability that the cardinality of the set of neighbors of any S with |S| ≤ s
is greater than (1− ε)ds goes to one as dimensions of A grows. Implying that A is the adjacency
matrix of a (s, d, ε)-expander graph.

Corollary 4.1. Given d, s, n,N ∈ N, and ε ∈
(
0, 1

2

)
, for d ≥ cd log(N/s)

ε log s and n ≥ cns log(N/s)
ε2

, with
cd, cn > 0. Let an n×N matrix A be drawn from B, in the proportional growth asymptotics

Prob (|As| ≤ (1− ε)ds)→ 0. (21)

Proof. It suffice to focus on the exponent of (16), more precisely on the bound of ΨN (s, d, ε) in
(18), i.e.

− s

N
log
( s
N

)
+

s

N
− τ(1− ε)d

2 log 2

s

N
log
(s

2

)
+ o(N) . (22)

We can ignore the o(N) term as this goes to zero as N grows, and show that the remaining sum is
negative. The remaining sum is

− s

N
log
( s
N

)
+

s

N
− τ(1− ε)d

2 log 2

s

N
log
(s

2

)
=

s

N

[
− log

( s
N

)
+ 1− τ(1− ε)d

2 log 2
log
(s

2

)]
. (23)
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Hence, we can further focus on the sum in the square brackets, and find conditions on d that will
make it negative. We require

− log
( s
N

)
+ 1− τ(1− ε)d

2 log 2
log
(s

2

)
< 0, ⇒ d >

2 log 2 (log (N/s) + 1)

τ(1− ε) log(s/2)
(24)

⇔ d ≥ cd log(N/s)

ε log s
, ∃ cd > 0 . (25)

Recall τ = ηβ−1(β − 1) and β is a function of ε, with β(ε) ≈ 1 + ε. Therefore, τ is a function of ε,
and τ(ε) = O(ε), hence there exists a cd > 0 for (25) to hold.

With regards to the complexity of n, we go back to the right hand side (RHS) of (24) and we

substitute Cd log(N/s)
ε log(s/2) with Cd > 0 for d in the RHS of (24) to get the following.

− log
( s
N

)
+ 1− Cdτ(1− ε) log (N/s)

2ε log 2
< 0 . (26)

Now we assume n = Cns log(N/s)
ε2

with Cn > 0 for n and substitute this in (26) to get the following.

− log
( s
N

)
+ 1− Cdτ(1− ε)εn

2Cns log 2
< 0, ⇒ n >

2Cns log 2 (log (N/s) + 1)

Cdτε(1− ε)
(27)

⇔ n ≥ cns log (N/s)

ε2
, ∃ cn > 0 . (28)

Again since τ(ε) = O(ε), hence there exists a cn > 0 for (28) to hold. The bound of n in (28) agrees
with our earlier assumption, thus concluding the proof.

5 Discussion

5.1 Comparison to other constructions

In addition to being the first probabilistic construction of adjacency matrices of expander graphs
with such a small degree, quantitatively our results compares favorably to existing probabilistic
constructions.We use the standard tool of phase transitions to compare our construction to the
construction proposed in [6] and those proposed in [11]. The phase transition curve ρBT (δ; d, ε) we
derived in Lemma 3.1 is the ρ that solves the following equation.

−ρ log (δρ) + ρ− τ(1− ε)dρ log(δρ)

2 log 2
− τε(1− ε)d

2cn log 2
+
τ(1− ε)dρ

2
= 0 , (29)

where cn > 0 is as in (28). Equation 29 comes from taking the limit, in the proportional growth
asymptotics, of the bound in (18), setting that to zero and simplifying. Similarly, for any S with
|S| ≤ s, Berinde in [6] derived the following bound on the set of neigbours of S, i.e. As.

Prob (|As| ≤ (1− ε)ds) <
(
N

s

)(
ds

εds

)(
ds

n

)εds
. (30)

We then express the bound in (30) as the product of a polynomial term and an exponential term.
A bound of the exponent is carefully derived as in the derivations above. We set the limit, in the
proportional growth asymptotics, of this bound to zero and simplify to get the following.

(εd− 1) log ρ− log δ + (1 + εd)− εd log (ε/d) = 0 . (31)
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We refer to the ρ that solves (31) as the phase transition for the construction proposed by Berinde
in [6] and denote this ρ (the phase transition function) as ρBI(δ; d, ε). Another probabilistic con-
struction was proposed by Burhman et al. in [11]. In conforminty with the notation used in this
manuscript their bound is equivalent to the following, also stated in a similar form by Indyk and
Razenshteyn in [27].

Prob (|As| ≤ (1− ε)ds) <
(
N

s

)(νεn
ds

)−εds
, (32)

where ν > 0. We again express the bound in (32) as the product of a polynomial term and an
exponential term. A bound of the exponent is carefully derived as in the derivations above. We
set the limit, in the proportional growth asymptotics, of this bound to zero and simplify to get the
following.

(εd− 1) log ρ− log δ + 1− εd log (νε/d) = 0 . (33)

Similarly, we refer to the ρ that solves (33) as the phase transition for the construction proposed by
Burhman et al. in [11] and denote this ρ as ρBM (δ; d, ε). We compute numerical solutions to (29),
(31), and (33) to derive the phase transitions ρBT (δ; d, ε), ρBI(δ; d, ε), and ρBM (δ; d, ε) respectively.
These are plotted in the left panel of Figure 1. It is clear that our construction has a much higher
phase transition than the others. Recall that the phase transition curves in these plots depict
construction of adjacency matrices of (s, d, ε)-expanders with high probability for ratios of s, n and
N (since ρ := s/n, and δ := n/N) below the curve; and the failure to construct adjacency matrices
of (s, d, ε)-expanders with high probability for ratios of s, n and N above the curve. Essentially,
the larger the area under the curve the better.

Remark 5.1. It is easy to see that ρBI(δ; d, ε) is a special case of ρBM (δ; d, ε) since the two phase
transitions will coincide, or equivalently (31) and (33) will be the same, when ν = e−1. One could
argue that Berinde’s derivation in [6] suffers from over counting.
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Figure 1: Phase transitions plots with fixed d = 25, ε = 1/6, and δ ∈
[
10−6, 1

]
on a logarithmically

spaced grid of 100 points. Left panel: A comparison of ρBT (δ; d, ε), ρBI(δ; d, ε), and ρBM (δ; d, ε),
where cn = 2. Right panel: A comparison of ρBT (δ; d, ε) denoted as ρBT2(δ; d, ε) to our previous
ρBT (δ; d, ε) denoted as ρBT1(δ; d, ε) in [4] with different values of N , (i.e. 210, 212, and 220) and
cn = 2/3.

