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Expander `0-decoding
Rodrigo Mendoza-Smith and Jared Tanner

Abstract—We introduce two new algorithms, Serial-`0 and
Parallel-`0 for solving a large underdetermined linear system
of equations y = Ax ∈ Rm when it is known that x ∈ Rn has
at most k < m nonzero entries and that A is the adjacency
matrix of an unbalanced left d-regular expander graph. The
matrices in this class are sparse and allow a highly efficient
implementation. A number of algorithms have been designed to
work exclusively under this setting, composing the branch of
combinatorial compressed-sensing (CCS).

Serial-`0 and Parallel-`0 iteratively minimise ‖y − Ax̂‖0 by
successfully combining two desirable features of previous CCS
algorithms: the information-preserving strategy of ER [1], and
the parallel updating mechanism of SMP [2]. We are able to
link these elements and guarantee convergence in O(dn log k)
operations by assuming that the signal is dissociated, meaning
that all of the 2k subset sums of the support of x are pairwise
different. However, we observe empirically that the signal need
not be exactly dissociated in practice. Moreover, we observe
Serial-`0 and Parallel-`0 to be able to solve large scale problems
with a larger fraction of nonzeros than other algorithms when
the number of measurements is substantially less than the signal
length; in particular, they are able to reliably solve for a k-sparse
vector x ∈ Rn from m expander measurements with n/m = 103

and k/m up to four times greater than what is achievable by `1-
regularization from dense Gaussian measurements. Additionally,
due to their low computational complexity, Serial-`0 and Parallel-
`0 are observed to be able to solve large problems sizes in
substantially less time than other algorithms for compressed
sensing. In particular, Parallel-`0 is structured to take advantage
of massively parallel architectures.

I. INTRODUCTION

Compressed sensing [3, 4, 5, 6, 7, 8] considers the problem
of sampling and efficiently reconstructing a compressible finite
dimensional signal x ∈ Rn from far fewer measurements
than what Nyquist and Shannon deemed possible [9, 10]. In
its simplest form compressed sensing states that if x ∈ Rn

has at most k < n nonzero entries, then it can be sampled
from m linear measurements y = Ax ∈ Rm and that x
can be recovered from (y,A) with computationally efficient
algorithms provided m < n is sufficiently large, see [11].

The most widely studied sensing matrices A are from
the classes of: a) Gaussian or uniformly drawn projections
which are most amenable to precise analysis due to their
spherical symmetry, and b) partial Fourier matrices which
have important applications for tomography and have fast
transforms allowing A and A∗ to be applied in O(n log n)
operations. Unfortunately the partial Fourier matrices are not
known to allow the asymptotically optimal order number of
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measurements of m ∼ k ∼ n, rather the best analysis ensures
recovery for m ∼ k log5 n [11]. Sparse binary matrices with a
fixed number of non-zeros per column offer the possibility of
A and A∗ being applied in O(n) time and for asymptotically
optimal order number of measurements m ∼ k ∼ n [12, 13].
When restricting to these matrices, compressed sensing is
referred to as combinatorial compressed sensing, [13].

A. Combinatorial compressed sensing

The problem of sparse recovery with compressed sensing
resembles the problem of linear sketching in theoretical com-
puter science. This area considers sketching high dimensional
vectors x ∈ Rn using a sparse matrix A ∈ Rm×n with the aim
that Ax has lower dimensionality than x, but still preserves
some of its properties with high probability. In an attempt
to reconcile this area with the compressed-sensing paradigm,
[13] proposed sensing x ∈ χn

k using an expander matrix,
i.e. the adjacency matrix an unbalanced bipartite graph with
high connectivity properties1. We denote the m× n matrices
in this class by Em×n

k,ε,d , but abbreviate to Ek,ε,d when the
size is understood by its context. Expander matrices Em×n

k,ε,d

are sparse binary matrices with d � m ones per column,
but with their nonzeros distributed in such a way that any
submatrix composed of k columns has at least (1 − ε)kd
rows which are nonzero 2. This structure makes them suitable
for sparse recovery, and also makes them low complexity in
terms of storage, generation, and computation (see Table I).
Additionally, some applications like the single-pixel camera
[14] consider measurement devices with binary sensors that
inherently correspond to binary and sparse inner products, and
that unfortunately, fall outside the set of matrices for which
the widely used restricted isometry techniques apply.

The authors of [13] showed that, although being sparse,
expander matrices can sense elements in χn

k at the optimal
measurement rate O(k log(k/m)), and that these can be recov-
ered accurately and efficiently via `1-regularization. Following
this result, a series of algorithms designed specifically to work
with expander matrices was presented in [1, 2, 15, 16]. The
analysis of these algorithms requires the use of techniques and
ideas borrowed from combinatorics, which is why this branch
was labeled by [13] as combinatorial compressed sensing
(CCS). It is in this realm that we make our main contributions.

B. Main contributions

Our work is in the nexus of a series of papers [1, 2, 15, 16]
proposing iterative greedy algorithms for combinatorial com-

1See Section II-B for details.
2Such expander matrices can be generated by drawing i.i.d. columns with

the location of their nonzeros drawn uniformly from the
(m
d

)
support sets of

cardinality d, [12]
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Storage Generation A∗y m

Gaussian/Bernoulli O(mn) O(mn) O(mn) O(k log(n/k))

Partial Fourier O(m) O(m) O(n logn) O(k log5(n))

Expander O(dn) O(dn) O(dn) O(k log(n/k))

TABLE I: Complexity of measurement operators.

