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Abstract

It was shown in [1] that a vector x ∈ Rn with at most k < n nonzeros can be recovered from an expander
sketch Ax in O(nnz(A) log k) operations via the Parallel-`0 decoding algorithm, where nnz(A) denotes the
number of nonzero entries in A ∈ Rm×n. In this paper we present the Robust-`0 decoding algorithm, which
robustifies Parallel-`0 when the sketch Ax is corrupted by additive noise. This robustness is achieved by
approximating the asymptotic posterior distribution of values in the sketch given its corrupted measurements.
We provide analytic expressions that approximate these posteriors under the assumptions that the nonzero
entries in the signal and the noise are drawn from continuous distributions. Numerical experiments presented
show that Robust-`0 is superior to existing greedy and combinatorial compressed sensing algorithms in the
presence of small to moderate signal-to-noise ratios in the setting of Gaussian signals and Gaussian additive
noise.

I. INTRODUCTION

COMPRESSED sensing is a well studied method by which a sparse or compressible vector can be
acquired by a number of measurements proportional to the number of its dominant entries [2], [3]. To

fix notation, let χnk be the set of vectors in Rn that have at most k nonzero entries, let x ∈ χnk and let
A ∈ Rm×n be a matrix with m < n. We will refer to A as the measurement matrix, x as the signal and
y = Ax as the measurements. The goal of compressed sensing is to recover the sparsest, most parsimonious,
x ∈ Rn from the measurements y and the matrix A. Letting ‖ · ‖0 denote the number of non-zeros in x, the
problem of finding x can be written as

min
x∈Rn

‖x‖0 s.t. Ax = y.

Many algorithms have been developed to solve this problem or equivalent formulations and there are good
theoretical results on when and how fast recovery of a signal is possible given certain types of measurement
matrix A and signal x. These algorithms can be broadly categorized into convex optimization based algorithms
like those implemented in [4]–[7] and greedy algorithms [8]–[14], and were designed and analysed for the
setting of dense sensing matrices; e.g. independent (sub-)Gaussian entries or randomly subsampled Fourier
matrices. For a more detailed introduction to compressed sensing see [15].

Here we extend an algorithm proposed in [1] which can be used to recover exactly a sparse signal from its
expander sketch (see Section II for details). Specifically, [1] proposed Parallel-`0 (Algorithm 2), for noiseless
combinatorial compressed sensing which is guaranteed to converge in O(nnz(A) log(k)) where the sensing
matrix A is an expander matrix (Definition I.1) and the signal x ∈ χnk is dissociated in the sense of Definition
I.2 or the signal is drawn independently of A. For alternative combinatorial compressed sensing algorithms
see, for example, [16]–[21]. We borrow notation from combinatorics and use the shorthands [n] := {1, . . . , n},
[n](k) := {S ⊂ [n] : |S| = k} where |S| denotes the cardinality of the set S, and [n](≤k) := ∪`≤k[n](`) for
n, k ∈ N and k < n.

Definition I.1 (Expander matrices [1]). The matrix A ∈ {0, 1}m×n is a (k, ε, d)-expander matrix if
∑m
i=1 1|Ai,j |>0 =

d for all j ∈ [n] and ∣∣∣{i ∈ [m] :
∑
j∈S

1|Ai,j |>0

}∣∣∣ > (1− ε)d|S|
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for all S ∈ [n](≤k). We denote by Em×nk,ε,d the set of (k, ε, d)-expander matrices of dimension m× n.

Definition I.2 (Dissociated signals [1]). A signal x ∈ Rn is said to be dissociated if∑
j∈S1

xj 6=
∑
j∈S2

xj ∀S1, S2 ⊂ supp(x) s.t. S1 6= S2.

An example of (almost surely) dissociated signals are those drawn from a continuous distribution. It is
shown in [1] that if y = Ax is an expander sketch and x ∈ χnk is dissociated, then there exists a subset
T ⊂ [n] such that, for each j ∈ T , |{i ∈ [m] : yi = xj}| is bounded below by a positive constant depending
on d and ε. This guarantees that if |{i ∈ supp(aj) : yi = y`}| > d/2 then xj = y`. Parallel-`0 (Algorithm
2) implements this observation by letting x̂ = 0 and estimating the decrease in ‖y‖0 when performing the
update x̂j ← x̂j + y`. We denote for j ∈ [n] its neighbours by N (j) := {i ∈ [m] : |Aij | > 0}; to estimate
the decrease in ‖y‖0, Parallel-`0 computes

ne ← |{` ∈ N (j) : yi = y`}| , (1)
nz ← |{` ∈ N (j) : y` = 0}| . (2)

We extend their approach to the additive noise signal model of ŷ = y + η with y = Ax and η ∈ Rm
by replacing (1)-(2) with scores estimating the distribution of ne and nz , e.g. (8)-(9). That is, we follow a
Bayesian approach to the computation of these scores and estimate:

1) The probability of yi = 0 given that we observe ŷi.

pz (ω) := P (yi = 0 | ŷi = ω) . (3)

2) The probability of yi1 = yi2 given that we observe ŷi1 − ŷi2 .

pe (ω) := P (yi1 = yi2 | ŷi1 − ŷi2 = ω) (4)

Among our contributions are series approximations for (3)-(4) when the signals and measurements are
generated according to the generating model given in Definition I.3 and illustrated in Figure 1. In what
follows, we let D(R) be the set of distributions supported on R. If µ ∈ D(R), we write z ∼ µ to denote
that z was drawn according to the distribution µ. We also use the notation vi

i.i.d.∼ µ to denote that each vi is
drawn independently at random from µ. Finally, we use U(S) to denote the uniform distribution over a set
S.