Given that this work is an improvement of our work in [4] in terms of simplicity in comput-
ing ρBT (δ; d, ε), for completeness we compare our new phase transition ρBT (δ; d, ε) denoted as
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ρBT2(δ; d, ε) to our previous ρBT (δ; d, ε) denoted as ρBT1(δ; d, ε) in the right panel of Figure 1. Each
computation of ρBT1(δ; d, ε) requires the specification of N , which is not needed in the computation
of ρBT2(δ; d, ε), hence the simplification. However, the simplification led to a lower phase transition
as expected, which is confirmed by the plots in the right panel of Figure 1.

Remark 5.2. These simulations also inform us about the size of cn. See from the plots of
ρBT (δ; d, ε) and ρBT2(δ; d, ε) that the smaller the value of cn the higher the phase transition but
since ρBT2(δ; d, ε) has to be a lower bound of ρBT1(δ; d, ε), for values of cn much smaller than 2/3,
the lower bound will fail to hold. This informed the choice of cn = 2 in the plot of ρBT (δ; d, ε) in
the left panel of Figure 1.

5.2 Implications for combinatorial compressed sensing

When the sensing matrices are restricted to the sparse binary matrices considered in this manuscript,
compressed sensing is usually referred to as combinatorial compressed sensing a term introduced
in [7] and used extensively in [29, 30]. In this setting, compressed sensing is more-or-less equiva-
lent to linear sketching. The implications of our results on combinatorial compressed sensing are
two-fold. One is on the `1-norm RIP, we donate as RIP-1; while the second is in the comparison of
performance of recovery algorithms for combinatorial compressed sensing.

5.2.1 RIP-1

As can be seen from (2), the recovery errors in compressed sensing depend on the RIC, i.e. δs. The
following lemma deduced from Theorem 1 of [7] shows that a scaled A drawn from E have RIP
with δs = 2ε.

Lemma 5.1. Consider ε ∈ (0, 1
2) and let A be drawn from E, then Φ = A/d satisfies the following

RIP-1 condition
(1− 2ε) ‖x‖1 ≤ ‖Φx‖1 ≤ ‖x‖1, ∀ s–sparse x. (34)

The interested reader is referred to the proof of Theorem 1 in [7] for the proof of this lemma.
Key to the holding of Lemma 5.1 is the existence of (s, d, ε)-expander graphs, hence one can draw
corollaries from our results on this.

Corollary 5.1. Consider ε ∈ (0, 1
2) and let d, s, n,N ∈ N. In the proportional growth asymptotics

with a random draw of an n×N matrix A from B, the matrix Φ := A/d has RIP-1 with probability
approaching 1 exponentially, if

d = O
(

log (N/s)

ε log s

)
, and n = O

(
s log (N/s)

ε2

)
. (35)

Proof. Note that the upper bound of (34) holds trivially for any Φ = A/d where A has d ones per
column, i.e. A ∈ B. But for the lower bound of (34) to hold for any Φ = A/d, we need A to be
an (s, d, ε)-expander matrix, i.e. A ∈ E. Note that the event |As| ≥ (1− ε)ds is equal to the event
‖ASx‖1 ≥ (1− 2ε)d‖x|1, which is equivalent to ‖ΦSx‖1 ≥ (1− 2ε)‖x|1, for a fixed S, with |S| ≤ s.
For A to be in E, we need expansion for all sets S, with |S| ≤ s, i.e. A ∈ E. The key thing to
remember is that

Prob (‖Φx‖1 ≥ (1− 2ε)‖x|1) = Prob (|As| ≥ (1− ε)ds) , for all {S : |S| ≤ s} . (36)

The probability in (36) going to 1 exponentially in the proportional growth asymptotics, i.e. the
existence of A ∈ E with parameters as given in (35), is what is stated in Theorem 3.1. Therefore,
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the rest of the proof follows from the proof of Theorem 3.1, hence concluding the proof of the
corollary.

Notably, Lemma 5.1 holds with Φ having much smaller number of nonzeros per column due to
our construction. More over, we can derive sampling theorems for which Lemma 5.1 holds as thus.

Corollary 5.2. Fix ε ∈ (0, 1
2) and let d, s, n,N ∈ N. In the proportional growth asymptotics, for

any ρ < (1 − γ)ρBT (δ; d, ε) and γ > 0, a random draw of A from B implies Φ := A/d has RIP-1
with probability approaching 1 exponentially.

Proof. The proof of this corollary follows from the proof of Corollary 5.1 above, and it is related
to the proof of Lemma 3.1 as the proof of Corollary 5.1 is to the proof of Theorem 3.1. The details
of the proof is thus skipped.

5.2.2 Performance of algorithms

We wish to compare the performance of selected combinatorial compressed sensing algorithms in
terms of the possible problem sizes (s, n,N) that these algorithms can reconstruct sparse/compressible
signals/vectors up to their respective error guarantees. The comparison is typically done in the
framework of phase transitions, which depict a boundary curve where ratios of problems sizes above
this curve are recovered with probability approaching 0 exponentially; while problems sizes below
the curve are recovered with probability approaching 1 exponentially. The list of combinatorial
compressed sensing algorithms includes Expander Matching Pursuit (EMP) [26], Sparse Matching
Pursuit [9], Sequential Sparse Matching Pursuit (SSMP) [8], Left Degree Dependent Signal Recov-
ery (LDDSR) [33], Expander Recovery (ER) [28], Expander Iterative Hard-Thresholding (EIHT)
[20, Section 13.4], and Expander `0-decoding (ELD) with both serial and parallel versions [29]. For
reason similar to those used in [4, 29], we selected out of this list four of the algorithms: (i) SSMP,
(ii) ER, (ii) EIHT, (iv) ELD. Descriptions of these algorithms is skipped here but the interested
reader is referred to the original papers or their summarized details in [4, 29]. We were also curi-
ous as to how `1-minimization’s performance compares to these selected combinatorial compressed
sensing algorithms, since `1-minimization (`1-min) can be used to solve the combinatorial problem
solved by these algorithms, see [7, Theorem 3].

The phase transitions are based on conditions on the RIC of the sensing matrices used. Conse-
quent to Lemma 5.1, this becomes conditions on the expansion coefficient (i.e. ε) of the underlying
(s, d, ε)-expander graphs of the sparse sensing matrices used. Where this condition on ε is not
explicitly given it is easily deducible from the recovery guarantees given for each algorithms. The
conditions are summarized in the table below.