pressed sensing. The algorithms put forward in the aforemen-
tioned sequence of papers recover the sparsest solution of a
large underdetermined linear system of equations y = Ax by
iteratively refining an estimation x̂ using information about the
residual r = y −Ax̂. Though these algorithms have the same
high-level perspective3, their particulars are optimised to best
tradeoff speed, robustness, and recovery region; see Table II
for a summary. For instance, at each iteration, SMP [2] updates
several entries of x̂ in parallel, allowing it to provably recover
an arbitrary x ∈ χn

k in O(log ‖x‖1) iterations of complexity
O(dn + n log n). However, SMP is only able to recover the
sparsest solution when the fraction of nonzeros in the signal
is substantially less than other compressed sensing algorithms.
On the other hand, at each iteration, LDDSR [16] and ER [1]
update a single entry of x̂ in such a way that a contraction
of ‖y − Ax̂‖0 is guaranteed. This reduction in the residual’s
sparsity is achieved by exploiting an important property of
expander graphs, which we call the information-preserving
property (see Theorem II.4). Essentially, this property guar-
antees that most of the entries from x will appear repeatedly
as entries in y = Ax. In other words, it guarantees that for
most i ∈ [m], we will have yi ∈ {xj : j ∈ supp(x)}.
In [16] and [1], this property is used to give sufficient
conditions for decrease of ‖y − Ax̂‖0 under the regime of
single updating of x̂. However, this regime of single updating
in LDDSR and ER typically requires greater computational
time than existing compressed-sensing algorithms. Our main
contribution is in the design and analysis of an algorithmic
model that successfully combines the information-preserving
strategy of LDDSR and ER with the parallel updating scheme
of SMP. This synthesis is made possible by assuming that the
signal of interest is dissociated.

Definition I.1 (Dissociated signals). A signal x ∈ Rn is
dissociated if∑

j∈T1

xj 6=
∑
j∈T2

xj ∀ T1, T2 ⊂ supp(x) s.t. T1 6= T2. (1)

The name dissociated comes from the field of additive
combinatorics (See Definition 4.32 in [17]), where a set S
is called dissociated if the set of all sums of distinct elements
of S has maximal cardinality. Even though the model (1)
might seem restrictive, it need not be exactly fulfilled for
our algorithm to work. In fact, it is fulfilled almost surely
for isotropic signals, and more generally by any signal whose
nonzeros can be modelled as being drawn from a continuous
distribution. Moreover, it is discussed in Section IV-C3 that

3See Section III and Table II

non-dissociated signals, such as integer or binary signals,
can be recovered if instead the columns of A are scaled
by dissociated values, and the nonzeros of x are drawn
independently of A. Also, numerical experiments show that
the algorithm recovery ability decreases gracefully as the
dissociated property is lost by having a fraction of the nonzeros
in x be equal, see Figure 10,.

With this assumption, our contributions are a form of model-
based compressed sensing [18] in which apart from assuming
x ∈ χn

k , one also assumes special dependencies between
the values of its nonzeros with the goal to improve the
algorithms speed or recovery ability. Our contributions are
Serial-`0 and Parallel-`0, Algorithms 1 and 2 respectively, and
their convergence guarantees summarised in Theorem I.2.

Algorithm 1: Serial-`0
Data: A ∈ Em×n

k,ε,d ; y ∈ Rm; α ∈ (1, d]
Result: x̂ ∈ Rn s.t. y = Ax̂
x̂← 0, r ← y;
while not converged do

for j ∈ [n] do
T ∈ {ωj ∈ R : ‖r‖0 − ‖r − ωjaj‖0 ≥ α};
for ωj ∈ T do

x̂j ← x̂j + ωj ;
end
r ← y −Ax̂;

end
end

Algorithm 2: Parallel-`0
Data: A ∈ Em×n

k,ε,d ; y ∈ Rm; α ∈ (1, d]
Result: x̂ ∈ Rn s.t. y = Ax̂
x̂← 0, r ← y;
while not converged do

T ← {(j, ωj) ∈ [n]× R : ‖r‖0 − ‖r − ωjaj‖0 ≥ α};
for (j, ωj) ∈ T do

x̂j ← x̂j + ωj ;
end
r ← y −Ax̂;

end

Theorem I.2 (Convergence of Expander `0-Decoders). Let
A ∈ Em×n

k,ε,d and ε ≤ 1/4. and x ∈ χn
k be a dissociated signal.

Then, Serial-`0 and Parallel-`0 with α = (1−2ε)d can recover
x from y = Ax ∈ Rm in O(dn log k) operations.

The focus of this paper is on charting the development
of Serial-`0 and Parallel-`0 and on proving Theorem I.2. In
doing so, we contrast Serial-`0 and Parallel-`0 to the state-
of-the-art algorithms for compressed-sensing and show that
when the signal is dissociated, these are the fastest algorithms
available when implemented, respectively, in a serial or a
parallel architecture. We support these claims with a series
of numerical experiments that additionally show that any
loss in universality due to our signal model is traded off by
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unusually high recovery regions when δ := m/n is small and
substantially higher than those of previous CCS algorithms.

C. Outline

Section II gives the main background theory in expander
graphs necessary for our discussion. Then, Section III reviews
past advances in CCS, putting emphasis on deconstructing
these into their essential ideas, and on pointing out common
elements between them. Section IV contains our main contri-
butions: Serial-`0 and Parallel-`0. We prove Theorem I.2 and
point out some technical details regarding the implementation
of Serial-`0 and Parallel-`0. We also discuss some connections
of the dissociated model (1) with Information Theory. Finally,
in Section V we evaluate the empirical performance of these
algorithms with a series of numerical experiments.

II. BACKGROUND

In this section, we present the basic notions of graph theory
that are necessary for understanding our subsequent analyses,
as well as the relevant previous work in combinatorial com-
pressed sensing. We start by defining some notation.

A. Notation

For a subset S ⊂ Ω, we let |S| be its cardinality, and Ω \S
denote its complement. We adopt notation from combinatorics
and use the shorthand [n] := {1, . . . , n} for n ∈ N. We also
define [n](k) = {S ⊂ [n] : |S| = k} and [n](≤k) = {S ⊂
[n] : |S| ≤ k}. As mentioned in the previous section, for
x ∈ Rn, we let supp(x) = {i : xi 6= 0} be its support, and
argsupp(x) = {xi : i ∈ supp(x)} be the set of nonzero values
in x. With this, we define ‖x‖0 = |supp(x)|, and χn

k = {x ∈
Rn : ‖x‖0 ≤ k}; vectors in χn

k are said to be k-sparse. We
let Hk : Rn → χn

k be the hard thresholding operator that sets
to zero all but the k largest elements in x. Throughout this
work, we implicitly assume that x ∈ Rn, y ∈ Rm, and that
A ∈ Rm×n is a binary sparse matrix with d ones per column.
It is also implicitly assumed that m < n and that ‖x‖0 < m.
For a given signal x, we will use k to refer to its sparsity,
unless we specify otherwise.

