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Abstract. Let A be an n by N real-valued matrix with n < N ; we count

the number of k-faces fk(AQ) when Q is either the standard N -dimensional
hypercube IN or else the positive orthant RN

+ . To state results simply, con-

sider a proportional-growth asymptotic, where for fixed δ, ρ in (0, 1), we have

a sequence of matrices An,Nn and of integers kn with n/Nn → δ, kn/n → ρ

as n → ∞. If each matrix An,Nn has its columns in general position, then

fk(AIN )/fk(IN ) tends to zero or one depending on whether ρ > min(0, 2 −
δ−1) or ρ < min(0, 2 − δ−1). Also, if each An,Nn is a random draw from a
distribution which is invariant under right multiplication by signed permuta-

tions, then fk(ARN
+ )/fk(RN

+ ) tends almost surely to zero or one depending on

whether ρ > min(0, 2 − δ−1) or ρ < min(0, 2 − δ−1). We make a variety of

contrasts to related work on projections of the simplex and/or cross-polytope.

These geometric face-counting results have implications for signal process-
ing, information theory, inverse problems, and optimization. Indeed, face

counting is related to conditions for uniqueness of solutions of underdeter-
mined systems of linear equations. Below, let A be a fixed n × N matrix,

n < N , with columns in general position.

a) Call a vector in RN
+ k-sparse if it has at most k nonzeros. For such a

k-sparse vector x0, b = Ax0 generates an underdetermined system b = Ax

having k-sparse solution. Among inequality-constrained systems Ax = b, x ≥ 0

having k-sparse solutions, the fraction having a unique nonnegative solution
is fk(ARN

+ )/fk(RN
+ ).

b) Call a vector in the hypercube IN k-simple if all entries except at most k

are at the bounds 0 or 1. For such a k-simple vector x0, b = Ax0 generates an
underdetermined system b = Ax with k-simple solution. Among inequality-

constrained systems Ax = b, x ∈ IN having k-simple solutions, the fraction

having a unique hypercube-constrained solution is fk(AIN )/fk(IN ).
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1. Introduction

There are 3 fundamental regular polytopes in RN , N ≥ 5: the hypercube IN ,
the cross-polytope CN , and the simplex TN−1. For each of these, projecting the
vertices into Rn, n < N , yields the vertices of a new polytope; in fact, up to
translation and dilation, every polytope in Rn is obtained by rotating the simplex
TN−1 and orthogonally projecting on the first n coordinates, for some choice of N
and of N -dimensional rotation. Similarly, every centro-symmetric polytope can be
generated by projecting the cross-polytope, and every zonotope by projecting the
hypercube.

1.1. Random polytopes. Choosing the projection A at random has become pop-
ular. Let A be a random orthogonal projection obtained by first applying a
uniformly-distributed rotation to RN and then projecting on the first n coordi-
nates. Let Q be a polytope in RN . Then AQ is a random polytope in Rn. Taking
Q in turn from each of the three families of regular polytopes we get three arenas
for scholarly study:

• Random polytopes of the form ATN−1 were first studied by Affentranger
and Schneider [2] and by Vershik and Sporyshev [25];

• Random polytopes of the form ACN were first studied extensively by
Börözcky and Henk [6];

• The random zonotope AIN was studied in passing in [6] and will be heavily
studied in this paper; a literature on zonotopes can be found in [29, 5, 3,
23, 20].

Starting with [2, 25] interest has focused on the number fk(AQ) of k-faces of
such random polytopes AQ; in those papers, fundamental formulas were developed
for the expected values Efk(AQ). Deriving insights from these formulae in the
high-dimensional case has also been an important theme; Böröczky and Henk [6]
studied the expected number fk(AQ) for each of these families of random polytopes,
focusing on the asymptotic framework where the small dimension n is held fixed
while the large dimension N →∞.

Vershik and Sporyshev [25] studied the case ATN−1 in an asymptotic framework
with the dimensionsN and n both proportionally large, and observed a phenomenon
of sharp thresholds: random polytopes can have face lattices undergoing abrupt
changes in properties as dimensions change relatively slightly. Our own previous
work considered both ATN−1 and ACN [10, 13, 17, 15] and gave precise information
about several such threshold phenomena.

To make precise the notion of ‘threshold phenomenon’, consider the following
proportional-dimensional asymptotic framework. A dimension specifier is a triple
of integers (k, n,N), representing a ‘face’ dimension k, a ‘small’ dimension n and
a ‘large’ dimension N ; k < n < N . For fixed δ, ρ ∈ (0, 1), consider sequences of
dimension specifiers, indexed by n, and obeying

(1.1) kn/n→ ρ and n/Nn → δ, as n→∞.

For such sequences the small dimension n is held proportional to the large dimension
N as both dimensions grow. We omit subscripts on kn and Nn when possible. For
Q = TN−1, CN , the papers [10, 13, 17, 15] exhibited thresholds ρW (δ;Q) for the
ratio between the expected number of faces of the low-dimensional polytope AQ
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and the number of faces of the high-dimensional polytope Q:

(1.2) lim
n→∞

Efk(AQ)
fk(Q)

{
= 1 ρ < ρW (δ;Q)
< 1 ρ > ρW (δ;Q) .

(In this relation, we take a limit as n → ∞ along some sequence obeying the
proportional-dimensional constraint (1.1).) In words, the random object AQ has
roughly as many k-faces as its generator Q, for k below a threshold; and has no-
ticeably fewer k-faces than Q, for k above the threshold. The threshold functions
are defined in terms of Gaussian integrals and other special functions, and can be
calculated numerically.