Definition I.3 (Generating model GM(n,m, k, d, µ, ν)). Let n,m, k, d ∈ N be such that k < m < n and
d � m. Let µ, ν ∈ D(R). Then, the problem (A, ŷ) is drawn from the model GM(n,m, k, d, µ, ν) if
A ∈ {0, 1}m×n and ŷ ∈ Rm are such that

1) each column of A has a support drawn uniformly at random from [m](d);
2) supp(x) is drawn uniformly at random from [n](k);
3) xj

i.i.d.∼ µ for each j ∈ supp(x);
4) ηi

i.i.d.∼ ν for each i ∈ [m];
5) ηi is independent of xj for all i ∈ [m], j ∈ supp(x);
6) y = Ax and ŷ = y + η.

We write (A, ŷ) ∼ GM(n,m, k, d, µ, ν) to denote problem instances drawn from this signal model.

Remark. It is important to note that a matrix A ∈ Rm×n generated under the model presented in Definition
I.3 and Figure 1, is a (k, ε, d)-expander matrix with high probability, see [22], [15, Theorem 13.6].

Moreover, the generating model in Definition I.3 also allows us to define robust estimates for (3)-(4)
for general noise and signal distributions and to any degree of accuracy under the assumption that these
probability measures are available. From there we can define noisy analogues to the values ne and nz in
(1)-(2) used in Parallel-`0 but which are robust to additive noise. The contributions of this work are two-fold:
(i) to present principled ways to compute (3)-(4) in the case where the nonzeros in η and x are drawn from
continuous probability distributions; (ii) to provide a variation of Parallel-`0 that is robust to noise. While
other similar generating models can be considered using the techniques presented here, for ease of exposition
and clarity, we restrict our description to this model.
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n,m, k, d ∈ N
µ, ν ∈ D(R)

supp(x) ∼ U
(
[n](k)

)

xj
i.i.d.∼ µ ∀j ∈ supp(x)

x ∈ χnk

supp(Aj) ∼ U
(
[m](d)

)

Ai,j = 1 ∀i ∈ supp(Aj)

A ∈ {0, 1}m×n

ηi
i.i.d.∼ ν ∀i ∈ [m]

η ∈ Rm

·

y = Ax +

ŷ = y + η

Fig. 1: Generating model GM(n,m, k, d, µ, ν).

Theorem I.4 (Probabilities for general signal and noise distributions). Let δ, ρ ∈ (0, 1). For each n > 1, let
m = δn, k = ρm and d < m. If µ, ν ∈ D(R) and (A, ŷ) ∼ GM(n,m, k, d, µ, ν). Then as n→∞,

pz (ω)→ ν(ω)∑
q≥0

(dρ)q

q! (ν ∗ µq)(ω)
, (5)

pe (ω)→ ν̃(ω)∑
q≥0

(2dρ)q

q! (ν̃ ∗ µ̄q)(ω)
. (6)

Where µq, µ̄q, ν̃ are probability measures constructed as in Definition III.1.

Equations (5) and (6) allows us to quantify the uncertainty associated with computing the score for Parallel-
`0 under the presence of additive noise. Note that equations (5) and (6) can be easily adapted to alternative
generative models, such as where the expected density of nonzeros per row varies, but for expository clarity
we restrict our discussion to this somewhat generic model. It will be discussed in Section III-C that equations
(5) and (6) should not be used directly, but instead be scaled by considering normalised functions p̆e and p̆z
defined as,

p̆e(ω) =
pe(ω)

maxs pe(s)
, p̆z(ω) =

pz(ω)

maxs pz(s)
. (7)

In the most general case ne and nz can be written as the sum of individual scores qe and qz as follows

ne ←
∑

`∈N (j)

qe (ri1 − ri2 | t) (8)

nz ←
∑

`∈N (j)

qz (ri | t) (9)

A confidence threshold t > 0 needs to be given for some variants of our algorithm, so to simplify the
exposition we include this parameter in the scores qe(· | t) and qz(· | t) regardless of whether it is used or
not. A summary of the score functions are given in Table I.
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Robust-`0 Robust-`0
Continuous Quantised Parallel-`0

qe(ri1 − ri2 | t) p̆e(ri1 − ri2 ) 1{p̆e(ri1−ri2 )≥t} 1{ri1=ri2}

qz(ri | t) p̆z(ri) 1{p̆z(ri)≥1−t} 1{ri=0}

TABLE I: Extensions of scores used in Expander `0-decoding to identify candidate updates to the sparse
signal x̂.