B. Expander graphs

A bipartite graph is a 3-tuple G = (U, V,E) such that
U∩V = ∅ and E ⊂ U×V . Elements in U∪V are called nodes,
while tuples in E are called edges. Under the assumption that
|U | = n and |V | = m, we abuse notation and let U = [n] be
the set of left-nodes, and V = [m] be the set of right-nodes.
A bipartite graph is said to be left d-regular if the number of
edges emanating from each left node is identically d, and is
said to be unbalanced if m < n. For S ⊂ U ∪ V we define
N (S) ⊂ U ∪ V to be the neighbourhood of S, i.e. the set of
nodes in U ∪ V that are connected to S through an element
of E. We note that for bipartite graphs, N (S) ⊂ V only if
S ⊂ U , and N (S) ⊂ U only if S ⊂ V . An expander graph
(Figure 1) is an unbalanced, left d-regular, bipartite graph that
is well-connected in the sense of the following definition.

Definition II.1 (Expander graph). An unbalanced, left d-
regular, bipartite graph G = ([n], [m], E) is a (k, ε, d)-
expander if

|N (S)| > (1− ε)d|S| ∀ S ∈ [n](≤k). (2)

We call ε ∈ (0, 1) the expansion parameter of the graph.

[n]

[m]

Fig. 1: Schematic of an expander graph with d = 3. Every
left d-regular bipartite graph is an expander for some k and ε

Hence, the expander graphs that we consider can be thought
of as tuples G = ([n], [m], E) such that all subsets S ∈ [n](≤k)

have at most εd|S| fewer neighbours than the number of
edges emanating from S. It will be convenient to think of
an expander in linear algebra terms, which can be done via its
adjacency matrix.

Definition II.2 (Expander matrix Em×n
k,ε,d ). The adjacency

matrix of an unbalanced, left d-regular, bipartite graph G =
([n], [m], E) is the binary sparse matrix A ∈ Rm×n defined
as

Aij =

{
1 i ∈ N (j) ⊂ [m]
0 otherwise. (3)

We let Ek,ε,d be a the set of adjacency matrices of (k, ε, d)-
expander graphs.

We note that A ∈ Em×n
k,ε,d is a sparse binary matrix with

exactly d ones per column, and also that any left d-regular
bipartite graph will satisfy (2) for some k and ε. As mentioned
previously, [13] showed that these matrices possess a bounded
restricted isometry constant (RIC) in the `1 norm in the linear
growth asymptotic where k ∼ m ∼ n → ∞; making these
matrices computationally highly attractive for compressed
sensing. The existence of expander graphs with optimal mea-
surement rate of m = O(k log(n/k)), is addressed in the
following theorem.

Theorem II.3 (Existence of optimal expanders [19, 20]). For
any n/2 ≥ k ≥ 1 and ε > 0, there is a (k, ε, d)-expander with

d = O(log(n/k)/ε), and m = O(k log(n/k)/ε2). (4)

Theorem II.3 also implies that in the linear growth asymp-
totic of k ∼ m ∼ n→∞ and for a fixed ε > 0, it holds that
d = O(1); that is, the number of nonzeros per column does not
increase with the problem size. Apart from this fact, expander
matrices are of interest in compressed sensing because they
are nearly information preserving, meaning that for x ∈ χn

k at
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least (1− 2ε)kd entries of y = Ax equal a nonzero value of
x. This property is guaranteed by Lemma II.4.

Lemma II.4 (Information-preserving property). Let G =
([n], [m], E) be an unbalanced, left d-regular, bipartite graph,
and S ∈ [n](≤k). Define,

N1(S) = {i ∈ N (S) : |N (i) ∩ S| = 1}, (5)

and
N>1(S) = N (S) \ N1(S). (6)

Then, G is a (k, ε, d)-expander graph if and only if

|N1(S)| > (1− 2ε)d|S| ∀ S ∈ [n](≤k). (7)

Proof: See Appendix A.
The information-preserving property is widely used in the

analysis of CCS, and is a central piece in the analysis of our
algorithms as it implies the lower `1-RIC bound [13]. Finally,
we remark that adjacency matrices of expander graphs are
not only useful for compressed-sensing, but also for a number
of applications including linear sketching, data-stream com-
puting, graph sketching, combinatorial group testing, network
routing, error-correcting codes, fault-tolerance, and distributed
storage [13, 20].

III. OVERVIEW OF CCS PRIOR ART

Iterative greedy algorithms for compressed sensing seek the
sparsest solution to a large underdetermined linear system
of equations y = Ax and typically do so by operating on
the residual r = y − Ax̂, where x̂ is an estimate of the
sparsest solution. Algorithms for combinatorial compressed
sensing differ by considering updating the jth entry of the
approximation, x̂j , based on a non inner product score sj ∈ R
dependent on rN (j); that is, on the residual restricted to the
support set of the jth column of A. In order to standardise the
convergence rate guarantees of previous CCS, we define the
notion of an iteration as follows.

Definition III.1 (Iteration). Let A ∈ Rm×n, x ∈ Rn, and y =
Ax. For an iterative greedy algorithm updating an estimation
x̂ ∈ Rn of x from a residual r = y−Ax̂, an iteration is defined
as the sequence of steps performed between two updates of r.

In the remainder of this section we deconstruct past CCS
algorithms into their essential components so as to give a high-
level overview of their shared characteristics.