Table 1: Recovery conditions on ε

Algorithm
Theoretical values Computational values

Condition Sparsity Condition Sparsity

SSMP [8] εk < 1/16 k = (c+ 1)s, c > 1 εk = 1/16− e k = d(2 + e)se, k = 3s

ER [28] εk < 1/4 k = 2s εk = 1/4− e k = 2s

EIHT [20] εk < 1/12 k = 3s εk = 1/12− e k = 3s

ELD [29] εk ≤ 1/4 k = s εk = 1/4 k = s

`1-min [7] εk < 1/6 k = 2s εk = 1/6− e k = 2s

The theoretical values are what will be found in the reference given in the table; while the com-
putational values are what we used in our numerical experiments to compute the phase transition



expander asymptotics 11

curves of the algorithms. The value for e was set to be 10−15, to make the εk as large as possible
under the given condition. With these values we computed the phase transitions in Figure 2.

0 0.2 0.4 0.6 0.8 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.2 0.4 0.6 0.8 1

0

0.002

0.004

0.006

0.008

0.01

0.012

Figure 2: Phase transitions plots of algorithms with fixed d = 25, ε as in the fourth column of
Table 1 with e = 10−15, cn = 2 and δ ∈

[
10−6, 1

]
on a logarithmically spaced grid of 100 points.

Left panel: k = 3s for ρSSMP (δ; d, ε). Right panel: k = d(2 + e)se for ρSSMP (δ; d, ε).

The two figures are the same except for the different sparsity value used. The performance of
the algorithms in this framework are thus ranked as follows: ELD, ER, `1-min, EIHT, and SSMP.

Remark 5.3. We point out that there are many way to compare performance of algorithms, this is
just one way. For instance, we can compare runtime complexities or actual computational runtimes
as in [29]; phase transitions of different probabilities, here the probability of recovery is 1 but this
could be set to something else, like 1/2 in the simulations in [29]; one could also compare number
of iterations and iteration cost as was also done in [29].

6 Proofs

6.1 Theorem 3.1

The proof of the theorem follows trivially from Corollary 4.1. Based on (21) of Corollary 4.1

we deduce that A ∈ E with probability approaching 1 exponentially with d ≥ cd log(N/s)
ε log s and

n ≥ cns log(N/s)
ε2

, with cd, cn > 0, hence concluding the proof. �

6.2 Lemma 3.1

The phase transition curve ρBT (δ; d, ε) is based the bound of the exponent of (16), which is

− s

N
log
( s
N

)
+

s

N
− τ(1− ε)d

2 log 2

s

N
log
(s

2

)
+ o(N) . (37)

In the propotional growth asymptotics (s, n,N)→∞ while s/n→ ρ ∈ (0, 1) and n/N → δ ∈ (0, 1).
This implies that o(N)→ 0 and (37) becomes

−ρ log (δρ) + ρ− τ(1− ε)dρ log(δρ)

2 log 2
− τε(1− ε)d

2cn log 2
+
τ(1− ε)dρ

2
, (38)
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where cn > 0 is as in (28). If (38) is negative then as the problem size grows we have

Prob (|As| ≤ (1− ε)ds)→ 0. (39)

Therefore, setting (38) to zero and solving for ρ gives us a critical ρ below which (38) is negative and
positive above it. The critical ρ is the phase transition ρ, i.e. ρBT (δ; d, ε), where below ρBT (δ; d, ε)
is parameterized by the γ in the lemma. This concludes the proof. �

6.3 Lemma 4.1

By the dyadic splitting proposed in [4], we let As = A1
d s
2
e ∪ A

2
b s
2
c such that |As| =

∣∣∣A1
d s
2
e ∪A

2
b s
2
c

∣∣∣
and therefore

Prob (|As| ≤ as) = Prob
(∣∣∣A1

d s
2
e ∪A

2
b s
2
c

∣∣∣ ≤ as) (40)

=

as∑
ls=d

Prob
(∣∣∣A1

d s
2
e ∪A

2
b s
2
c

∣∣∣ = ls

)
(41)

In (41) we sum over all possible events, i.e. all possible sizes of ls. In line with the splitting
technique, we simplify the probability to the product of the probabilities of the cardinalities of∣∣∣A1
d s
2
e

∣∣∣ and
∣∣∣A2
b s
2
c

∣∣∣ and their intersection. Using the definition of Pn(·) in Lemma 8.2 (Appendix

8.1), thus leads to the following.

Prob (|As| ≤ as) =

as∑
ls=2d

ad s2 e∑
l1d s2 e

=d

ab s2 c∑
l2b s2 c

=d

Pn

(
ls, l

1
d s
2
e, l

2
b s
2
c

)
× Prob

(∣∣∣A1
d s
2
e

∣∣∣ = l1d s
2
e

)
Prob

(∣∣∣A2
b s
2
c

∣∣∣ = l2b s
2
c

)
. (42)

In a slight abuse of notation we write
∑
lj

j∈[m]

to denote applying the sum m times. We also drop

the limits of the summation indices henceforth. Now we use Lemma 8.1 in Appendix 8.1 to simplify
(42) as follows.

∑
l
j1
Q0

j1∈[q0]

∑
l
j2
Q1

j2∈[q1]

∑
l
j3
R1

j3∈[r1]

Pn

(
lj1Q0

, l2j1−1

dQ0
2
e
, l2j1
bQ0

2
c

) q1∏
j2=1

Prob
(∣∣∣Aj2Q1

∣∣∣ = lj2Q1

) q1+r1∏
j3=q1+1

Prob
(∣∣∣Aj3R1

∣∣∣ = lj3R1

)
.

(43)

Now we proceed with the splitting - note (43) stopped only at the first level. At the next level,
the second, we will have q2 sets with Q2 columns and r2 sets with R2 columns which leads to the
following expression.

∑
l
j1
Q0

j1∈[q0]

∑
l
j2
Q1

j2∈[q1]

∑
l
j3
R1

j3∈[r1]

Pn

(
lj1Q0

, l2j1−1

dQ0
2
e
, l2j1
bQ0

2
c

)[ ∑
l
j4
Q2

j4∈[q2]

∑
l
j5
R2

j5∈[r2]

Pn

(
lj2Q1

, l2j2−1

dQ1
2
e
, l2j2
bQ1

2
c

)

× Pn

(
lj3R1

, l2j3−1

dR1
2
e
, l2j3
bR1

2
c

) q2∏
j4=1

Prob
(∣∣∣Aj4Q2

∣∣∣ = lj4Q2

) q2+r2∏
j5=q2+1

Prob
(∣∣∣Aj5R2

∣∣∣ = lj5R2

)]
. (44)
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We continue this splitting of each instance of Prob(·) for dlog2 se − 1 levels until reaching sets
with single columns where, by construction, the probability that the single column has d nonzeros
is one. Note that at this point we drop the subscripts ji, as they are no longer needed. This process
gives a complicated product of nested sums of Pn(·) which we express as

∑
lQ0

∑
lQ1

∑
lR1

Pn

(
lQ0 , ldQ0

2
e, lbQ0

2
c

)[∑
lQ2

∑
lR2

Pn

(
lQ1 , ldQ1

2
e, lbQ1

2
c

)
Pn

(
lR1 , ldR1

2
e, lbR1

2
c

)[
· · ·

× · · ·

[ ∑
lQdlog2 se−1

Pn (l4, l2, l2) Pn (l3, l2, d) Pn (l2, d, d)

]
· · ·

]
. (45)

Using the expression for Pn(·) in (133) of Lemma 8.2 (Appendix 8.1) we bound (45) by bounding
each Pn(·) as in (134) with a product of a polynomial, π(·), and an exponential with exponent ψn(·).