1.2. Random Zonotopes. Missing from the above picture is information about
the third family of regular polytopes, the hypercube. Böröczky and Henk [6] men-
tioned in passing the case of the projected hypercube, in the case of A a random
orthogonal projection. Böröczky and Henk largely worked in the asymptotic frame-
work n fixed, N → ∞. In that framework the threshold phenomenon of interest
here is not visible. In this paper, we adopt the proportional-dimensional framework
(1.1) and prove the following.

Theorem 1.1 (‘Weak’ Threshold for Hypercube). Define

(1.3) ρW (δ; I) := max (0, 2− δ−1), 0 < δ < 1.

For ρ,δ in (0, 1), consider a sequence of dimension specifiers (k, n,N) obeying (1.1).
Consider a sequence of real-valued n×N matrices A = An,N , each one with columns
in general position in Rn.

(1.4) lim
n→∞

fk(AIN )
fk(IN )

=
{

1, ρ < ρW (δ, I)
0, ρ > ρW (δ, I) .

Remarks:
• Use of the modifier ‘weak’ and the subscript W on ρ matches corresponding

usage with TN−1 and CN .
• The result shows a sharp discontinuity in the behavior of the face lattices

of random zonotopes; the location of the threshold is precisely identified.
Such discontinuity is also observed empirically for the other two polytopes
(1.2) above; to our knowledge, a proof of discontinuity has not yet been
published in that setting.

• The result is universal across matrices; only general position is required.
Universality of threshold effects across a range of matrix ensembles has been
observed empirically for the other two regular polytopes [18]. However,
theoretical results [1] for other polytopes do not yet match empirical facts.
This result gives a rigorous universality result for one regular polytope; this
may inspire studies to see if parallel results exist for the others.

We briefly discuss the ideas leading to this result. Böröczky and Henk [6] ap-
plied a fundamental identity of Affentranger and Schneider [2] on general projected
polytopes and gave the explicit expression

(1.5) Efk(AIN ) = 2
(
N

k

)N−k−1∑
`=N−n

(
N − k − 1

`

)
,

valid where A is a uniformly-distributed random orthoprojector. In a previous
version of this manuscript [16], the authors proved that the same formula holds
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much more generally, in fact under the assumption that A has an orthant-symmetric
nullspace in general position. One of our referees pointed out that even more is
true: for any A in general position fk(AIN ) is the fixed number

(1.6) fk(AIN ) = 2
(
N

k

)N−k−1∑
`=N−n

(
N − k − 1

`

)
.

This fact follows from Winder’s Theorem [27] on partions of n-space by hyperplanes,
as we show below in Section 2.1. (1.6) appears to be known to workers on oriented
matroids - [4, pp. 220] - but may not seem evident to workers on convex polytopes
The recent survey article What is known about unit cubes states that “no good
bound for ... [fk(AIN )] is known”, [29]. However, see [21, pp. 410a].

1.3. Random Cones. Convex cones provide another family of fundamental poly-
hedral sets. Amongst these, the simplest and most natural is surely the positive
orthant P = RN

+ . The image K = AP of a cone under projection A: RN → Rn

is again a cone. Such a cone may be expected to have f0(K) = 1 vertex (at 0),
and as many as f1(K) = N extreme rays, etc. In fact, every pointed cone in Rn

can be generated as a (non-orthogonal) projection of the positive orthant under an
appropriate projection from an appropriate RN .

There seems to be relatively little prior research on random projections of the
positive orthant, except for the special case k = n, which was studied by Buchta [8].
As with the polytope models, surprising threshold phenomena can arise when the
projector is random and we work in the proportional-dimensional framework. The
following result makes use of the notion of a random matrix with centrosymmetric
exchangeable columns; for detail see Section 2.2 below.

Theorem 1.2 (‘Weak’ Threshold for Orthant). Let A be a random matrix with
centrosymmetric exchangeable columns which are in general position almost surely.
In the proportional-dimensional framework (1.1) we have

(1.7) lim
n→∞

Efk(ARN
+ )

fk(RN
+ )

=
{

1, ρ < ρW (δ; R+)
0, ρ > ρW (δ; R+)

with ρW (δ; R+) ≡ ρW (δ; I) as defined in (1.3).

Here the threshold for the orthant is at precisely the same place as it was for the
hypercube.

1.4. Exact equality in the number of faces. Our focus in Sections 1.1-1.3
was on ‘weak’ agreement of Efk(AQ) with fk(Q); in the proportional-dimensional
framework, for ρ below threshold ρW (δ;Q), we have limiting relative equality:

Efk(ARN
+ )

fk(RN
+ )

→ 1, n→∞.

We now focus on the ‘strong’ agreement; it turns out that in the proportional di-
mensional framework, for ρ below a somewhat lower threshold ρS(δ;Q), we actually
have exact equality with overwhelming probability:

(1.8) Prob{fk(Q) = fk(AQ)} → 1, n→∞.

The existence of such ‘strong’ thresholds for Q = TN−1 and Q = CN was proven
in [10, 13], which exhibited thresholds ρS(δ;Q) below which (1.8) occurs. These
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“strong thresholds” and the previously mentioned “weak thresholds” (1.2) are de-
picted in Figure 3.1. A similar strong threshold exists for the projected orthant.

Theorem 1.3 (‘Strong’ Threshold for Orthant). Let

(1.9) H(γ) := γ log(1/γ)− (1− γ) log(1− γ)

denote the usual (base-e) Shannon Entropy. Let

(1.10) ψ
R+
S (δ, ρ) := H(δ) + δH(ρ)− (1− ρδ) log 2.

For δ ≥ 1/2, let ρS(δ; R+) denote the zero crossing of ψR+
S (δ, ρ). In the proportional-

dimensional framework (1.1) with ρ < ρS(δ; R+)

(1.11) Prob{fk(ARN
+ ) = fk(RN

+ )} → 1, as n→∞.