A. Sparse Matching Pursuit (SMP)

SMP was proposed in [2] to decode x̂ from y = Ax with
a voting-like mechanism in the spirit of the count-median
algorithm from data-stream computing (see [21] for details).
SMP can also be viewed as an expander adaptation of the
Iterative Hard Thresholding algorithm (IHT) [22], which uses
the line-search x̂← Hk[x̂+p] to minimise ‖y−Ax̂‖22 over χn

k ,
indeed it was rediscovered from this perspective in [11][pp.
452] where it is referred to as EIHT. Due to the structure of
expander matrices, SMP chooses the direction p =M(y−Ax̂)
with M : Rm → Rn defined as

[M(r)]j = median(rN (j)). (8)

After thresholding, this choice yields the iteration,

x̂← Hk [x̂+H2k[M(y −Ax̂)]] . (9)

SMP and its theoretical guarantees are stated in Algorithm 3
and Theorem III.2.

Algorithm 3: SMP [2]

Data: A ∈ Em×n
k,ε,d ; y ∈ Rm

Result: x̂ ∈ Rn s.t. ‖x− x̂‖1 = O(‖y −Ax‖1/d)
x̂← 0, r ← y;
while not converged do

x̂← Hk [x̂+H2k[M(r)]];
r ← y −Ax̂;

end

Theorem III.2 (SMP [2]). Let A ∈ Em×n
k,ε,d and let y = Ax+η

for x ∈ χn
k . Then, there exists an ε � 1 such that SMP

recovers x̂ ∈ Rn such that ‖x − x̂‖1 = O(‖η‖1/d). The
algorithm terminates in O(log(d‖x‖1/‖η‖1)) iterations with
complexity O(nd+ n log n).

B. Sequential Sparse Matching Pursuit (SSMP)
It was observed in [15] that SMP typically failed to converge

to the sought sparsest solution when the problem parameters
fall outside the region of theoretical guarantees. Though SMP
updates each entry in x to individually reduce the `1 norm
of the residual, by updating multiple values of x in parallel
causes SMP to diverge even for moderately small ratios of
k/m. To overcome these limitations, the authors proposed
SSMP, which updates x̂ sequentially rather than in parallel.
That is, at each iteration, SSMP will look for a single node
j ∈ [n] and an update ω ∈ R that minimise ‖r − ωaj‖1,
which can be found by computing arg maxj∈[n]M(r), see
the discussion in Section III-E2. This approach results in a
strict decrease in ‖r‖1, but the sequential update results in
an overall increase in computational complexity, see Table II.
SSMP and its theoretical guarantees are stated in Algorithm 4
and Theorem III.3.

Algorithm 4: SSMP [15]

Data: A ∈ Em×n
k,ε,d ; y ∈ Rm; c > 1;

Result: x̂ ∈ Rn s.t. ‖x− x̂‖1 = O(‖y −Ax‖1/d)
x̂← 0, r ← y;
while not converged do

Find (j, ω) ∈ [n]× R s.t. ‖r − ωaj‖1 is minimized;
x̂j ← x̂j + ω;
Perform x̂← Hk[x̂] every (c− 1)k iterations;
r ← y −Ax̂;

end

Theorem III.3 (SSMP [15]). Let A ∈ E(c+1)k,ε,d and let
y = Ax + η for x ∈ χn

k . Then, there exists an ε � 1 such
that SSMP with fixed c > 1 recovers x̂ ∈ Rn such that ‖x−
x̂‖1 = O(‖η‖1). The algorithm terminates in O(k) iterations
of complexity O

(
d3n
m + n+

(
n
k log n

)
log ‖x‖1

)
.
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C. Left Degree Dependent Signal Recovery (LDDSR)

LDDSR was proposed in [16] and decodes by exploiting
the information preserving property given in Lemma II.4.
The main insight is that one can lower bound the number
of elements in {i ∈ [m] : yi ∈ argsupp(x)}, and use the
structure of A to find a j ∈ [n] and a nonzero value ω ∈ R
that appears more than d/2 times in rN (j) ∈ Rd. It is shown
in [16] that updating x̂j ← x̂j + ω guarantees a decrease in
‖r‖0 when ε = 1/4. LDDSR and its theoretical guarantees
are stated in Algorithm 5 and Theorem III.4.

Algorithm 5: LDDSR [16]

Data: A ∈ Em×n
k,ε,d ; y ∈ Rm

Result: x̂ ∈ Rn s.t. y = Ax̂
x̂← 0, r ← y;
while not converged do

Find (j, ω) ∈ [n]× R \ {0} s.t.
|{i ∈ N (j) : ri = ω}| > d

2 ;
x̂j ← x̂j + ω;
r ← y −Ax̂;

end

Theorem III.4 (LDDSR [16]). Let A ∈ Em×n
k,ε,d with ε = 1/4

and x ∈ χn
k . Given y = Ax, LDDSR recovers x in at most

O(dk) iterations with complexity O(d3n
m + n).

D. Expander Recovery (ER)

ER [1] differs from LDDSR by considering ε ≤ 1/4 and
suitably adapting the set of indices from which an entry in
x̂ may be updated. This modification allows the number of
iterations guaranteed to be improved, see Theorem III.4. In
particular, ER gurantees convergence in O(k) iterations of
complexity O(nd). ER and its theoretical guarantees are stated
in Algorithm 6 and Theorem III.5.

Algorithm 6: ER [1]

Data: A ∈ Em×n
k,ε,d ; y ∈ Rm

Result: x̂ ∈ Rn s.t. y = Ax̂
x̂← 0, r ← y;
while not converged do

Find (j, ω) ∈ [n]× R \ {0} s.t.
|{i ∈ N (j) : ri = ω}| ≥ (1− 2ε)d.;
x̂j ← x̂j + ω;
r ← y −Ax̂;

end

Theorem III.5 (ER [1]). Let A ∈ E2k,ε,d with ε ≤ 1/4 and
m = O(k log(n/k)). Then, for any x ∈ χn

k , given y = Ax, ER
recovers x in at most O(k) iterations of complexity O(d3n

m +
n).