∑
lQ0

∑
lQ1

∑
lR1

π
(
lQ0 , ldQ0

2
e, lbQ0

2
c

)
e
ψn

(
lQ0

,l
dQ0

2 e
,l
bQ0

2 c

)
·

[∑
lQ2

∑
lR2

π
(
lQ1 , ldQ1

2
e, lbQ1

2
c

)
×

e
ψn

(
lQ1

,l
dQ1

2 e
,l
bQ1

2 c

)
π
(
lR1 , ldR1

2
e, lbR1

2
c

)
· e
ψn

(
lR1

,l
dR1

2 e
,l
bR1

2 c

)[
· · · ×

[ ∑
lQdlog2 se−1

π (l4, l2, l2)

× eψn(l4,l2,l2)π (l3, l2, d) eψn(l3,l2,d)π (l2, d, d) · eψn(l2,d,d)

]
· · ·

]
. (46)

Using Lemma 8.4 in Appendix 8.1 we maximize the ψn(·) and hence the exponentials in (46).
We maximize each ψn(·) by choosing l(·) to be a(·). Then (46) will be upper bounded by the
following.

∑
lQ0

∑
lQ1

∑
lR1

π
(
lQ0 , ldQ0

2
e, lbQ0

2
c

)
e
ψn

(
aQ0

,a
dQ0

2 e
,a
bQ0

2 c

)
·

[∑
lQ2

∑
lR2

π
(
lQ1 , ldQ1

2
e, lbQ1

2
c

)
×

e
ψn

(
aQ1

,a
dQ1

2 e
,a
bQ1

2 c

)
π
(
lR1 , ldR1

2
e, lbR1

2
c

)
· e
ψn

(
aR1

,a
dR1

2 e
,a
bR1

2 c

)[
. . .×

[ ∑
lQdlog2 se−1

π (l4, l2, l2)

× eψn(a4,a2,a2)π (l3, l2, d) eψn(a3,a2,d)π (l2, d, d) · eψn(a2,d,d)

]
. . .

]
. (47)

We then factor the product of exponentials. This product becomes an exponential where expo-
nent is the summation of the ψn(·), we will denote this exponent as Ψ̃n (as, . . . , a2, d). Then (47)
simplifies to the following.
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eΨ̃n(as,...,a2,d) ·
∑
lQ0

∑
lQ1

∑
lR1

π
(
lQ0 , ldQ0

2
e, lbQ0

2
c

)
·

[∑
lQ2

∑
lR2

π
(
lQ1 , ldQ1

2
e, lbQ1

2
c

)
×

π
(
lR1 , ldR1

2
e, lbR1

2
c

)
·

[
. . .×

[ ∑
lQdlog2 se−1

π (l4, l2, l2)π (l3, l2, d)π (l2, d, d)

]
. . .

]
. (48)

We denote the factor multiplying the exponential term by Π (ls, . . . , l2, d), therefore we have the
following bound.

Prob (|As| ≤ as) ≤ Π (ls, . . . , l2, d) · exp
(

Ψ̃n (as, . . . , a2, d)
)
, (49)

where Ψ̃n (as, . . . , a2, d) is exactly Ψn (as, . . . , a2, d) given by (78) in [4, Proof of Theorem 1.6].
Consequently, we state the bound of Ψ̃n (as, . . . , a2, d) and skip the proof, which is as thus.

Ψ̃n (as, . . . , a2, d) ≤
∑
i∈Ω

s

2i
ψi, for Ω = {2j}log2(s)−1

j=0 , (50)

where ψi is given by (8). The upper bound of Π (ls, . . . , l2, d) is given by the following proposition.

Proposition 6.1. Given ls ≤ as, lds/2e ≤ ads/2e, · · · , l2 ≤ a2, we have

Π (ls, . . . , l2, d) ≤ 2−3 · e
1
4 · s

3
2

log2 s+
9
2 · (as)log2 s− 3

2 . (51)

The proof of the proposition is found in Section 6.4. Taking log of right hand side of (51) and
then exponentiating the results yields

Π (ls, . . . , l2, d) ≤ exp

[
1

4
− 3 log 2 +

(
9

2
+

3

2
log2 s

)
log s+

(
log2 s−

3

2

)
log as

]
(52)

= 2−3s9/2e1/4 · exp

[
3

2
log2 s log s+

(
log2 s−

3

2

)
log as

]
(53)

= 2−3s9/2e1/4 · exp

[
3 log 2

2
log2

2 s+

(
log2 s−

3

2

)
log as

]
. (54)

Combining (54) and (50) gives the following bound for (49)

Prob (|As| ≤ as) ≤ 2−3s9/2e1/4 · exp

[
3 log 2

2
log2

2 s+

(
log2 s−

3

2

)
log as + Ψ̃n (as, . . . , a2, d)

]
.

(55)
It follows therefore that pn(s, d) = 2−3s9/2e1/4 as in (11) and the exponent in (55) is n·Ψn (as, . . . , a1),
which implies (12). This concludes the proof of the lemma. �

6.4 Proposition 6.1

By definition, from (48), we have

Π (ls, . . . , l2, d) :=
∑
lQ0

∑
lQ1

∑
lR1

π
(
lQ0 , ldQ0

2
e, lbQ0

2
c

)
·

[∑
lQ2

∑
lR2

π
(
lQ1 , ldQ1

2
e, lbQ1

2
c

)
×

π
(
lR1 , ldR1

2
e, lbR1

2
c

)
·

[
· · · ×

[ ∑
lQdlog2 se−1

π (l4, l2, l2)π (l3, l2, d)π (l2, d, d)

]
· · ·

]
. (56)
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From (138) we see that π(·) is maximized when all the three arguments are the same and using
Corollary 8.1 we take largest possible arguments that are equal in the range of the summation.
Before we write out the resulting bound for Π (ls, . . . , l2, d), we simplify notation by denoting
π(x, x, x) as π(x), and noting that Qdlog2 se−1 = 2. Therefore, the bound becomes the following.