The threshold ρW (δ;Q) for Q = RN
+ and IN , and ρS(δ; R+) are depicted in

Figure 1.1.
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Figure 1.1. The ‘weak’ thresholds, ρW (δ; I) and ρW (δ; R+)
(black), and a lower bound on the strong threshold for the pos-
itive orthant, ρS(δ; R+) (blue).

In contrast, the hypercube offers no phenomenon like (1.8).

Theorem 1.4 (Zonotope Vertices). Let A be an n×N matrix with n < N , then

fk(AIN ) < fk(IN ), k = 0, 1, 2, . . . n.

Proof of Theorem 1.4. fk(AIN ) obtains its maximum when A is in general position,
and in this case Theorem 1.8 gives the exact value of fk(IN ) − fk(AIN ), a value
which is strictly positive when n < N . �

1.5. Exact Non-Asymptotic Results. We have so far emphasized the Vershik-
Sporyshev proportional-dimensional asymptotic framework; this makes for the most
natural comparisons between results for the three families of regular polytopes.
However, for the positive orthant and hypercube, much more can be said than for
the other two polytopes as there are simple exact expressions for finiteN . Moreover,
these expressions can be derived from two beautiful results in geometric probability,
Wendel’s Theorem and Winder’s Theorem.
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Theorem 1.5 (Wendel, [26]). Let M points in Rm be drawn i.i.d. from a centro-
symmetric distribution such that the points are in general position, then the proba-
bility that all the points fall in some half space is

(1.12) Pm,M = 2−M+1
m−1∑
`=0

(
M − 1
`

)
.

Wendel’s elegant result is often known as simply a piece of recreational mathe-
matics. Our original submission [16] obtained from it a simple proof of the following
identity.

Theorem 1.6. Let A be an n×N random matrix with centrosymmetric exchange-
able columns in general position almost surely. Then

(1.13)
Efk(ARN

+ )
fk(RN

+ )
= 1− PN−n,N−k.

In this revision, the result derives from Winder’s Theorem1.

Theorem 1.7 (Winder, [27]; Cover, [9]). A set of M hyperplanes in general position
in Rm, all passing through some common point, divides the space into 2MPm,M

regions.

This shows that fk(AIN ) satisfies the same formula as Efk(ARN
+ ), but without

the expectation.

Theorem 1.8. Let A be an n×N matrix with columns in general position in Rn.
Then

(1.14)
fk(AIN )
fk(IN )

= 1− PN−n,N−k.

Formula (1.14) coincides with Böröczky and Henk’s formula (1.6), [6]; but whereas
(1.6) was proven for the case where A is a uniformly-distributed random orthopro-
jector, Theorem 1.8 holds for any A in general position. Theorem 1.8 is proven in
Section 2.1. Theorem 1.6 is proven in Section 2.2, where it is derived from Theorem
1.8 by symmetrization.

1.6. Contents. Proofs of the above results are given in Section 2. The hypercube
is contrasted with the other regular polytopes in Section 3; the cone and hypercube
are contrasted in Section 4, where we also present additional results for specially
constructed matrices. These phenomena, described here from the viewpoint of com-
binatorial geometry, have surprising consequences in probability theory, information
theory and signal processing; see [11, 14, 17], and Section 5.

2. Proofs of main results

We start with the key non-asymptotic exact identities (1.13) and (1.14) and then
derive from (1.13) Theorems 1.2 and 1.3 by asymptotic analysis of the probabilities
Pm,M . Thoughout the paper we write N (A) for the nullspace of A.

1This formula appears to have been derived by multiple authors independently at about the

same time; in the discrete geometry literature Winder’s paper is often cited [27], in the Machine
Learning and Information Theory literature, Cover’s paper [9] is typically cited instead; see Cover

[9] for a history of early related results and of the method of proof dating back to Schläfli [22]
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2.1. Proof of Theorem 1.8. For convenience, in this section we let IN denote the
hypercube [−1, 1]N . Each k-face F of IN is a set of vectors with N − k particular
coordinates taking fixed, specific values, namely for each particular coordinate a
specific choice from the endpoints {−1, 1}N−k applies for every member in the
face. Within each face the remaining k coordinate values may vary throughout the
range [−1, 1]k.

Let Q be a polyhedron (polytope or polyhedral cone) in RN and x0 ∈ Q. The
vector v is a feasible direction for Q at x0 if x0 + tv ∈ Q for all sufficiently small
t > 0. Let Feasx0(Q) denote the cone of all feasible directions for Q at x0.

Lemma 2.1. Let F be a k-face of the polytope or polyhedral cone Q and let x0 be
a vector in relint(F ). For an n×N matrix A in general position the following are
equivalent:

(Survive(A,F,Q)): AF is a k-face of AQ,
(Transverse(A, x0, Q)): N (A) ∩ Feasx0(Q) = {0}.

A proof of Lemma 2.1 is given in [24, pp. 329].
Each face F of IN can be identified with its centroid xF ; this is a vector in RN

with k of its coordinates = 0 and N − k entries taking the value σF ∈ {−1, 1}N−k.
We speak of supp(F ), the support of F ; it is the set of indices of coordinates which
vary among members of the face and σF , the sign pattern of F as the common
sign pattern of the coordinates which do not vary among members of the face and
so are outside the support. Thus, for example, if F is the set of all vectors with
−1 ≤ x(1), . . . x(k) ≤ 1 and x(k + 1) = · · · = x(N) = 1, supp(F ) = {1, . . . , k} and
σF = (1, . . . , 1).