Though ER seemingly requires knowledge of ε to imple-
ment, which is NP-hard to compute, knowledge of ε can be

circumvented by selecting the node to update by

arg max
j∈[n]

∣∣{i ∈ N (j) : ri = mode(rN (j))}
∣∣ . (10)

E. Discussion

Having introduced these algorithms, we now point out some
important commonalities between them.

1) Iterative greedy algorithms: The CCS algorithms we
have presented share the structure of Algorithm 7.

Algorithm 7: Iterative greedy CCS algorithms
Data: A ∈ Rm×n; y ∈ Rm

Result: x̂ ∈ Rn s.t. y = Ax̂
x̂← 0, r ← y;
while not converged do

Compute a score sj and an update uj ∀ j ∈ [n];
Select S ⊂ [n] based on a rule on sj ;
x̂j ← x̂j + uj for j ∈ S;
k-threshold x̂;
r ← y −Ax̂;

end

The dominant computational cost in CCS greedy algorithms
is concentrated in computing sj and uj , and in selecting the
set S of nodes that will be updated. At each step of these
algorithms, a subset S ⊂ [n] is selected. In SMP, we have
S = [n] which makes it of sublinear complexity in ‖x‖1, but
typically diverges for even moderate values of ρ := k/m. All
other algorithms update a single entry of x̂ per iteration; that
is, they choose S ⊂ [n] with |S| = 1. This brings benefits in
terms of convergence and recovery region, but compromises
the computational complexity of the algorithms. A summary
of these properties is given in Table II.

2) Median minimises ‖r‖1: The operation median(rN (j))
can be recast as the problem of finding the scalar ω ∈ R that
minimises ‖r − ωaj‖1. To see this, note that the function

‖r − ωaj‖1 =
∑

i∈N (j)

|ri − ω|+ constant (11)

is at a minimum when |{i ∈ N (j) : ri − ω > 0}| = |{i ∈
N (j) : ri − ω < 0}|. Then, by definition of the median,

arg min
ω∈R

‖r − ωaj‖1 = median(rN (j)) (12)

This is independent of the expansion parameter ε.
3) Mode does not minimise ‖r‖0: In [1, 16], it is shown

that Algorithms 5 and 6 use Lemma II.4 to find a pair (j, ω)
such that

‖y −A(x̂+ ωej)‖0 < ‖y −Ax̂‖0 − (1− 4ε)d. (13)

However, when (y−Ax̂)N (j) does not contain any zeros, we
can guarantee that

‖y −A(x̂+ ωej)‖0 < ‖y −Ax̂‖0 − (1− 2ε)d. (14)

For dissociated signals, where
∑

j∈supp(x) xj 6= 0, we can
always ensure that the greater contraction rate will be achieved.
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4) Updating sj and uj: Algorithms 4, 5, 6 need to compute
a score sj = sj(rN (j)) for each j ∈ [n], which can be done
at cost O(dn). It is important to note that they do not need to
recompute all the scores at each iteration. A common strategy
is to compute each of the scores once and store them with
their corresponding node j ∈ [n] in some data structure (like
priority queues [15] or red-black trees [1]). Then, at each
iteration, we can efficiently request the node j ∈ [n] that
maximises the score (median, mode, etc.) and use it to update
x̂j . This update will affect d = |N (j)| entries of the residual,
so we only need to recompute the scores corresponding to
|
⋃

i∈N (j)N (i)| = O(d2n/m) right nodes.

IV. MAIN CONTRIBUTIONS: ITERATIVE `0-MINIMISATION

Our main contributions, Serial-`0 and Parallel-`0, advance
combinatorial compressed sensing by having comparatively
high phase transitions while retaining the low computa-
tional complexity of SMP and the parallel implementation
of LDDSR. In particular, Parallel-`0 is observed to typically
recover the sparsest solution of underdetermined systems of
equations in less time than any other compressed sensing
algorithm when the signal is dissociated and the sensing matrix
is an expander graph.

Serial-`0 and Parallel-`0 look for a solution by identifying
nodes which if updated sequentially would strictly reduce the
‖r‖0 by at least α. That is, they will choose a coordinate j of
x, and an update value ω such that,

(j, ω) ∈ [n]× R s.t. ‖r‖0 − ‖r − ωaj‖0 ≥ α, (15)

for some α ∈ (1, d]. By selecting a pair (j, ω) satisfying
(15), Serial-`0 yields a decrease in ‖r‖0 at every update,
and is guaranteed to converge in O(n log k) iterations of
computational complexity O(d) if the signal is dissociated.
Parallel-`0 is designed similarly, but adapted to be able to take
full advantage of modern massively parallel computational
resources. Indeed, Parallel-`0 selects and update all pairs (j, ω)
satisfying (15) and updates these values in x in parallel.
Under this updating scheme, a strict contraction in ‖r‖0 is
guaranteed at every iteration when the signal is dissociated
and α = (1− 2ε)d with ε ≤ 1/4, though we show in Section
V that one can fix α = 2 and get high phase transitions and
exceptional speed.

Section IV-A presents the key technical lemmas that explain
the behaviour of an iteration of Serial-`0 and Parallel-`0. In
particular, technical lemmas are stated to show how often
values in Ax appear when x ∈ χn

k and A ∈ Em×n
k,ε,d , and that

when a value in Ax appears sufficiently often it must be a
value from x at a specified location. This property ensures
the algorithm updates its approximation x̂ with values xj in
the jth entry, that is with the exact values from x at the
correct locations. The dissociated signal model, Definition I.1,
is an essential component in the analysis presented in Section
IV-A, though we will observe that the algorithms’ recovery
region degrade gracefully as the fraction of duplicate entries
in x increases. The convergence rate of Serial-`0 and Parallel-
`0 are presented in Section IV-B, and together they establish
Theorem I.2.

A. Technical lemmas

Lemma IV.1 (Properties of dissociated signals). Let x ∈ χn
k

be dissociated. Then,
(i) xi 6= xj ∀ i, j ∈ supp(x), i 6= j.

(ii)
∑

j∈T xj 6= 0 ∀ ∅ 6= T ⊂ supp(x).