Π (ls, . . . , l2, d) ≤
∑
lQ0

∑
lQ1

∑
lR1

π (lQ0)

[∑
lQ2

∑
lR2

π (lQ1)

× π (lR1)

[
· · ·

[∑
l2

π (l4)π (l3)π (l2)

]
· · ·

]
. (57)

Properly aligning the π(·) with their relevant summations simplifies the right hand side (RHS) of
(57) to the following.∑

lQ0

π (lQ0)

 ·
∑
lQ1

π (lQ1)

 ·
∑
lR1

π (lR1)

× · · · ×
∑

l4

π (l4)

 ·
∑

l3

π (l3)

 ·
∑

l2

π (l2)

 . (58)

From (138) we have

π(y) := π(y, y, y) =

(
5

4

)2
√

2πy(n− y)

n
<

(
5

4

)2√
2πy . (59)

We use the RHS of (59) to upper bound each term in (58), leading to the following bound.√2π

(
5

4

)2∑
lQ0

√
lQ0

 ·
√2π

(
5

4

)2∑
lQ1

√
lQ1

 ·
√2π

(
5

4

)2∑
lR1

√
lR1

×
· · · ×

√2π

(
5

4

)2∑
l4

√
l4

 ·
√2π

(
5

4

)2∑
l3

√
l3

 ·
√2π

(
5

4

)2∑
l2

√
l2

 . (60)

For each Qi and Ri, i = 1, . . . , dlog2 se − 2, which means we have dlog2 se − 2 pairs plus one Q0,
hence (60) simplifies to the following.[

√
2π

(
5

4

)2
]2dlog2 se−3

·

∑
lQ0

√
lQ0

 ·
∑
lQ1

√
lQ1

 · · · ·
∑

l3

√
l3

 ·
∑

l2

√
l2

 (61)

≤

[
√

2π

(
5

4

)2
]2dlog2 se−3

·
(
q0
√
aQ0

)
·
(
q1
√
aQ1

)
· · ·
(
qdlog2 se−2

√
a3

)
·
(
rdlog2 se−2

√
a2

)
(62)

=

[
√

2π

(
5

4

)2
]2dlog2 se−3

·
(
q0q1r1 · · · qdlog2 se−2rdlog2 se−2

)
· (aQ0aQ1aR1 · · · a3a2)1/2 . (63)

From (61) to (62) we upper each sum by taking the largest possible value of l(·), which is a(·), and
multiplied it with the total number terms in the summation given by Lemma 8.1 in Appendix 8.1.
We did upper bound the following two terms of (63).

q0q1r1q2r2q3r3 · · · qdlog2 se−2rdlog2 se−2 ≤ slog2 s−1 , (64)

(aQ0aQ1aR1aQ2aR2aQ3aR3 · · · a3a2)1/2 ≤ 2−1 · e
1
4 · (as)log2 s− 3

2 · s
1
2

log2 s+
3
2 . (65)



expander asymptotics 16

Details of the derivation of the bounds (64) and (65) is in the Appendix 8.2. Using these bounds
from (63) we have the following upper bound for Π (ls, . . . , l2, d).

Π (ls, . . . , l2, d) ≤

[
√

2π

(
5

4

)2
]2dlog2 se−3

·
(
slog2 s−1

)
·
(

2−1 · e
1
4 · (as)log2 s− 3

2 · s
1
2

log2 s+
3
2

)
(66)

≤ 2−3 · e
1
4 · (as)log2 s− 3

2 · s
3
2

log2 s+
9
2 . (67)

From (66) to (67) we used the following upper bound.[
√

2π

(
5

4

)2
]2dlog2 se−3

≤

[
√

2π

(
5

4

)2
]2(log2 s+1)−3

≤ 42 log2 s−1 = 24 log2 s−2 = 2−2s4 . (68)

The bound (67) coincides with (51), hence concluding the proof. �

6.5 Theorem 4.2

The following lemma is a key input in this proof.

Lemma 6.1. Let 0 < α ≤ 1, and εn > 0 such that εn → 0 as n→∞. Then for as < âs,

a2i = 2ai + ca2
i , for c = −βn−1 , (69)

where

β =
1 +

√
1− 4(1− εn)2 (1− e−αd) e−αd

2(1− εn) (1− e−αd)
. (70)

The proof of the lemma is found in Section 6.6. Recall from Theorem 4.1 that

Ψn (as, . . . , a1) =
1

n

[
3 log 2

2
log2

2 s+

(
log2 s−

3

2

)
log as +

∑
i∈Ω

s

2i
ψi

]
, for Ω = {2j}log2(s)−1

j=0 , (71)

where

ψi = (n− ai) · H
(
a2i − ai
n− ai

)
+ ai · H

(
a2i − ai
ai

)
− n · H

(ai
n

)
, (72)

We use Lemma 6.1 to upper bound ψi in (72) away from zero from above as n → 0. We
formalize this bound in the following proposition.

Proposition 6.2. Let η > 0 and β > 1 as defined in Lemma 6.1. Then

ψi ≤ −aiη(β − 1)β−1
(

1− βai
n

)−1
. (73)

The proof of Proposition 6.2 is found in Section 6.7. Using the bound of ψi in Proposition 6.2,
we upper Ψ (as, . . . , a1) as follows.

Ψ (as, . . . , a1) ≤ 1

n

[
3 log 2

2
log2

2 s+

(
log2 s−

3

2

)
log as −

∑
i∈Ω

s

2i
· aiη(β − 1)

β
(
1− β ain

)] , (74)

≤ −η(β − 1)

β

∑
i∈Ω

( s
2i
· ai
n

)
+

1

n

[
3 log 2

2
log2

2 s+

(
log2 s−

3

2

)
log as

]
. (75)
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Then setting as = (1− ε)ds and substituting in (75), the factor multiplying 1
n becomes

3 log 2

2
log2

2 s+

(
log2 s−

3

2

)
log [(1− ε)ds] (76)

=
3 log 2

2
log2

2 s+ log(1− ε) log2 s+ log d log2 s+ log2 s log s− 3

2
log [(1− ε)d]− 3

2
log s (77)

=
5 log 2

2
log2

2 s+ (log2(1− ε)− 3/2) log s+ log d log2 s+ log
[
(1− ε)−3/2d−3/2

]
(78)

=
5 log 2

2
log2

2 s+ log d log2 s+ log
[
(1− ε)−3/2d−3/2

]
+ log slog2(1−ε)−3/2 . (79)

The last two terms of (79) become polynomial in s, d and ε, when exponentiated hence they are
incorporated into pn(s, d, ε) in (14), which means

pn(s, d, ε) = pn(s, d) · exp
[
log
[
(1− ε)−3/2d−3/2

]
+ log slog2(1−ε)−3/2

]
(80)

= 2−3s9/2e1/4 · (1− ε)−3/2d−3/2slog2(1−ε)−3/2 (81)

=
4
√
e · slog2(1−ε)+3√
26(1− ε)3d3

, (82)

which is (14). The first two terms of (79) will grow faster than a polynomial in s, d and ε when
exponentiated, hence they replace in (75), the factor multiplying 1

n . Therefore, (79) is modified as
thus

−η(β − 1)

β

∑
i∈Ω

( s
2i
· ai
n

)
+

1

n

[
5 log 2

2
log2

2 s+ log d log2 s

]
=: Ψn (s, d, ε) . (83)

The factor
∑

i∈Ω

(
s
2i ·

ai
n

)
in (83) is lower bounded as follows, see proof in Section 6.8.