For each whole number m, let [m] := {1, . . . ,m}. For an index set J ⊂ [N ] of
cardinality k, let F(J) denote the collection of all k-faces F with supp(F ) = J .
There are of course 2N−k such faces; they differ in the choice of σF .

Lemma 2.2. Let A be an n × N matrix with n < N and columns are in general
position in Rn. Then

CardF∈F([k]){(Survive(A,F, IN )) does not hold} = 2N−kPN−n,N−k.

Proof. Let FeasxF
(IN ) denote the cone of feasible directions for IN at xF . The

collection of such cones associated to a common support is a cover of RN :

(2.1) ∪F∈F([k])FeasxF
(IN ) = RN ;

moreover, the terms appearing in the union have pairwise disjoint interiors. If F,G
are distinct members of F([k]) then

(2.2) int(FeasxF
(IN )) ∩ int(FeasxG

(IN ) = ∅;
roughly speaking, the collection of feasible cones associated to F([k]) forms a par-
tition of the space RN .

Define hyperplanesHj = {x : x(j) = 0}; the hyperplanes {Hj : j = k+1, . . . , N},
where the index avoids the support set [k], also induce a partiton of RN ; it is the
same as the one induced by the above cones.

Set now m = N − n; by general position, N (A) ∼= Rm. Set M = N − k and
define

Hj = Hk+j ∩N (A), j = 1, . . . ,M.



8 DAVID L. DONOHO AND JARED TANNER

Since N (A) is in general position, these are relative hyperplanes of N (A) ∼= Rm.
Thus, up to linear isomorphism, {Hj : j = 1, . . . ,M} is a collection of hyperplanes
in general position in Rm; these hyperplanes intersect in the common point 0.
Winder’s Theorem 1.7, tells us that Rm is partitioned by M hyperplanes into
2MPm,M regions.

Correspondingly N (A) is partitioned into 2N−kPN−n,N−k regions. The relative
interior of each such region in N (A) belongs to the interior of exactly one cone
FeasxF

(IN ) ⊂ RN (by (2.2) and (2.1)). That cone specifies exactly one k-face F
for which (Transverse(A, xF , I

N )) does not hold. Equivalently, (Survive(A,F, IN ))
does not hold. �

Theorem 1.8 follows from Lemmas 2.1 and 2.2 by noting that the set of all
k-faces of IN can be partitioned cleanly by specifying one of the

(
N
k

)
k-element

subsets J ⊂ [N ], card(J) = k, and then considering F(J). In combinatorics one

denotes by
[

N

k

]
the collection of different k-element subsets of [N ]. Thus we have

the disjoint union

Fk(IN ) = ]{F(J) : J ∈
[

N

k

]
}.

Hence,

fk(IN )− fk(AIN ) := CardF∈Fk(IN ){(Survive(A,F, IN )) does not hold}

=
∑

J∈
»

N

k

– CardF∈F(J){(Survive(A,F, IN )) does not hold}(2.3)

=
(
N

k

)
· 2N−kPN−n,N−k.

�

2.2. Proof of Theorem 1.6. In the original submission of this manuscript, we
proved (1.13) using Wendel’s Theorem and then derived (1.14) from it, by an av-
eraging argument. Prompted by a referee, in this revision, we go in the opposite
direction, having first proved Theorem 1.8 using Winder’s Theorem, we now derive
(1.13) from Theorem 1.8 by symmetrization.

We start with the following observation on the expected number of k-faces of
RN

+ .

(2.4)
Efk(ARN

+ )
fk(RN

+ )
= AveF

[
Prob{AF is a k-face of ARN

+}
]
.

Here AveF denotes “the arithmetic mean over all k-faces of ARN
+ .”

In this section, it is convenient to let IN = [0, 1]N . This choice does not affect
face counts. With this representation of IN , it becomes true that, the ’lower k-
faces’ of IN are in one-one correspondence with the k-faces of RN

+ . Namely, if, in
the previous subsection’s notation, F is a k-face of IN with σF > 0 then the cone
pos(F ) is a k-face of RN

+ . Adopt now the notational convention that within the
proof, for a lower face F of IN , then F̃ = pos(F ) denotes the corresponding face of
RN

+ . We observe that for a vector x0 with nonnegative coordinates all strictly less
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than 1, we have

(2.5) Feasx0(RN
+ ) = Feasx0(I

N ).

Combining this with Lemma 2.1 applied once to IN and once to RN
+ we see, that

if A is a matrix with columns in general position, and F is a lower face of IN ,

Prob{AF̃ is a k-face of ARN
+} = Prob{AF is a k-face of AIN}.

Now the face counts for the projected hypercube obey:

(2.6)
Efk(ARN

+ )
fk(RN

+ )
= AveF

[
Prob{AF is a k-face of AIN}

]
.

Here AveF denotes “the arithmetic mean over all k-faces of AIN .”

Definition 2.3 (Centrosymmetric Exchangeable Columns). Let A be a random
n by N matrix such that for each signed permutation matrix Π, and for every
measurable set Ω,

Prob{A ∈ Ω} = Prob{AΠ ∈ Ω}
Then we say that A has centrosymmetric exchangeable columns.

Below we assume without loss of generality that A has centrosymmetric ex-
changeable columns. Then all k-faces of RN

+ become statistically equivalent:

Prob{AF is a k-face of ARN
+} = Prob{AG is a k-face of ARN

+}

for each distinct F ,G in Fk(RN
+ ) ; indeed, there is always a permutation Π for which

G is the image of F under Π: G = ΠF , and the probabilities are Π-invariant. Then
(2.4) becomes: let F be a fixed k-face of RN

+ ; then

(2.7)
Efk(ARN

+ )
fk(RN

+ )
= Prob{AF is a k-face of ARN

+}.