Proof: The result follows from (1). For (i) we set T1 =
{i} and T2 = {j}, and for (ii) we let T2 = ∅.

Lemma IV.2 (Bounded frequency of values in expander mea-
surements of dissociated signals). Let x ∈ χn

k be dissociated,
A ∈ Em×n

k,ε,d , and ω a nonzero value in Ax. Then, there is a
unique set T ⊂ supp(x) such that ω =

∑
j∈T xj and the value

ω occurs in y at most d times,

|{i ∈ [m] : yi = ω}| ≤ d ∀ ω 6= 0. (16)

Proof: The uniqueness of the set T ⊂ supp(x) such that
ω =

∑
j∈T xj follows by the definition of dissociated. Since

|N (j)| = d for all j ∈ [n], we have that,

|{i ∈ [m] : yi = ω}| =

∣∣∣∣∣∣
⋂
j∈T
N (j)

∣∣∣∣∣∣ ≤ |N (j0)| = d (17)

for any j0 ∈ T .

Lemma IV.3 (Pairwise column overlap). Let A ∈ Em×n
k,ε,d . If

ε ≤ 1/4, every pair of columns of A intersect in less than
(1− 2ε)d rows, that is, for all j1, j2 ∈ [n] with j1 6= j2∣∣∣N (j1)

⋂
N (j2)

∣∣∣ < (1− 2ε)d. (18)

Proof: Let S ⊂ [n] be such that |S| = 2 then

|N (S)| > 2(1− ε)d ≥ 2d− (1− 2ε)d, (19)

where the first inequality is Definition II.1 and the second
inequality follows from ε ≤ 1/4. However, |N (S)| can be
rewritten as

|N (S)| = |N (j1)|+ |N (j2)| −
∣∣∣N (j1)

⋂
N (j2)

∣∣∣ , (20)

for some j1, j2 ∈ [n]. Coupling (20) with (19) gives (18).

Lemma IV.4 (Progress). Let y = Ax for dissociated x ∈ χn
k

and A ∈ Em×n
k,ε,d with ε ≤ 1/4. There is a pair (j, ω) ∈ [n]×R

such that

|{i ∈ N (j) : yi = ω}| ≥ (1− 2ε)d. (21)

Proof: Let S = supp(x), then by the information-
preserving property (7) it holds that |N1(S)| > (1− 2ε)d|S|,
where N1(S) is defined in (5), or alternatively, by N1(S) =
{i ∈ [m] : yi = xj , j ∈ S} in the context of dissociated
signals. Given the lower bound in |N1(S)| > (1 − 2ε)d|S|,
if |S| 6= 0, at least one j ∈ S must have at least (1 − 2ε)d
neighbours in y with identical nonzero entries. Letting ω take
the value of such repeated nonzeros in y gives the required
pair (j, ω) ∈ [n]× R.

Lemma IV.5 (Support identification). Let y = Ax for disso-
ciated x ∈ χn

k and A ∈ Em×n
k,ε,d with ε ≤ 1/4. Let ω 6= 0 be

such that (21) and ω = xj .
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Objective Score Signal Concurrency Number of iterations Iteration cost
Pr

io
r

ar
t

SMP [2] `1 median any parallel O(log ‖x‖1) O(nd+ n logn)

SSMP [15] `1 median any serial O(k) O(d3n/m+ n+ (n
k
logn) log ‖x‖1)

LDDSR [16] `0 mode any serial O(dk) O( d
3n
m

+ n)

parallel-LDDSR `0 mode dissociated parallel O(log k) O(nd)

ER [1] `0 mode any serial O(k) O( d
3n
m

+ n)

C
on

tr
ib

ut
io

ns

serial-`0 `0 `0-decrease dissociated serial O(n log k) O(d)

parallel-`0 `0 `0-decrease dissociated parallel O(log k) O(nd)

TABLE II: Summary of prior art in combinatorial compressed-sensing.

Proof: Our claim is that for any ω which is a nonzero
value from y, if the cardinality condition (21) is satisfied then
the value ω =

∑
j∈T xj occurs for the set T being a singleton,

|T | = 1. Lemma IV.2 states that T is unique and that

|{i ∈ N (j) : yi = ω}| =

∣∣∣∣∣∣
⋂
j∈T
N (j)

∣∣∣∣∣∣ . (22)

If |T | > 1 then the above is not more than the cardinality of
the intersection of any two of the sets N (j1) and N (j2), and
by (18) in Lemma IV.3 that is less than (1 − 2ε)d which
contradicts the cardinality condition (21) and consequently
|T | ≤ 1. However, Lemma IV.4 guarantees that |T | > 0, so
|T | = 1 and ω = xj .

Equipped with Lemmas IV.1 - IV.5 we prove Theorem
I.2 considering Serial-`0 and Parallel-`0 separately, beginning
with the later. Note that since x ∈ χn

k and the algorithm only
sets entries in x̂ to the correct values of x, then x− x̂ ∈ χn

k ,
and Lemmas IV.4 and IV.5 hold with y replaced by r =
y −A(x− x̂).

B. Proof of Theorem I.2

Theorem IV.6 (Convergence of Parallel-`0). Let A ∈ Em×n
k,ε,d

and let ε ≤ 1/4, and x ∈ χn
k be dissociated. Then, Parallel-`0

with α = (1 − 2ε)d can recover x from y = Ax ∈ Rm in
O(log k) iterations of complexity O(dn).

Proof: Let x̂ = 0 be our initial approximation to x ∈ χn
k .

During the `th iteration of Parallel-`0, let S` = supp(x − x̂)
and include a subscript on the identification set T = T` ⊂ [n].
As A ∈ Em×n

k,ε,d and ε ≤ 1/4, by Lemma IV.5 and the required
entry-wise reduction in the residual by at least α = (1−2ε)d,
it follows that Parallel-`0 only sets entries in x̂ to the correct
values of x and as a result ‖x − x̂‖0 ≤ ‖x‖0 = k for every
iteration. Moreover, by Lemma IV.4, the set T` 6= ∅ as long
as x 6= x̂, so the algorithm eventually converges.