Algorithm 1: Robust-`0
Data: A ∈ Em×nk,ε,d ; y = Ax ∈ Rm for x ∈ χnk ; α ∈ (1, d]; µ, ν ∈ D(R); c ∈ (0, 1)
Result: x̂ ∈ Rn s.t. x̂ ≈ x
Estimate p̆z = p̆z(d, k,m, n, µ, ν) as in (7);
Estimate p̆e = p̆e(d, k,m, n, µ, ν) as in (7);
if quantised then

Use quantised scores given in Table I.
else

Use continuous scores given in Table I.
end
x̂← 0;
r̂ ← y;
t← 1;
while not converged and t > 0 do

x′ ← x̂;
r ← r̂;
for j ∈ [n] do

for i ∈ N (j) do
if 1− p̆z(ri) ≥ t then

ne ←
∑
`∈N (j) qe(ri − r` | t);

nz ←
∑
`∈N (j) qz(r` | t);

ω ← 1
ne

∑
`∈N (j) r`qe(ri − r` | t);

if ‖r − ωei‖1 ≤ ‖r‖1 and ne − nz ≥ α then
x′j ← x′j + ω;

end
end

end
end
x′ ← Hk(x′);
r ← y −Ax′;
t← t− c;
if ‖r‖1 < ‖r̂‖1 then

x̂← x′;
r̂ ← r;
if adaptive_k then

k0 ← k −
∑
j∈[n] p̆z(x̂j);

k0 ← max(k0, b m100c);
Recompute p̆z = p̆z(k0,m, n, µ, ν);
Recompute p̆e = p̆e(k0,m, n, µ, ν);

end
end

end
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A. Outline of the manuscript

The structure of this paper is as follows: Section II comprises a review of combinatorial compressed sensing
and the Parallel-`0 decoding algorithm extended here. Robust-`0 decoding and the associated scores (8)-(9)
are presented in Section III. In Section IV we present numerical experiments which demonstrate Robust-`0
to perform superior to a number of leading greedy and combinatorial compressed sensing algorithms.

II. BACKGROUND: COMBINATORIAL COMPRESSED SENSING AND `0-DECODING

As mentioned in the previous section, the branch of combinatorial compressed sensing measures x ∈ χnk
with the adjacency matrix of an expander graph. These matrices are of very low complexity in terms of
generation and storage, and also promise faster encoding and decoding than their dense counterparts, see
Theorem II.2. In this section we review the basic elements of expander graphs and combinatorial compressed
sensing.

There have been various algorithms proposed to reconstruct a sparse vector x from measurements y = Ax
when A is an expander matrix, see [17], [18], [20] and [19]; the work presented here starts with the Parallel-`0
algorithm and to improve this algorithm by making it robust to noisy measurements, results in Robust-`0
(Algorithm 1). The key observation for the Parallel-`0 algorithm is given by the following Lemma.

Algorithm 2: Parallel-`0 [1]

Data: A ∈ Em×nk,ε,d ; y = Ax ∈ Rm for x ∈ χnk ; α ∈ (1, d]
Result: x̂ ∈ Rn s.t. x̂ = x
x̂← 0, r ← y;
while not converged do

for j ∈ [n] do
u← 0;
for i ∈ N (j) do

if ri 6= 0 then
ne ← |{` ∈ N (j) : ri = r`}|;
nz ← |{` ∈ N (j) : r` = 0}|;
if ne − nz ≥ α then

uj ← ri;
end

end
end

end
x̂← x̂+ u;
r ← r −Ax̂;

end

Lemma II.1. Let y = Ax, x dissociated, A ∈ Em×nk,ε,d with ε < 1
4 . Then there exists a nonempty set

T ⊂ [n]× R such that
|{i ∈ N (j) : yi = ω}| ≥ (1− 2ε)d ∀(j, ω) ∈ T

and for every tuple in T that satisfies this property, we have w = xj .

This means that at each iteration, if the residual r is non-zero, i.e. if we have not yet found the correct x,
then there is a set of entries in x that we can change so that we reduce the number of non-zeros in r by at
least |T |(1− 2ε)d.

Theorem II.2 (Convergence of Algorithm 2 [1]). Let A ∈ Em×nk,ε,d and let ε ≤ 1
4 , and x ∈ χnk be dissociated.

Then, Parallel-`0 with α = (1−2ε)d can recover x from y = Ax in O(log k) iterations of complexity O(dn).

To put this result into context and show its applicability, we recall the remark after Definition I.3, stating
that random matrices as considered in this work are indeed expander matrices with high probability.

We furthermore emphasize the fact that the algorithm is designed in a way that allows for massively parallel
implementations.
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III. MAIN CONTRIBUTIONS: `0-DECODING FOR NOISY MEASUREMENTS

We now consider the case where the measurements y are subject to additive noise, i.e. instead of y = Ax,
we measure ŷ = y + η where η is a realization of a random variable with ηi ∼ ν.

Parallel-`0 is not able to cope with additive noise, as it needs to make decisions whether a value in ŷ
is zero and whether two values in ŷ are equal to each other. While for very small noise levels we could
consider two values as equal if they are within a certain number of standard deviations, for larger noise levels
the decision becomes more challenging. A discussed in Section I we need to know pz(ŷi) and pe(ŷi1 − ŷi2)
which correspond, respectively, to the probability of yi = 0 given that we observe ŷi and the probability of
yi1 = yi2 given that we observe ŷi1 − ŷi2 . The functions pz and pe depend on the parameters fed into the
generative model in Definition I.3 and in particular on the distribution of y and ŷ. Hence, since y is a vector
of sparse inner products we need to understand the limiting behaviour of sparse sums.