Similarly, all k-faces of IN become statistically equivalent, indeed, there is always
a signed permutation Π for which G is the image of F under Π: G = ΠF , and the
probabilities are Π-invariant. Hence (2.6) becomes: let F be a fixed k-face of IN ;
then

(2.8)
Efk(AIN )
fk(IN )

= Prob{AF is a k-face of AIN}.

Combining these displays with (1.14) implies (1.13). �

2.3. Some Generalities about Binomial Probabilities. The probability Pm,M

has a classical interpretation: it gives the probability of at most m − 1 heads in
M − 1 tosses of a fair coin. The usual Normal approximation to the binomial tells
us that

Pm,M ≈ Φ

(
(m− 1)− (M − 1)/2√

(M − 1)/4

)
,

with Φ the usual standard normal distribution function Φ(x) =
∫ x

−∞ e−y2/2dy/
√

2π;
here the approximation symbol ≈ can be made precise using standard limit theo-
rems, eg. appropriate for small or large deviations. In this expression, the approx-
imating normal has mean (M − 1)/2 and standard deviation

√
(M − 1)/4. There

are three regimes of interest, for large m, M , and three behaviors for Pm,M .

• Lower Tail: m�M/2−
√
M/4. Pm,M ≈ 0.



10 DAVID L. DONOHO AND JARED TANNER

• Middle: m ≈M/2. Pm,M ∈ (0, 1).
• Upper Tail: m�M/2 +

√
M/4. Pm,M ≈ 1.

2.4. Proof of Theorem 1.2. Using the correspondence N −n↔ m, N −k ↔M ,
and the connection to Wendel’s theorem, we have three regimes of interest:

• N − n� (N − k)/2
• N − n ≈ (N − k)/2
• N − n� (N − k)/2

In the proportional-dimensional framework, the above discussion translates into
three separate regimes, and separate behaviors we expect to be true:

• Case 1: ρ < ρW (δ; R+). PNn−n,Nn−kn → 0.
• Case 2: ρ = ρW (δ; R+). PNn−n,Nn−kn ∈ (0, 1).
• Case 3 ρ > ρW (δ; R+). PNn−n,Nn−kn

→ 1.
Case 2 is trivially true, but it has no role in the statement of Theorem 1.2. Cases

1 and 3 correspond exactly to the two parts of (1.7) that we must prove.
To prove Cases 1 and 3, we need an upper bound deriving from standard large-

deviations analysis of the lower tail of the binomial.

Lemma 2.4. Let N − n < (N − k)/2.

(2.9) PN−n,N−k ≤ n3/2 exp
(
Nψ

R+
W

(
n

N
,
k

n

))
,

where the exponent is defined as

(2.10) ψ
R+
W (δ, ρ) := H(δ) + δH(ρ)−H(ρδ)− (1− ρδ) log 2,

with H(·) the Shannon Entropy (1.9).

Proof. Upperbounding the sum in PN−n,N−k by N − n − 1 times
(
N−k−1

N−n

)
we

arrive at

(2.11) PN−n,N−k ≤ 2N−k−1 n− k

N − k
· (N − k + 1)

(
N

n

)(
n

k

)(
N

k

)−1

.

We can bound
(

m
γ·m
)

for γ < 1 using the Shannon entropy (1.9):

(2.12) c1n
−1/2emH(γ) ≤

(
m

γ ·m

)
≤ c2e

mH(γ),

where c1 := 16
25

√
2/π, c2 := 5/4

√
2π. Recalling the definition of ψR+

W , we obtain
(2.9). �

We will now consider Cases 1 and 3, and prove the corresponding conclusion.
Case 1: ρ < ρW (δ; R+). The threshold function ρW (δ; R+) is the location of

the lowest zero crossing ψR+
W (δ, ρ)) as a function of ρ for δ fixed; i.e.

ρW (δ; R+) = inf{ρ : ψR+
W (δ, ρ)) ≥ 0}.

Thus for any ρ strictly below ρW (δ; R+), the exponent ψR+
W (δ, ρ) is strictly negative.

Lemma 2.4 thus implies that PNn−n,Nn−kn
→ 0 as n→∞.

Case 3: ρ > ρW (δ; R+). Binomial probabilities have a standard symmetry
(relabel every ‘head’ outcome as a ’tail’, and vice versa). It follows that Pm,M =
1−PM−m,M . We have PN−k,N−n = 1−PN−k,n−k. In this case N−n > (N−k)/2,
so Lemma 2.4 tells us that PN−k,n−k → 0 as n→∞; we conclude PN−k,N−n → 1
as n→∞.
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δ=n/N

ρ=k/n

Weak exponent ψ
W
H (ρ,δ)
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Figure 2.1. Exponent for the weak phase transition, ψR+
W (ρ, δ),

(2.10), which has its zero level curve at ρW (δ; R+), equation (1.3).
The projected hypercube has the same weak phase transition and
exponent ψI

W ≡ ψ
R+
W .

2.5. Proof of Theorem 1.3. PN−n,N−k is the probability that one fixed k-dimensional
face F of RN

+ generates a k-face AF of ARN
+ . The probability that some k-

dimensional face generates a k-face can be upperbounded, using Boole’s inequality,
by fk(RN

+ ) · PN−n,N−k.
From (2.12), (2.9), and fk(RN

+ ) =
(
N
k

)
we have

fk(RN
+ ) · PN−n,N−k ≤ n3/2 exp(NψR+

S (δn, ρn)),

where ψR+
S was defined earlier in (1.10), as

(2.13) ψ
R+
S (δ, ρ) := H(δ) + δH(ρ)− (1− ρδ) log 2.