In fact, we show that the rate of reduction of ‖x− x̂‖0 per
iteration is by at least a fixed fraction 2εd

1+b2εdc . As A ∈ Em×n
k,ε,d

has d nonzeros per column, the reduction in the cardinality of
the residual, say ‖r`‖0 − ‖r`+1‖0, can be at most d|T`|. That

is,
‖r`‖0 − ‖r`+1‖0 ≤ d|T`|. (23)

To establish a fractional decrease in |S`+1| we develop a lower
bound on ‖r`‖0−‖r`+1‖0. For Q ⊂ S` define the set N S`

1 (Q)
to be the set of nodes in N1(S`) and such that i ∈ N (j) for
some j ∈ Q, i.e.

N S`
1 (Q) = {i ∈ N1(S`) : i ∈ N (j), j ∈ Q}. (24)

Consider the partition S` = T` ∪ (S` \T`) and rewrite N1(S`)
as the disjoint union

N1(S`) = N S`
1 (T`) ∪N S`

1 (S` \ T`). (25)

Note that N S`
1 (T`) 6= N1(T`), and that by (24) and the

dissociated signal model, N S`
1 (T`) ⊂ [m] is the set of indices

in r` that are identical to a nonzero in x and that have a
frequency of at least α = (1− 2ε)d, so

‖r`‖0 − ‖r`+1‖0 ≥ |NS`
1 (T`)|. (26)

At iteration `, if T` = S`, the full support of x is correctly
identified, so x = x̂ after updating x̂. Otherwise, T` 6= S` and
the set S`\T` is not identified by the algorithm at this iteration.
We derive a lower bound on |N S`

1 (T`)| by considering two
cases: α ∈ N and α /∈ N.

If α ∈ N, then each node in S` \ T` has at most α − 1
duplicates in r`, so∣∣∣N S`

1 (S` \ T`)
∣∣∣ ≤ (α− 1) |S` \ T`|. (27)

Using the the information-preserving property (7) and the
identity given in (24) it follows that

|N S`
1 (T`)|+ |N S`

1 (S` \ T`)|
> (1− 2ε)d (|T`|+ |S` \ T`|)
= (1− 2ε)d|T`|+ |S` \ T`|+ (α− 1)|S` \ T`|. (28)

Now, using (27) to lower bound (28), and solving for
|N S`

1 (T`)| gives

|N S`
1 (T`)| ≥ (1− 2ε)d|T`|+ |S` \ T`|. (29)
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By coupling (29), (26), and (23) into a chain of inequalities it
is seen that

(1− 2ε)d|T`|+ (|S`| − |T`|) ≤ d|T`|, (30)

which simplifies to

|T`| ≥
1

1 + 2εd
|S`|. (31)

If α /∈ N, then each node in S` \ T` has at most bαc
duplicates in r`, so∣∣∣N S`

1 (S` \ T`)
∣∣∣ ≤ bαc|S` \ T`|. (32)

Similarly as in the former case, using (24) and the the
information-preserving property (5), we obtain

|NS`
1 (T`)|+ |N S`

1 (S` \ T`)|
> (1− 2ε)d (|T`|+ |S` \ T`|)
= (1− 2ε)d|T`|+ (α− bαc)|S` \ T`|+ bαc|S` \ T`|. (33)

Just as in the previous case, (33) is bounded from below using
(32), and the resulting inequality is used to get

|N S`
1 (T`)| ≥ (1− 2ε)d|T`|+ (α− bαc)|S` \ T`|. (34)

Inequalities (34), (26), and (23) are then used to derive

α|T`|+ (α− bαc)(|S`| − |T`|) ≤ d|T`|. (35)

It follows from α = (1− 2ε)d /∈ N and the properties of step
functions that (35) is equivalent to

|T`| ≥
1− 2εd+ b2εdc

1 + b2εdc
|S`|. (36)

Finally, note that (36) reduces to (31) when α ∈ N, so using
S`+1 = S` \ T` and (36), we conclude that

|S`+1| ≤
2εd

1 + b2εdc
|S`|. (37)

Since |S0| = k it follows that Parallel-`0 will have con-
verged after `∗ iterations when k(2εd/(1 + b2εdc))`∗ < 1,
which is achieved for

`∗ ≥
(

log−1
(

1 + b2εdc
2εd

))
log k. (38)

Each iteration of Parallel-`0 involves computing (21) for each
j ∈ [n], which is equivalent to n instances of finding the
mode of a vector of length d which can be solved in O(d)
complexity provided α > bd/2c[23].

Theorem IV.7 (Convergence of Serial-`0). Let A ∈ Em×n
k,ε,d and

let ε ≤ 1/4, and x ∈ χn
k be a dissociated signal. Then, Serial-

`0 with α = (1− 2ε)d can recover x from y = Ax ∈ Rm in
O(n log k) iterations with complexity O(d).

Proof: The loop over j ∈ [n] for Serial-`0 identifies
singletons T to update values in x̂ in serial. The union of
the singletons for j ∈ [n] includes the set of all nodes for
which the residual would be reduced by at least α if one were
to forgo the serial update in x̂. For α = (1− 2ε)d, the proof
of convergence for Theorem IV.6 establishes that this results
in a reduction of the cardinality of supp(x− x̂) by at least a

fraction 2εd/(1 + b2εdc). That is, for p an integer, Serial-`0
satisfies

|supp(x− x̂)| ≤ k
(

2εd

1 + b2εdc

)p

(39)

after ` = pn iterations, and converges to x̂ = x after at most
p∗ > log(k)/ log((1 + b2εdc)/(2εd)) for convergence after

`∗ ≥ n
(

log−1
(

1 + b2εdc
2εd

))
log k. (40)

iterations. Each iteration of Serial-`0 involves computing the
mode of a vector of length d and updating d entries in the
residual. Since we are interested in knowing the mode of rN (j)

only when the most frequent element occurs more than d/2
times, this value can be found at cost O(d) [23].