∑
i∈Ω

( s
2i
· ai
n

)
≥ log2(s/2)

2n
(1− ε)ds . (84)

Using this bound in (83) gives (15), thus concluding the proof. �

6.6 Lemma 6.1

Recall that we have a formula for the expected values of the ai as

â2i = âi

(
2− âi

n

)
for i ∈ {2j}log2(s)−1

j=0 , (85)

which follow a relatively simple formulas, and then the coupled system of cubics as

a3
2i − 2aia

2
2i + 2a2

i a2i − a2
i a4i = 0 for i ∈ {2j}log2(s)−2

j=0 , (86)

for when the final as is constrained to be less than âs. To simplify the notation of the indexing in
(86), observe that if i = 2j for a fixed j, then 2i = 2j+1 and 4i = 2j+2. Therefore, it suffice to use
the index aj , aj+1, and aj+2 rather than ai, a2i, and a4i. Moving the second two terms in (86) to
the right and dividing the quadratic multiples we get the relation

aj+2 − 2aj+1

a2
j+1

=
aj+1 − 2aj

a2
j

, (87)
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which is the same expression on the right and left, but with j increased by one on the left. This
implies that the fraction is independent of j, so

aj+1 − 2aj
a2
j

= c , ⇒ aj+1 = aj(2 + caj) , (88)

for some constant c independent of j (though not necessarily of n). This is in fact the relation (85),
if we set c to be equal to −1/n. One can then wonder what is the behavior of c if we fix the final
as. Moreover, (88) is equivalent to

caj+1 + 1 = (caj + 1)2 , (89)

which inductively leads to

cal + 1 = (ca0 + 1)2l , l > 0, (90)

so that one has a relation of the lth stage in terms of the first stage. Note this does not require the
as to be fixed, (90) is how one simply computes all al for l > 0 once one has a0 and c. The point is
that c to match the as one has to select c appropriately. So the way we calculate c is by knowing
a0 and as, then solving (90) for l = s. Unfortunately there is not an easy way to solve for c in (90)
so we need to do some asymptotic approximation. Let’s assume that al is close to âl. So we do an
asymptotic expansion in terms of the difference from âl.

To simplify things a bit lets insert a0 = d (since a0 is a1 in our standard notation) and then we
insert what we know for âl. For âl we have c = −n−1, see (85). We then have from (90) that

al = c−1(cd+ 1)2l − c−1 and âl = −n(−d/n+ 1)2l + n. (91)

So if we write al = (1− εn)âl and consider the case of εn → 0 as n→ 0. The point of this is that
instead of working with âl we can now work in terms of εn. Setting al = (1− εn)âl gives

c−1(cd+ 1)2l − c−1 = −n(1− εn)
[
(−d/n+ 1)2l − 1

]
. (92)

We now solve for c as a function of εn and d. As εn goes to zero we should have c converging to
−n−1.

Let αn = 2l, for 0 < α ≤ 1 and c = −β(εn, d)/n, then, dropping the argument of β(·, ·), (92)
becomes

n

β

(
1− βd

n

)αn
− n

β
= n(1− εn)

(
1− d

n

)αn
− n(1− ε) . (93)

Multiplying through by β/n and performing a change of variables of k = αn, (93) becomes(
1− αβd

k

)k
− 1 = β(1− εn)

(
1− αd

k

)k
− β(1− εn) . (94)

The left hand side of (94) simplifies to

e−αβd − 1− e−αβdα2β2d2

2k
+O(k−2) . (95)

The right hand side of (94) simplifies to

β(1− εn)e−αd − β(1− εn)− β(1− εn)e−αdα2d2

2k
+O(k−2) . (96)
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Matching powers of k in (95) and (96) for k0 and k−1 yields the following.

e−αβd − 1 = β(1− εn)e−αd − β(1− εn) , and (97)

α2β2d2e−αβd = β(1− εn)α2d2e−αd . (98)

Both of which respectively simplify to the following.

e−αβd − 1 = β(1− εn)
(
e−αd − 1

)
, and (99)

βe−αβd = (1− εn)e−αd . (100)

Multiply (99) by β and subtract the two equations, (99) and (100), to get

(1− εn)
(

1− e−αd
)
β2 − β + (1− εn)e−αd = 0 . (101)

This yields

β =
1±

√
1− 4(1− εn)2 (1− e−αd) e−αd

2(1− εn) (1− e−αd)
. (102)

To be consistent with what c ought to be as εn → 0, we choose

β(εn, d) =
1 +

√
1− 4(1− εn)2 (1− e−αd) e−αd

2(1− εn) (1− e−αd)
, (103)

as required – concluding the proof. �

6.7 Proposition 6.2

We use Lemma 6.1 to express ψi in (72) as follows

ψi = −n
[
H
(ai
n

)
−H

(
ai + ca2

i

n− ai

)]
+ ai

[
H
(
ai + ca2

i

ai

)
−H

(
ai + ca2

i

n− ai

)]
(104)

= −n
[
H
(ai
n

)
−H

(
ai
n
· 1 + cai

1− ai
n

)]
+ ai

[
H (1 + cai)−H

(
ai
n
· 1 + cai

1− ai
n

)]
. (105)

Note that for regimes of small s/n considered

−β
n

= c ≤ − 1

n
, ⇒ cai ≤ −

ai
n
, and 1 + cai ≤ 1− ai

n
. (106)

We need the following expressions for the Shannon entropy and it’s first and second derivatives

H(z) = −z log z − (1− z) log(1− z), (107)

H′(z) = log

(
1− z
z

)
, and (108)

H′′(z) = − 1

z(1− z)
. (109)

But also H(z) = H(1 − z) due to the symmetry about z = 1/2. Similarly, H′′(z) is symmetric
about z = 1/2; while H′(z) is anti-symmetric, i.e. H′(z) = −H′(1 − z). Using the symmetry of
H(z) we rewrite ψi in (105) as follows.