Recall that for δ ≥ 1/2, ρS(δ; R+) is the location of the lowest zero crossing of ψR+
S

as a function of ρ for δ fixed; i.e.

ψ
R+
S (δ; R+) = inf{ρ : ψR+

S (δ, ρ)) ≥ 0}.

For any ρ < ρS(δ; R+) we have ψR+
S (δ, ρ) < 0 and as a result (1.11) follows.

3. Contrasting the Hypercube with Other Polytopes

The theorems in Section 1 contrast strongly with existing results for other poly-
topes.

3.1. Non-Existence of Weak Thresholds at δ < 1/2. Theorem 1.1 identifies a
region of the phase diagram (δ = n

N , ρ = k
N ) where the typical random zonotope

has nearly as many k-faces as its generating hypercube; in particular, if n < N/2,
it has many fewer k-faces than the hypercube, for every k. This behavior at δ =
n/N < 1/2 is quite different from the behavior seen for random projections of the
simplex and the cross-polytope at small δ. Those polytopes have fk(AQ) ≈ fk(Q)
for quite a large range of k even at relatively small values of δ, [17] shows we can
have k ∼ n/(2 log(δ−1)) for small δ at both of those polytopes while we could not
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have even k = 1 at the hypercube for such small δ; see also the visual evidence in
Figure 3.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

δ=n/N

ρ=k/n

Figure 3.1. Weak thresholds for the simplex, ρW (δ;T ) (black-
dash), and cross-polytope, ρW (δ;C) (black-solid). Consider se-
quences obeying the proportional-dimensional asymptotic with pa-
rameters δ, ρ. For (δ, ρ) below these curves, and for large n, each
projected polytope has nearly as many k-faces as its generator;
above these curves the projected polytope has noticeably fewer.
Strong thresholds for the simplex, ρS(δ;T ) (blue-dash), and cross-
polytope, ρS(δ;C) (blue-solid). For (δ, ρ) below these curves, and
for large n, each projected polytope and its generator typically
have exactly the same number of k-faces.

3.2. Non-Existence of Strong Thresholds for Hypercube. Lemma 1.4 shows
that projected zonotopes always have strictly fewer k-faces than their generators
fk(AIN ) < fk(IN ), for every n < N . This is again quite different from the situation
with the simplex and the cross-polytope, where we can even have n� N and still
find k for which fk(AQ) = fk(Q), [17], roughly k ∼ n/(2e log(δ−1)); again see
visual evidence in Figure 3.1.

3.3. Universality of weak phase transitions. Theorem 1.1 holds for any A in
general position.

In proving weak and strong threshold results for the simplex and cross-polytope,
we required A to either be a random ortho-projector or to have Gaussian i.i.d.
entries. Thus, what we proved for those families of regular polytopes applies to a
much more limited range of matrix ensembles than for hypercubes.

4. Contrasting the Cone with the Hypercube

4.1. Universality of weak phase transitions. For Theorem 1.2 A can be sam-
pled from any ensemble of random matrices invariant under right multiplication
by signed permutations. The result is thus universal across a wide class of matrix
ensembles.

In proving weak and strong threshold results for the simplex and cross-polytope,
we required A to either be a random ortho-projector or to have Gaussian i.i.d.
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entries. Thus, what we proved for those families of regular polytopes applies to a
much more limited range of matrix ensembles than for the orthant.

Our empirical studies suggest that the same ensembles of matrices which ‘work’
for the orthant weak threshold also ‘work’ for the simplex and cross-polytope thresh-
olds. It seems to us that the universality across matrix ensembles proven here may
point to a much larger phenomenon, valid also for other polytope families; however,
this universality class is far more restrictive than is the case for the hypercube. For
our empirical studies see [18].

The weak threshold for the orthant depends very much more delicately on details
about A than do the hypercube thresholds; unlike fk(IN ), fk(ARN

+ ) is not the same
number for all A in general position. It makes a substantial difference to the results
if the matrix A is not ‘zero-mean’.

4.2. The Low-Frequency Partial Fourier Matrix. Consider the special partial
Fourier matrix made only of the n lowest frequency entries.

Corollary 4.1. Assume n is odd and for j = 1, 2, . . . , N let

(4.1) Ωij =

 cos
(

π(j−1)(i−1)
N

)
i = 1, 3, 5, . . . , n

sin
(

π(j−1)i
N

)
i = 2, 4, 6, . . . , n− 1.

Then

fk(ΩRN
+ ) = fk(RN

+ ), k = 0, 1, . . . ,
1
2
(n− 1).

The result is a corollary of [12, Theorem 3, pp. 56]. The key steps of the proof
are included in an extended technical report [16].

This behavior is dramatically different than the case for random A of the type
considered so far, and in some sense dramatically better.

Corollary 4.1 is closely connected with the classical question of neighborliness.
There are famous polytopes which can be generated by projections ATN−1 and
have exactly as many k-faces as TN−1 for k ≤ bn/2c. A standard example is
provided by the matrix Ω defined in (4.1); it obeys fk(ΩTN−1) = fk(TN−1), 0 ≤
k ≤ bn/2c. (There is a vast literature touching in some way on the phenomenon
fk(ΩTN−1) = fk(TN−1). In that literature, the polytope ΩTN−1 is usually called a
cyclic polytope, and the columns of Ω are called points of the trigonometric moment
curve; see standard references [21, 28]).