We include Definition III.1 in order to remind the reader of some actions on measures used in this
manuscript as so as to be relatively self contained.

Definition III.1 (Measures [23]). Let B(R) denote the Borel σ-algebra over R. If E ∈ B(R) let −E :=
{−x : x ∈ E}. Let µ ∈ D(R), we define the following measures.

1) The q-convolution,

µ0(E) = δ0(E) =

{
1 0 ∈ E
0 0 /∈ E ,∀E ∈ B(R)

µ1(E) = µ(E),∀E ∈ B(R)

µq+1(E) = (µq ∗ µ)(E),∀E ∈ B(R), q ∈ N

2) The negative measure,
µ−(E) = µ(−E), ∀E ∈ B(R)

3) The symmetrized measure,

µ̄(E) =
µ(E) + µ(−E)

2
, ∀E ∈ B(R)

4) The measure associated with the difference of two random variables,

µ̃(E) = (µ ∗ µ−)(E), ∀E ∈ B(R).

Lemma III.2 (Limiting distribution for sparse sums of random variables). Let p ∈ (0, 1), let µ ∈ D(R) and
let µq ∈ D(R) be its the q-fold convolution. For each n ≥ 1, let

sn:=

n∑
j=1

bjxj (10)

be such that,
1) xj

i.i.d.∼ µ for each j ∈ [n],
2) bj

i.i.d.∼ Ber(pnn ) for each j ∈ [n] with pn → p ∈ R as n→∞.

Then, as n→∞ it holds that sn
(d)→ s where

s ∼ exp(−p)
∑
q≥0

pq

q!
µq. (11)

Proof. Let ψsn(t) be the characteristic function of sn. Let x ∼ µ, then

ψsn(t) = E [exp(itsn)]

=

n∏
j=1

E [exp(itbjxj)]

=
((

1− pn
n

)
+
(pn
n

)
ψx(t)

)n
=

(
1 +

pn(ψx(t)− 1)

n

)n
.
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Taking the limit n→∞ we see that

lim
n→∞

ψsn(t) = exp(−p) exp(pψx(t)). (12)

Letting wq =
∑q
j=1 xj it holds by the independence of {x1, . . . , xq} that wq ∼ µq and

[ψx(t)]
q

= ψwq (t). (13)

Now, consider a random variable z distributed according to

z ∼ exp(−p)
∑
q≥0

pq

q!
µq. (14)

The characteristic function of z is given by

ψz(t) = E [exp(itz)]

= exp(−p)
∑
q≥0

pq

q!
ψwq (t)

= exp(−p)
∑
q≥0

pq

q!
(ψx(t))

q

= exp(−p)
∑
q≥0

(pψx(t))
q

q!

= exp(−p) exp(pψx(t)). (15)

Therefore (15) equals (12). By Lévy’s continuity Theroem pointwise convergence of the characteristic
functions implies weak convergence of the random variables (cf. [23, Theorem 15.23]) and hence the statement
follows.

Theorem III.3 (Distribution of ŷi and ŷi1 − ŷi2 ). Fix δ, ρ ∈ (0, 1) and for n ∈ N let m = δn, k = ρm and
d � m. Furthermore, let µ and ν be measures and assume that ŷ = y + η = Ax + η is drawn from the
model GM(n,m, k, d, µ, ν). Then as n→∞

ŷi
(d)→ ŷ∗i and ŷi1 − ŷi2

(d)→ ĝ∗

where

ŷ∗i ∼ exp(−dρ)
∑
q≥0

(dρ)q

q!
ν ∗ µq, (16)

ĝ∗ ∼ exp(−2dρ)
∑
q≥0

(2dρ)q

q!
ν̃ ∗ µ̄q. (17)

Proof. To show (16), let i ∈ [m] and

yi =

n∑
j=1

Ai,jxj .

By our assumptions on A and x,

P (Ai,jxj 6= 0) = P (Ai,j 6= 0 ∧ xj 6= 0)

= P (Ai,j 6= 0)P (xj 6= 0)

=
d

m

k

n

=
dρ

n

where for two events E1 and E2 we let E1 ∧ E2 be the conjunction of the events. Note that if Ai,jxj 6= 0,
then j ∈ supp(x) so Ai,jxj = xj ∼ µ. Hence, letting bj ∼ Ber

(
dρ
n

)
,

yi
(d)
=

n∑
j=1

bjxj .
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Invoking Lemma III.2 with pn = p = dρ we obtain that yi → y∗i as n→∞ where

y∗i ∼ exp(−dρ)
∑
q≥0

(dρ)q

q!
µq.

By the independence of y∗i and ηi, since ŷi = yi + ηi, the distribution of ŷ∗i is given by

ŷ∗i ∼

exp(−dρ)
∑
q≥0

(dρ)q

q!
µq

 ∗ ν. (18)

Equation (16) follows from (18) and the distributivity of the convolution operator.
To show (17), let i1, i2 ∈ [m] be such that i1 6= i2 and let

yi1 − yi2 =

n∑
j=1

(Ai1,j −Ai2,j)xj .