ψi = −n
[
H
(ai
n

)
−H

(
ai
n
· 1 + cai

1− ai
n

)]
+ ai

[
H (−cai)−H

(
ai
n
· 1 + cai

1− ai
n

)]
. (110)
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From (106), we deduce the following ordering

ai
n
· 1 + cai

1− ai
n

≤ ai
n
≤ −cai ≤ 1/2 . (111)

To simplify notation, let x1 = ai
n ·

1+cai
1−ai

n

, x2 = ai
n , and x3 = −cai, which implies that x1 ≤ x2 ≤

x3 ≤ 1/2. Therefore, from (110), we have

ψi = −n [H (x2)−H (x1)] + ai [H (x3)−H (x1)] (112)

= −n [H (x2)−H (x1)] + ai [H (x3)−H (x2) +H (x2)−H (x1)] (113)

= −(n− ai) [H (x2)−H (x1)] + ai [H (x3)−H (x2)] (114)

≤ −(n− ai)(x2 − x1)H′ (x2) + ai(x3 − x2)H′ (x2) (115)

= [ai(x3 − x2)− (n− ai)(x2 − x1)]H′ (x2) . (116)

Observe that the expression in the square brackets on the right hand side of (116) is zero, which
implies that

ai(x3 − x2) = (n− ai)(x2 − x1) . (117)

This is very easy to check by substituting the values of x1, x2, and x3. So instead of bound (115),
we alternatively upper bound (114) as follows

ψi ≤ −(n− ai)(x2 − x1)H′ (ξ21) + ai(x3 − x2)H′ (ξ32) , (118)

where ξ21 ∈ (x1, x2), and ξ32 ∈ (x2, x3), which implies

ξ21 < ξ32, and H′ (ξ21) > H′ (ξ32) . (119)

Using relation (117), bound (118) simplifies to the following.

ψi ≤ −ai(x3 − x2)H′ (ξ21) + ai(x3 − x2)H′ (ξ32) (120)

= −ai(x3 − x2)
[
H′ (ξ21)−H′ (ξ32)

]
(121)

≤ −ai(x3 − x2) (ξ21 − ξ32)H′′ (ξ31) , (122)

for ξ31 ∈ (x1, x3). Since ξ21 < ξ32, we rewrite bound (122) as follows.

ψi ≤ ai(x3 − x2) (ξ32 − ξ21)H′′ (ξ31) (123)

≤ aiη(x3 − x2)H′′ (x3) , (124)

where η = ξ32 − ξ21 > 0, and the last bound is due to the fact that x3 > ξ31.
Going back to our normal notation, we rewrite bound (124) as follows.

ψi ≤ aiη
(
−cai −

ai
n

)
H′′ (−cai) (125)

= aiη
ai
n

(β − 1)
−1

β ain
(
1− β ain

) (126)

= − aiη(β − 1)

β
(
1− β ain

) , (127)

This concludes the proof. �
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6.8 Inequality 84

The series bound (84) is derived as follows.∑
i∈Ω

( s
2i
· ai
n

)
=
(s

2
· a1

n

)
+
(s

4
· a2

n

)
+ · · ·+

(s
s
·
as/2

n

)
(128)

≥
(
s

2n
· (1− ε)ds

2log2 s

)
+

(
s

4n
· (1− ε)ds

2log2(s/2)

)
+ · · ·+

(
s

sn
· (1− ε)ds

2

)
(129)

=

[(
s

2n
· 1

s

)
+

(
s

4n
· 2

s

)
+ · · ·+

(
s

sn
· 1

2

)]
(1− ε)ds (130)

=

(
1

2n
+

1

2n
+ · · ·+ 1

2n

)
(1− ε)ds =

log2(s/2)

2n
(1− ε)ds . (131)

That is the required bounds, hence concluding the proof. �

7 Conclusion

We considered the construction of sparse matrices that are invaluable for dimensionality reduc-
tion with application in diverse fields. These sparse matrices are more efficient computationally
compared to their dense counterparts also used for the purpose of dimensionality reduction. Our
construction is probabilistic based on the dyadic splitting method we introduced in [4]. By better
approximation of the bounds we achieve a novel result, which is a reduced complexity of the sparsity
per column of these matrices. Precisely, a complexity that is a state-of-the-art divided by log s,
where s is the intrinsic dimension of the problem.

Our approach is one of a few that gives quantitative sampling theorems for existence of such
sparse matrices. Moreover, using the phase transition framework comparison, our construction
is better than existing probabilistic constructions. We are also able to compare performance of
combinatorial compressed sensing algorithms by comparing their phase transition curves. This is
one perspective in algorithm comparison amongst a couple of others like runtime and iteration
complexities.

Evidently, our results holds true for the construction of expander graphs, which is a graph theory
problem and is of interest to communities in theoretical computer science and pure mathematics.
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8 Appendix

8.1 Key relevant results from [4]

In order to make this manuscript self containing we include in this section key relevant lemmas,
corollaries and definitions from [4].
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Lemma 8.1 (Lemma 2.5, [4]). Let S be an index set of cardinality s. For any level j of the dyadic
splitting, j = 0, . . . , dlog2 se − 1, the set S is decomposed into disjoint sets each having cardinality
Qj =

⌈
s
2j

⌉
or Rj = Qj − 1. Let qj sets have cardinality Qj and rj sets have cardinality Rj, then

qj = s− 2j ·
⌈ s

2j

⌉
+ 2j , and rj = 2j − qj . (132)

Lemma 8.2 (Lemma 2.3, [4]). Let B, B1, B2 ⊂ [n] where |B1| = b1, |B2| = b2, B = B1 ∪B2 and
|B| = b. Also let B1 and B2 be drawn uniformly at random, independent of each other, and define
Pn (b, b1, b2) := Prob (|B1 ∩B2| = b1 + b2 − b), then

Pn (b, b1, b2) =

(
b1

b1 + b2 − b

)(
n− b1
b− b1

)(
n

b2

)−1

. (133)

Definition 8.1. Pn (x, y, z) defined in (133) satisfies the upper bound

Pn (x, y, z) ≤ π (x, y, z) exp(ψn(x, y, z)) (134)

with bounds of π (x, y, z) given in Lemma 8.3.

Lemma 8.3. For π (x, y, z) and Pn (x, y, z) given by (134) and (133) respectively, if {y, z} < x <
y + z, π (x, y, z) is given by(

5

4

)4 [ yz(n− y)(n− z)
2πn(y + z − x)(x− y)(x− z)(n− x)

] 1
2

, (135)

otherwise π (x, y, z) has the following cases.(
5

4

)3 [y(n− z)
n(y − z)

] 1
2

if x = y > z; (136)(
5

4

)3 [(n− y)(n− z)
n(n− y − z)

] 1
2

if x = y + z; (137)(
5

4

)2 [2πz(n− z)
n

] 1
2

if x = y = z. (138)

Lemma 8.4. Define

ψn(x, y, z) := y ·H
(
x− z
y

)
+ (n− y) ·H

(
x− y
n− y

)
− n ·H

( z
n

)
, (139)

then for n > x > y we have that

for y > z ψn(x, y, y) ≤ ψn(x, y, z) ≤ ψn(x, z, z); (140)

for x > z ψn(x, y, y) > ψn(z, y, y); (141)

for 1/2 < α ≤ 1 ψn(x, y, y) < ψn(αx, αy, αy). (142)

Corollary 8.1. If n > 2y, then π(y, y, y) is monotonically increasing in y.