Hence the matrix Ω offers both fk(ΩTN−1) = fk(TN−1) and fk(ΩRN
+ ) = fk(RN

+ )
for 0 ≤ k ≤ bn/2c. This is exceptional. For random A of the type discussed in
earlier sections, there is a large disparity between the sets of triples (k, n,N) where
fk(ATN−1) = fk(TN−1) – this happens for k/n < ρS(n/N ;T ) – and those where
fk(ARN

+ ) = fk(RN
+ ) – this happens for k/n < ρS(n/N ; R+). These two strong

thresholds are displayed in Figures 3.1 and 1.1 respectively.
Even if we relax our notion of agreement of face counts to weak agreement, the

collections of triples where fk(ATN−1) ≈ fk(TN−1) and fk(ARN
+ ) ≈ fk(RN

+ ) are
very different, because ρW (n/N ;T ) and ρW (n/N ; R+) are so dramatically different,
particularly at n < N/2.

4.3. Adjoining a Row of Ones to A. An important feature of the random ma-
trices A studied earlier is orthant symmetry. In particular, the positive orthant
plays no distinguished role with respect to these matrices. On the other hand,
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the partial Fourier matrix Ω constructed in the last subsection contains a row of
ones, and thus the positive orthant has a distinguished role to play for this matrix.
Moreover, this distinction is crucial; we find empirically that removing the row of
ones from Ω causes the conclusion of Corollary 4.1 to fail drastically.

Conversely, consider the matrix Ã obtained by adjoining a row of N ones to
some matrix A:

Ã =
[

1
A

]
.

Adding this row of ones to a random matrix causes a drastic shift in the strong and
weak thresholds.

Theorem 4.1. Consider the proportional-dimensional asymptotic framework with
parameters δ, ρ in (0, 1). Let the random n− 1 by N matrix A have i.i.d. standard
normal entries. Let Ã denote the corresponding n by N matrix whose first row is
all ones and whose remaining rows are identical to those of A. Then

(4.2) lim
n→∞

Efk(ÃRN
+ )

fk(RN
+ )

=
{

1, ρ < ρW (δ, T )
< 1, ρ > ρW (δ, T ) .

(4.3) lim
n→∞

P{fk(ÃRN
+ ) = fk(RN

+ )} =
{

1, ρ < ρS(δ, T )
0, ρ > ρS(δ, T ) .

Note particularly the mixed form of this relationship. Although the conclusions
concern the behavior of faces of the randomly-projected orthant, the thresholds are
those that were previously obtained for the randomly-projected simplex.

Since there is such a dramatic difference between ρ(δ;T ) and ρ(δ; R+), the single
row of ones can fairly be said to have a huge effect. In particular, the region
‘below’ the simplex weak phase transition ρW (δ;T ) comprises ≈ 0.5634 of the
(δ, ρ) parameter area, and the hypercube weak phase transition ρW (δ; I) comprises
1− log 2 ≈ 0.3069.

Theorem 4.1 is an immediate consequence of the following identity.

Lemma 4.2. Suppose that the row vector 1 is not in the row span of A. Then

fk(ÃRN
+ ) = fk−1(ATN−1), 0 < k < n.

Proof. We observe that there is a natural bijection between k-faces of RN
+ and the

k−1-faces of TN−1. The k−1-faces of TN−1 are in bijection with the corresponding
support sets of cardinality k: i.e. we can identify with each k-face F the union I
of all supports of all members of the face. Similarly, to each support set I of
cardinality k there is a unique k-face F̃ of RN

+ consisting of all points in RN
+ whose

support lies in I. Composing bijections F ↔ I ↔ F̃ we have the bijection F ↔ F̃ .
Concretely, let x0 be a point in the relative interior of some k − 1-face F of

TN−1. Then x0 has k nonzeros. x0 is also in the relative interior of the k-face F̃ of
RN

+ Conversely, let y0 be a point in the relative interior of some k-face of RN
+ ; then

x0 = (1′y0)−1y0 is a point in the relative interior of a k − 1-face of TN−1.
The last two paragraphs show that for each pair of corresponding faces (F, F̃ ),

we may find a point x0 in both the relative interior of F̃ and also of the relative
interior of F . For such x0,

Feasx0(RN
+ ) = Feasx0(T

N−1) + lin(x0).
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Clearly N (Ã) ∩ lin(x0) = {0}, because 1′x0 > 0. We conclude that the following
are equivalent:

(Transverse(A, x0, T
N−1)) N (A) ∩ Feasx0(T

N−1) = {0}.
(Transverse(Ã, x0,RN

+ )) N (Ã) ∩ Feasx0(RN
+ ) = {0}.

Rephrasing [14], the following are equivalent for x0 a point in the relative interior
of F :

(Survive(A,F, TN−1)) AF is a k − 1-face of ATN−1,
(Transverse(A, x0, T

N−1)) N (A) ∩ Feasx0(T
N−1) = {0}.

We conclude that for two corresponding faces F , F̃ , the following are equivalent:
(Survive(A,F, TN−1)): AF is a k − 1-face of ATN−1,
(Survive(Ã, F̃ ,RN

+ )): ÃF̃ is a k-face of ÃRN
+ .

Combining this with the natural bijection F ↔ F̃ , the lemma is proved. �

5. Application: Compressed Sensing

Our face counting results can all be reinterpreted as statements about “simple”
solutions of underdetermined systems of linear equations. This reinterpretation al-
lows us to make connections with numerous problems of current interest in signal
processing, information theory, and probability. The reinterpretation follows from
the two following lemmas, which are restatements of Lemma 2.1 for Q = RN

+ and
Q = IN , rephrasing the notion of (Transverse(A, x0, Q)) with the all but linguisti-
cally equivalent (Unique(A, x0, Q)).