Similarly to the previous case, we compute

P ((Ai1,j −Ai2,j)xj 6= 0) = P (Ai1,j −Ai2,j 6= 0 ∧ xj 6= 0)

= P (Ai1,j −Ai2,j 6= 0)P (xj 6= 0)

= 2
d

m

(m− 1)− (d− 1)

m− 1

k

n

=
2dρ

n
(1− o(1))

Note that if (Ai1,j −Ai2,j)xj 6= 0, then j ∈ supp(x) and (Ai1,j −Ai2,j) is either +1 with probability 1
2 or

−1 with probability 1
2 . Then, Hence,

(Ai1,j −Ai2,j)xj ∼
{
µ with probability 1

2 ,
µ− with probability 1

2 ,

then,
(Ai1,j −Ai2,j)xj ∼ µ̄.

Letting b′j ∼ Ber
(

2dρ
n (1− o(1))

)
,

yi1 − yi2
(d)
=

n∑
j=1

b′jxj .

Again, invoking Lemma III.2 with pn = 2dρ(1 − o(1)) we obtain that p = 2dρ and also that as n → ∞,
yi1 − yi2 → g∗ with

y∗i1 − y
∗
i2 ∼ exp(−2dρ)

∑
q≥0

(2dρ)q

q!
µ̄q. (19)

Therefore, Given that ηi1 − ηi2 ∼ ν ∗ ν− and that

ŷi1 − ŷi2 = (yi1 − yi2) + (ηi1 − ηi2) ,

we convolve (19) with ν ∗ ν− to recover (17).

We are now ready to prove Theorem I.4,

Proof. Theorem I.4. Using Bayes rule we write

P(yi = 0|ŷi = ω) =
P(ŷi = ω ∧ yi = 0)

P(ŷi = ω)
. (20)

From (16) we can deduce that
P(ŷi = ω ∧ yi = 0) = exp(−dρ)ν(ω) (21)

and using equation (16) from Theorem III.3 we obtain that as n→∞,

P(ŷi = ω)→ exp(−dρ)
∑
q≥0

(dρ)q

q!
(ν ∗ µq)(ω). (22)
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Coupling (20), (22) and (21) yields (5).

Again, by Bayes rule,

P (yi1 = yi2 |ŷi1 − ŷi2 = ω) =
P (yi1 = yi2 ∧ ŷi1 − ŷi2 = ω)

P (ŷi1 − ŷi2 = ω)
. (23)

Noting that ŷi1 − ŷi2 = (yi1 − yi2) + (ηi1 − ηi2),

P (yi1 = yi2 ∧ ŷi1 − ŷi2 = ω) = ν̃(ω) (24)

By (16) from Theorem III.3 we obtain that as n→∞,

P(ŷi1 − ŷi2 = ω)→ exp(−2dρ)
∑
q≥0

(2dρ)q

q!
ν̃ ∗ µ̄q(ω) (25)

Coupling (23), (24), and (25) yields (6).

A. Explicit formulas for the centred Gaussian case

We further elucidate (5)-(6) from Theorem I.4 in the case when µ and ν are Gaussian with mean zero,
which are the distributions considered in Section IV. To this end, let µ = N (0, σ2

s) and ν = N (0, σ2
n). We

observe that in this case µ̄ = µ, µq = µ̄q = N (0, qσ2
s) and ν̃ = N (0, 2σ2

n). Hence, denoting by ϕ(· | σ2)
the probability density function of a centred Gaussian random variable with variance σ2, we obtain

pz(ω)→ ϕ(ω | σ2
n)∑

q≥0
(dρ)q

q! ϕ(ω | qσ2
s + σ2

n)
(26)

pe(ω)→ ϕ(ω | 2σ2
n)∑

q≥0
(2dρ)q

q! ϕ(ω | qσ2
s + 2σ2

n)
. (27)

1) Estimating the tails in the Gaussian case: We approximate the infinite sum in in the denominators of
(26) and (27) by doing an approximation to the tail of this summation.

Lemma III.4 (Sums of centred density functions). Let µi be the density function of a random varible with
mean zero and variance σ2

i and let αi > 0 be such that
∑
i αi = 1. Then, µ =

∑
i αiµi is the density

function of a random variable with mean zero and variance
∑
i αiσ

2
i .

Proof. Let x ∼ µ and xi ∼ µi be such that E [xi] = 0 and Var [xi] = σ2
i .

Var [x] = E[x2]

=

∫
ω2µ(ω)dω

=

∫
ω2

(∑
i

αiµi(ω)

)
dω

=
∑
i

αi

∫
ω2µi(ω)dω

=
∑
i

αiσ
2
i

To simplify notation let σ2
q = qσ2

s + σn for q ∈ N ∪ {0}. Consider the series in the denominator of (22)

S(ω) :=
∑̀
q=0

(dρ)q

q!
ϕ(ω | σ2

q ) +

∞∑
q=`+1

(dρ)q

q!
ϕ(ω | σ2

q ).

Let,

Rz(`) := exp(dρ)−
∑̀
q=0

(dρ)q

q!
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and write

Sa(ω) :=
∑̀
q=0

(dρ)q

q!
ϕ(ω | σ2

q ),

Sb(ω) :=

∞∑
q=`+1

(dρ)q

q!
ϕ(ω | σ2

q ).