The following bound, used in [4], is deducible from an asymptotic series for the logarithms
Stirling approximation of the factorial (!)

16eNH(p)

25
√

2πp(1− p)N
≤
(
N

pN

)
≤ 5eNH(p)

4
√

2πp(1− p)N
. (143)
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8.2 Derivation of Inequalities

8.2.1 Inequality 64

By Lemma 8.1, the left hand side (LHS) of (64) is equal to the following.

q0 (q1r1) · (q2r2) · (q3r3) · · ·
(
qdlog2 se−2rdlog2 se−2

)
=
(
s−

⌈s
1

⌉
+ 1
)
·
(
s− 2 ·

⌈s
2

⌉
+ 2
)

×
(

2−
(
s− 2 ·

⌈s
2

⌉
+ 2
))
× · · · ×

(
s− 2dlog2 se−2 ·

⌈ s

2dlog2 se−2

⌉
+ 2dlog2 se−2

)
×
(

2dlog2 se−2 −
(
s− 2dlog2 se−2 ·

⌈ s

2dlog2 se−2

⌉
+ 2dlog2 se−2

))
. (144)

We simplify (144) to get the following.

1 ·
(
s− 2 ·

⌈s
2

⌉
+ 2
)
·
(

2 ·
⌈s

2

⌉
− s
)
·
(
s− 22 ·

⌈ s
22

⌉
+ 22

)
·
(

22 ·
⌈ s

22

⌉
− s
)
×

· · · ×
(
s− 2dlog2 se−2 ·

⌈ s

2dlog2 se−2

⌉
+ 2dlog2 se−2

)
·
(

2dlog2 se−2 ·
⌈ s

2dlog2 se−2

⌉
− s
)
. (145)

We upper bound −dze by −z and dze by z + 1 to upper bound (145) as follows.(
s− 2 · s

2
+ 2
)
·
(

2
(s

2
+ 1
)
− s
)
·
(
s− 4 · s

4
+ 2
)
·
(

4
(s

4
+ 1
)
− s
)
×

· · · ×
(
s− 2dlog2 se−2 · s

2dlog2 se−2
+ 2dlog2 se−2

)
·
(

2dlog2 se−2 · s

2dlog2 se−2
− s
)
. (146)

The bound (146) is then simplified to the following.

(2 · 2) · (4 · 4) · (8 · 8)× · · · ×
(

2dlog2 se−2 · 2dlog2 se−2
)

= 22 · 42 · 82 × · · · × 22dlog2 se−4 (147)

= 41 · 42 · 43 · · · × 4dlog2 se−2 (148)

≤ 4

(∑log2 s−1
i=1 i

)
(149)

= 4
1
2

(log2 s−1)·log2 s = 2(log2 s−1)·log2 s . (150)

In (149) we upper bound dlog2 se by log2 s + 1; while in the LHS of (150) we computed the
summation of a finite arithmetic series. After some algebraic manipulations of logarithms we end
up with the RHS of (150), which simplifies to (64).

8.2.2 Inequality 65

Again by Lemma 8.1, the left hand side (LHS) of (65), i.e. (aQ0aQ1aR1aQ2aR2aQ3aR3 · · · a3a2)1/2

is equal to the following.(
ad s

20
ead s

21
ead s

21
e−1ad s

22
ead s

22
e−1ad s

23
ead s

23
e−1 × · · · × ad s

2dlog2 se−2
ead s

2dlog2 se−2
e−1

)1/2
. (151)

Given the monotonicity of a(·) in terms of its subscripts, which indicate cardinalities of sets.
Due to the nestedness of the sets due to the dyadic splitting, we upper bound ad s

2j
e−1 by a s

2j
, and

ad s

2j
e by a s

2j
+1, resulting in the following upper bound for (151).[

asa( s
2

+1)a
s
2
a( s

4
+1)a

s
4
a( s

8
+1)a

s
8
× · · · × a( s

2dlog2 se−2
+1
)a s

2dlog2 se−2

]1/2

(152)

≤
[
asa( s

2
+1)a

s
2
a( s

4
+1)a

s
4
a( s

8
+1)a

s
8
× · · · × a( s

2log2 s−2 +1
)a s

2log2 s−2

]1/2

. (153)
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In (153) we used the fact that 2log2 s−2 is a lower bound to 2dlog2 se−2. We fix as = (1−ε)ds =: cs
and we require expansion to hold for all |S| ≤ s, i.e. as′ = cs′ for all s′ ≤ s. Thus we can re-write
(153) as follows.[

as

(cs
2

+ c
) cs

2

(cs
4

+ c
) cs

4

(cs
8

+ c
) cs

8
× · · · ×

( cs

2log2 s−2
+ c
) cs

2log2 s−2

]1/2
(154)

=
[
as

(as
2

+ c
) as

2

(as
4

+ c
) as

4

(as
8

+ c
) as

8
× · · · ×

( as
2log2 s−2

+ c
) as

2log2 s−2

]1/2
. (155)

In (155) we substitute as for cs. Next we factor as out in all the brackets to have the following.[
asas

(
1

2
+

c

as

)
as

(
1

2

)
as

(
1

4
+

c

as

)
as

(
1

4

)
as

(
1

8
+

c

as

)
as

(
1

8

)
×

· · · × as
(

1

2log2 s−2
+

c
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)
as

(
1

2log2 s−2

)]1/2

. (156)

In total we have twice (log2 s− 2) plus 1 factors of as. We use this and the fact that c/as = 1/s
to simplify (156) to (157), which further simplifies to (158) by rearranging the terms in (157).[
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. (157)
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. (158)

We focus on bounding the second line of (158), ignoring the square-root for the moment, that

is
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1
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) (
1
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+ 1
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)
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= exp
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From (159) to (161), we used simple algebra involving logarithms. Upper bounding log(1 + x) by
x, since log(1 + x) ≤ x for |x| < 1, we upper bounded the exponent involving the second log term
to upper bound (161) by the following.(
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=
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The exponent of the exponential on the right of (162) is a geometric series and this simplifies to the
LHS bound of (163). The RHS bound of (163) is due to upper bounding e1/2−2/s by e1/2. Using
the bound in (163), we upper bound (158) by the following.

[
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(164)

=
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2
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1
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2 · s
1
2

log2 s+
3
2 , (165)

which is the bound in (65), hence concluding the derivation as required.
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