Lemma 5.1. Let x0 be a vector in RN
+ with exactly k nonzeros. Let F denote the

associated k-face of RN
+ . For an n × N matrix A, let AF denote the image of F

under A and b0 = Ax0 the image of x0 under A. The following are equivalent:
(Survive(A,F,RN

+ )): AF is a k-face of ARN
+ ,

(Unique(A, x0,RN
+ )): The system b0 = Ax has a unique solution in RN

+ .

Lemma 5.2. Let x0 be a vector in IN with exactly k entries strictly between the
bounds {0, 1}. Let F denote the associated k-face of IN . For an n×N matrix A,
let AF denote the image of F under A and b0 = Ax0 the image of x0 under A.
The following are equivalent:

(Survive(A,F, IN )): AF is a k-face of AIN ,
(Unique(A, x0, I

N )): The system b0 = Ax has a unique solution in IN .

Note that the systems of linear equations referred to in these lemmas are under-
determined: n < N . Hence these lemmas identify conditions on underdetermined
systems of linear equations, such that, when the solutions are known to obey cer-
tain constraints, such seemingly weak prior knowledge in fact uniquely determines
the solution. The first result can be paraphrased as saying that nonnegativity con-
straints can be very powerful, if the object is known to have relatively few nonzeros;
the second result says that upper and lower bounds can be very powerful, provided
many of those bounds are binding.

5.1. Reconstruction Exploiting Nonnegativity Constraints. We wish to re-
construct the unknown x, knowing only the linear measurements b = Ax, the matrix
A, and the constraint x ∈ RN

+ .
Let J(x) be some function of x. Consider the positivity-constrained variational

problem

(PosJ) minJ(x) subject to b = Ax, x ∈ RN
+ .
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Let posJ(b, A) denote any solution of the problem instance (PosJ) defined by data
b and matrix A.

We conclude the following:

Corollary 5.1. Suppose that

fk(ARN
+ ) = fk(RN

+ ).

Let x0 ≥ 0 and ‖x0‖`0 ≤ k. For the problem instance defined by b = Ax0

posJ(b, A) = x0.

In words: under the given conditions on the face numbers, any variational pre-
scription which imposes nonnegativity constraints will correctly recover the k-sparse
solution in any problem instance where such a k-sparse solution exists.

Corresponding to this ‘strong’ statement is a ‘weak’ statement. Consider the
following probability measure on k-sparse problem instances.

• Choose a random subset L of size k from {1, . . . , N}, by k simple random
draws without replacement.

• Set the entries of x0 not in the selected subset to zero.
• Choose the entries of x0 in the selected set L from some fixed joint distri-

bution ψL supported in (0, 1)k.
• Generate the problem instance b = Ax0.

We speak of drawing a k-sparse random problem instance at random.

Corollary 5.2. Suppose that for some ε ∈ (0, 1),

fk(ARN
+ ) ≥ (1− ε) · fk(RN

+ ).

For (b, A) a problem instance drawn at random, as above:

Prob{posJ(b, A) = x0} ≥ (1− ε).

In words: under the given conditions on the face lattice, any variational pre-
scription which imposes nonnegativity constraints will correctly succeed to recover
the k-sparse solution in at least a fraction (1− ε) of all k-sparse problem instances.

For more discussion, including potential applications, see [14, 12, 19, 7].

5.2. Reconstruction Exploiting Box Constraints. Consider again the prob-
lem of reconstruction from measurements b = Ax, but this time assuming the object
x obeys box-constraints: 0 ≤ x(j) ≤ 1, 1 ≤ j ≤ N . Define the box-constrained
variational problem

(BoxJ) minJ(x) subject to b = Ax, 0 ≤ x(j) ≤ 1, j = 1, . . . , N.

Let boxJ(b, A) denote any solution of the problem instance (BoxJ) defined by data
b and matrix A. In this setting, the notion corresponding to ’sparse’ is ’simple’.
We say that a vector x is k-simple if at most k of its entries differ from the bounds
{0, 1}.

Consider the following probability measure on problem instances having k-simple
solutions. Recall that k-simple vectors have all entries equal to 0 or 1 except at k
exceptional locations.

• Choose the subset L of k exceptional entries uniformly at random from the
set {1, . . . , N} without replacement;

• Choose the nonexceptional entries to be either 0 or 1 based on tossing a
fair coin.
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• Choose the values of the exceptional k entries according to a joint proba-
bility measure ψL supported in (0, 1)k.

• Define the problem instance b = Ax0.

Corollary 5.3. Suppose that for some ε ∈ (0, 1),

fk(AIN ) ≥ (1− ε) · fk(IN ).

Randomly sample a problem instance (b, A) using the method just described.

P{boxJ(b, A) = x0} ≥ (1− ε).

In words: under the given conditions on the face lattice, any variational prescrip-
tion which imposes box constraints will correctly recover at least a fraction (1− ε)
of all underdetermined systems generated by the matrix A which have k-simple
solutions.

In the hypercube case there is no phenomenon comparable to that which arose
in the positive orthant with the special constructions Ω and Ã; fk(AIN ) is a fixed
number if A is in general position, and decreases if A is not in general position.
Consequently, the hypercube weak threshold is the best general result on the ability
to undersample by exploiting box constraints. In particular, the difference between
the weak simplex threshold and the weak hypercube threshold has this interpreta-
tion:

A given degree k of sparsity of a nonnegative object is much more
powerful than that same degree of simplicity of a box-constrained
object.

Specifically, we shouldn’t expect to be able to undersample a typical box-constrained
object by more than a factor of 2 and then reconstruct it using some garden-variety
variational prescription. In comparison, the last section showed that we can severely
undersample very sparse nonnegative objects. Moreover, when n < N there is
no region where fk(AIN ) = fk(IN ), and consequently box constraints are never
enough to ensure boxJ(b, A) = x0 for all k-simple problem instances.
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