Note that Sb/Rz satisfies the conditions of Lemma III.4 so it corresponds to the density function of a centred
random variable with variance

σ2
z =

1

Rz

∑̀
q=`+1

(dρ)q

q!
(qσ2

s + σ2
n)

=
σ2
s(dρ)Rz(`− 1) + σ2

nRz(`)

Rz(`)

Therefore,

pz(ω) ≈ ϕ(ω | σ2
n)∑`

q=0
(dρ)q

q! ϕ(ω | σ2
q ) +Rz(`)ϕ(ω | σ2

z)
. (28)

A similar argument shows that

pe(ω) ≈ ϕ(ω | 2σ2
n)∑`

q=0
(2dρ)q

q! ϕ(ω | σ2
q,e) +Re(`)ϕ(ω | σ2

e)
. (29)

Where σ2
q,e = qσ2

s + σ2
n, and

Re(`) = exp(2dρ)−
∑̀
q=0

(dρ)q

q!
,

σ2
e =

σ2
s(2dρ)Re(`− 1) + 2σ2

nRe(`)

Re(`)
.

B. Comparison with empirical probabilities

We test the approximations given in (28) and (29) by randomly generating ŷ and y according the generating
models GM(n, δn, ρδn, 7,N (0, 1),N (0, σ2)), for δ = 0.3, ρ ∈ {0.1, 0.3} and σ ∈ {10−3, 10−2}. The results
can be seen in Figure 2.

Overall the analytical expressions fit the empirical probabilities very well, indicating that the approximations
we made in the calculations above are justified. However, we observe that as ρ and especially σ increase,
both functions drop significantly. This means that for large values of these parameters, the noise eventually
dominates and it is difficult to decided whether values are zero or equal.

C. Scaled probabilities p̆z and p̆e
We mentioned in Section I that our algorithms do not implement the functions pz and pe exactly, but a

scaled version of these. As observed in Figure 2, the value of maxs pe(s) and maxs pz(s) varies significantly
as σ and ρ change. Algorithm 1 evaluates whether a given score is large or not by implementing a sweeping
parameter t that is set to one at the beginning of the algorithm and decreased by a constant c after every
iteration. In order to use a fixed initial t we consider the scaled probabilities p̆e and p̆z in (7); otherwise the
initial value of t would depend on σ and ρ.

D. Adaptive k

Algorithm 1 can optionally account for the sparsity of the current estimate via the flag adaptive_k.
In the noiseless model of r = Ax̂, an update of the form x̂ ← x̂ + ωej with Parallel-`0 guarantees that
j ∈ supp(x) so that at the next iteration the problem with residual r − ajω and (k − 1)-sparse signal is
considered. The adaptive_k flag updates the sparsity prior in x̂ after every update in hope of having more
reliable estimates of pe and pz . We will see in the numerical experiments that under the data generating
model that we tested this strategy does not bring substantial benefits. We don’t rule out the posssibility that
there are other signal and noise distributions for which this flag becomes especially useful, but we leave that
as future work.
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Fig. 2: Comparison of analytical and empirical probabilities of a value in the residual being zero or two
values in the residual being equal for ρ ∈ {0.1, 0.3} and σn ∈

{
10−3, 10−2

}
.

IV. NUMERICAL EXPERIMENTS

In this section we present numerical experiments which validate the efficacy of Robust-`0 decoding. In
particular, we contrast Robust-`0 with other state-of-the-art greedy algorithms for compressed sensing in
terms of their ability to recover the measured signal for varying problem sizes (k,m, n) as well as their
computational complexity. To facilitate reproducibility we begin by describing the stopping conditions and
measures used to denote successful recovery in the presence of noise in Section IV-A, along with how the
parameter c is varied in Section IV-B. We then present the main numerical results in Section IV-C where the
algorithms phase transitions and runtime are presented, along with Sections IV-D and IV-E which show further
details on Robust-`0 decoding’s performance as a function of noise variance and for extreme subsampling
respectively.

A. Stopping conditions

We are interested in the signal model y = Ax+ η where η ∼ N (0, σ2Im×m). If x̂ is an approximation to
x the residual is r = y −Ax̂. Note that if x̂ = x, then

‖r‖1 = ‖y −Ax̂‖1
= ‖y −Ax‖1
= ‖η‖1

and we should not seek reductions in the residual below ‖η‖1 which would result in fitting to the additive
noise. We further account for the variance of ‖η‖1 and denote the algorithm to have successfully recovered
x if x̂ satisfies

‖x− x̂‖1
‖x‖1

≤
E [‖η‖1] + C1

√
Var [‖η‖1]

‖x‖1
(30)
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(e) Phase transition σ = 0.01
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(i) Phase transition σ = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=
k/

m

cgiht:diamond

ssmp:cross

robust-l0-adaptive:point

robust-l0:asterisk

(j) Selection map σ = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

=m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=
k/

m

40

60

80

100

120

140

160

(k) Best time σ = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 = m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 =
 k

/m

1

1.5

2

2.5

3

3.5

4

4.5

(l) Timing ratio: Robust-`0, σ =
0.001

Fig. 3: Phase transitions, selection maps and timings for n = 218.

for some C1 ≥ 0. We should be aware that the right hand side of (30) might be greater than 1 for some
choices of k, m and σ. When this happens, the stopping condition (30) becomes invalid since we expect x̂
to have captured a proportion of the `1-energy of ‖x‖1. Hence, if the right hand side of (30) is greater than
1
10 we clip the upper bound at this value and use the stopping condition

‖x− x̂‖1
‖x‖1

≤ min

(
E [‖η‖1] + C1

√
Var [‖η‖1]

‖x‖1
,

1

10

)
. (31)

For the numerical experiments conducted in this section we consider nonzero entries in x drawn as xi ∼
N (0, 1), and noise ηi ∼ N (0, σ2) for which E [‖x‖1] = k

√
2
π and E [‖η‖1] = mσ

√
2
π and moreover

Var [‖η‖1] = mσ2
(
1− 2

π

)
, see e.g. [24].

B. Selection of parameter c in Algorithm 1

The sweeping parameter t in Algorithm 1 is initialised at 1 and updated by decreasing it by a constant value
c. We observed in our experiments that the quality of the phase transitions are sensitive on the parameter c
especially for low δ and ρ. We do not provide a way to fine-tune c, but we run our phase transitions with
the following choices:

1) If the algorithm is quantised,

c =


0.01 δ ≤ 0.05
0.05 δ > 0.05 and ρ ∈ (0, 0.1]
0.075 δ > 0.05 and ρ ∈ (0.1, 0.2]
0.1 δ > 0.05 and ρ ∈ (0.2, 1)

. (32)



13Algorithm adaptive_k quantised

Robust-`0 No No
Robust-`0-adaptive Yes No
Robust-`0-quantised No Yes
Robust-`0-adaptive-quantised Yes Yes

TABLE II: Variants of Robust-`0

2) If the algorithm is continuous,

c =

{
0.01 δ ≤ 0.05
0.025 δ > 0.05

. (33)

The values in (32) and (33) were chosen heuristically for ν and µ Gaussian.

C. Phase transitions and runtime

We benchmark the variants of Robust-`0 against other greedy algorithms via their phase-transitions and
runtime. The user can supply two binary flags, adaptive_k and quantised which yield four different
variants of Robust-`0. We assigned a unique label to each of these variants as described in Table II.

The phase transition of a compressed-sensing algorithm [25] is the largest value of k/m for which the
algorithm is typically able recovery all k sparse vectors with sparsity less than k for a fixed m/n. Hence,
for a fixed value of δ = m/n the phase transition of an algorithm is the largest value ρ∗(δ) for which the
algorithm converges for all ρ(δ) < ρ∗(δ). The value ρ∗(m/n) often converges to a fixed value as n→∞, so
phase transitions often partition the δ×ρ space into two regions: One in which the algorithm converges with
high probability and another in which the algorithm doesn’t converge with high probability. We benchmark
Robust-`0 against the algorithms presented in [18], [19], [26]. Specifically, our tests include the following
algorithms,

{Robust-`0, Robust-`0-adaptive, Robust-`0-quantised, Robust-`0-adaptive-quantised, SSMP, SMP, CGIHT}.

In the deterministic case Parallel-`0 was compared against a range of combinatorial compressed sensing
algorithms in [1]; out of those we have selected SSMP and SMP as these perform best and are similar in
nature to Robust-`0. We also compare with CGIHT, as this algorithm was shown to be the fastest among the
greedy algorithms compared in [13], [26]. Figures 3a, 3e and 3i show the phase transition curves for these
algorithms with σ = 10−3, 10−2, 10−1 respectively. The curves were computed by setting n = 218, d = 7,
and using the stopping condition ‖r‖1 ≤ E [‖η‖1] = mσ

√
2
π and a success condition (30) with C1 = 1. The

testing is done at m = δpn for

δp ∈ {0.02p : p ∈ [4]} ∪
{

0.1 +
89

1900
(p− 1) : p ∈ [20]

}
.

For each δp, we set ρ = 0.01 and generate 10 synthetic problems to apply the algorithms to, with a problem
generated as in GM with the given parameters and µ and ν being normal Gaussian. If at least one such
problem was recovered successfully, the sparsity ratio ρ is increased by 0.01 and the experiment is repeated.
Following the testing framework in [27], the recovery data is fitted using a logistic function and finally the
50% recovery transition function is computed and presented in the phase transition plots contained herein.
Figures 3b, 3f and 3j show a selection map for these algorithms. Namely, these plots indicate which algorithm
requires the least computational time1 at each point in the δ×ρ space where the algorithm converges. Finally,
Figures 3c, 3g and 3k show the total time for convergence in milliseconds for the fastest algorithm at each
point in the δ × ρ space. The ratio of the time for the second fastest algorithm over the time for the fastest
algorithm is given in Figures 3d, 3h, and 3l.

We can see from Figure 3 that CGIHT [26] dominates the upper region of the phase transition space, while
the Robust-`0 algorithms only converge for ρ / 0.3 which is consistent with the observed phase transitions
for Parallel-`0 [1]. In terms of speed, Robust-`0 seems to be the most competitive for σ ∈ {10−3, 10−2} and
ρ / 0.2. However, for large noise, σ = 10−1, CGIHT becomes the fastest algorithm of all. We remark that

1All the numerical results presented here were performed using a Linux machine with Intel Xeon E5-2643 CPUs 3.30 GHz, NVIDIA
Tesla K10 GPUs and executed from Matlab R2016b. The code was added to the GAGA library available at http://www.gaga4cs.
org/, and described in [28], so as to facilitate large scale benchmarking against the other algorithms presented here which are also
contained in the aforementioned library.
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while CGIHT performs very well in our numerical tests, the current theory developed for it does not hold in
the setting considered here, as it requires zero-mean columns in A.

Figure 4 shows the widths for the Robust-`0 algorithms. The widths measure how sharp the phase transition
of an algorithm is; namely, how thin the boundary between the region of recovery with high-probability
and the region of recovery where combinatorial search is needed. It has been shown that the widths of a
compressed sensing algorithm tend to zero as n→∞ when decoding with linear programming [29], and we
usually expect the same behaviour for other algorithms [26]. Figure 4 show that the widths for the Robust-`0
algorithms indeed decrease with n and with δ. The observed smoothness of the phase transition widths signal
also suggest that the stopping conditions of the algorithm are consistent for the problem under consideration.
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Fig. 4: Widths for Robust-`0 variants

D. Dependence on noise variance, σ

We now investigate the extent to which the phase transitions of the algorithm decrease as we increase the
noise level σ. To do this, we consider δ ∈ {0.01, 0.02, 0.1, 0.2} and for each value of δ we compute we
define the grid

σ ∈ {10−3+
i
10 : i ∈ {0} ∪ [20]}.

Then at each value of σ we let ρ = 0.01 and draw ten problem instances from GM with signal distribution
N (0, 1) and noise distribution N (0, σ2). If at least one of the problems was recovered successfully, then we
set ρ← ρ+ 0.01 and repeat the experiment. We do this procedure for each of the algorithms considered and
record the largest ρ having at least 50% success rate. The results are shown in Figure 5. In order to show
where the clipping in (31) becomes active, the figures also show a TOL-curve which partitions the space into
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Fig. 5: Decrease in phase transition for varying σ.

the region where the right hand side of (31) equals 1
10 (bottom region) and the region where it equals the

right hand side of (30) (top region). We can appreciate from Figure 5 that for small δ both Robust-`0 and
SSMP have the best recovery capabilities, with Robust-`0 being preferable for noise levels σ / 10−2 and
SSMP being better suited for larger noise levels. For larger δ, CGIHT is preferable except for very low noise
levels.

E. Phase transitions for extreme subsampling, δ � 1

The numerical experiments of Parallel-`0 in [1] showed flat phase transitions; that is, it was observed that
ρ∗(δ) remained approximately 0.3 as δ → 0 provided n was sufficiently large. While Robust-`0 does not
exhibit precisely the same behaviour in the presence of noise, we do observe that ρ∗(δ) remains nontrivial
even for δ as small as 10−3, again provided n is sufficiently large. We provide numerical evidence for this
in Figure 6. For each (δ, σ) ∈ {0.001, 0.01} × {0.001, 0.01} we let ρ = 0.01 and solve ten problems drawn
from GM with nonzero distribution N (0, 1) and noise distribution N (0, σ2). If at least one problem instance
converges, we average the run-time of the problems that converged and repeat the process with ρ← ρ+0.01.
We plot the timing at each ρ for parameter values for which at which at least 50% of the problems were
successfully recovered under the criteria (31).

It can be seen in Figure 6a-6d that the phase transition either remains nearly unchanged or increases as
n increases from 222 to 224. In particular, Figure 6a shows that for σ = 0.001 and δ = 0.001, the phase
transitions for all variants of the Robust-`0 algorithms in fact increase from ρ ≈ 0.08 to ρ ≈ 0.1 as n
increases from 222 to 224. Additionally, contrasting Figures 6a and 6b or 6c and 6d shows that a ten-fold
increase in σ has the expected effect of reducing the phase transition and increasing the computational time.
Figures 6a and 6b show the phase transition for Robust-`0 and Robust-`0-adaptive remain significant even
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for δ as small as 10−3. Figures 6c and 6d show results for the same set of experiments, but for δ = 0.01
which corresponds to a ten-fold increase in δ over the value used in Figures 6a and 6b. For σ = 0.001 the
phase transition of Robust-`0 reaches ρ ≈ 0.17, while for σ = 0.01 the phase transitions drop to ρ ≈ 0.12
and there is an increase in the computational time.
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Fig. 6: Phase transitions and timing Robust-`0 for δ � 1.

V. CONCLUSIONS

We have shown that the decoding framework presented in [1] can be extended to the case where the mea-
surements are corrupted by additive noise. This framework is extended by deriving the posterior distribution of
an entry in the residual being zero or being equal to another residual entry given the corrupted measurements.
This Bayesian approach to decoding was implemented in Robust-`0 and its four variants. We show that the
resulting algorithms inherits some desirable properties from Parallel-`0 like high phase transitions for low δ
and large n and low-latency. However, these qualities are weakened by the corruption of the measurements.
Our numerical experiments show that Robust-`0 should be considered in cases of moderate noise and ρ / 0.3.
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