C. Discussion

1) The computational cost of computing a mode can be
improved if d is small: Evaluating (21) for a given column
j ∈ supp(x) is equivalent to finding the mode of rN (j). This
can be done at cost O(d) using the Boyer-Moore Majority
vote algorithm [23]. However, this algorithm requires that an
element of the array occurs more than bd/2c times, so it might
fail when we set α ∈ [bd/2c]. Our numerical experiments
(Section V) show that best recovery regions are obtained for
α = 2, so we prefer to have an algorithm with O(d) per-
iteration cost for all α ∈ [d].

Our approach is presented in Algorithm 8. Instead of
looking for an ω ∈ R satisfying (21) for each j ∈ [n], at the
`th iteration we consider the reduction caused by ωj , defined
as the ` (mod d)-th element in rN (j). When using this shifting
strategy we compromise the final number of iterations, but we
also keep a fixed cost of d complexity per iteration for any
α ∈ [d]. The convergence guarantees of our algorithms when
using this shifting strategy are presented in Theorem IV.8.

Algorithm 8: Computation of score for serial-`0 and
parallel-`0.

Data: j ∈ [n]; r ∈ Rm; ω ∈ N
Result: sj ← |{i ∈ N (j) : ri = ω}|

Theorem IV.8 (Convergence of Shifted Parallel-`0). Let A ∈
Em×n
k,ε,d with ε ≤ 1/4, and x ∈ χn

k be dissociated. Then, the
shifted versions of Serial-`0 and Parallel-`0 with α = (1 −
2ε)d can recover x from y = Ax ∈ Rm in an average of
O(dn log k) operations.

Proof: Let x̂ = 0 be the initial approximation to x ∈ χn
k ,

and A ∈ Em×n
k,ε,d with ε ≤ 1/4. At `th iteration, let T = T`

be the set satisfying (21), that is, the one that Parallel-`0
has marked for update. For j ∈ T , let ωj be the most
frequent element in rN (j). In shifted-parallel-`0, ωj is not
directly computed. Instead, at iteration `, the frequency of the
` (mod d)-th value in rN (j) is computed using Algorithm 8 and
tested against the imposed threshold α. In the worst case, this
increases the number of iterations by a factor O(d). However,
on average, this is not the case, and convergence in O(log k)
iterations is guaranteed.
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To see this, let j ∈ T and let ω be drawn at random from
rN (j). Then, Pr(ω = ωj) ≥ 1− 2ε, so on average at iteration
` we will identify |T`|(1 − 2ε) correct entries in supp(x −
x̂). Given the bound for |T`| (36) in the proof of parallel-
`0, we have that at each iteration we identify at least (1 −
2ε) 1−2εd+b2εdc

1+b2εdc |S`|. Therefore

|S`+1| ≤
(

(1− 2ε)(1− 2εd+ b2εdc)
1 + b2εdc

)
|S`|. (41)

2) Our theoretical guarantees immediately apply to
LDDSR: When ε = 1/4, we have that (1 − 2ε)d = d/2,
so we recover a parallel version of LDDSR (Algorithm 5) for
dissociated signals. We call this algorithm Parallel-LDDSR,
and we test its performance in Section V.

3) Non-dissociated signals can be recovered with a disso-
ciated A: There are many signals models in which the disso-
ciated condition does not hold. For instance, if x is a binary
signal or has integer-valued nonzeros. In this case, the sensing
matrix A can be modified to make the nonzero elements of
x identifiable by our algorithms. In particular, scaling each
column of the matrix by i.i.d. random numbers coming from
a continuous distribution introduces enough information in y
for our algorithms to correctly identify supp(x).

4) Expander matrices preserve information of dissociated
signals: We now discuss the concept of dissociated signals
under an Information Theory viewpoint. To do this, suppose
that (X1, . . . , Xk) is a vector of k random variables associated
with {x1, . . . , xk} = supp(x) and that (X1, . . . , Xk) ∼ p
for some distribution p supported on a finite set. Note that
condition (iii) in Definition I.1 implies that,

xi1 +· · ·+xi` 6= xj1 +· · ·+xj` for i1 6= j1, . . . , i` 6= j`.
(42)

Now, consider the following Shannon-entropy inequalities,

Lemma IV.9 (Entropy inequalities). For a random vari-
able X ∼ p, let H(·) be its Shannon entropy. Now, let
X1, · · · , Xk be a set of random variables with joint distri-
bution (X1, . . . , Xk) ∼ p. Assume that the random variable
Xi is supported on {(xi)1, . . . , (xi)`}. Then,

H(X1 + · · ·+Xk) ≤ H(X1, . . . , Xk) ≤ H(X1) + · · ·H(Hk)
(43)

With equality on the left if and only if (x1)i1 + · · ·+(xk)ik 6=
(x1)j1 + · · ·+ (xk)jk for il 6= jl, and equality on the right if
and only if Xi ⊥ Xj for i 6= j.

Proof: See [24] and [25] for a proof.
In the case of discretely supported distributions, a dissoci-

ated signal can be understood as one in which the entries on
supp(x) are drawn according to a distribution p fulfilling,

(i) Pr[Xi = ω | Xj = ω] = 0 ∀ i 6= j ∀ ω 6= 0.
(ii) Pr[

∑
j∈T Xj = 0] = 0 ∀ T ⊂ [k]

(iii) Pr[
∑

j∈T1
Xj =

∑
j∈T2

Xj ] = 0 ∀ T1, T2 ⊂ [k] with
T1 6= T2.

Property (iii) above, together with Lemma (IV.9) say that
probability distribution on the support of dissociated signals

imply

H

∑
j∈T

Xj

 = H(X1, . . . , Xk) ∀ T ⊂ [k] (44)

And since the value of each entry in y = Ax is distributed
according to

∑
j∈T Xj for some T ⊂ [k], we get that

when computing y with a A ∈ Em×n
k,ε,d having ε ≤ 1/4

and a dissociated signal x, (44) will hold. This implies that
linear transformations with expander matrices preserve the
information in x.

V. NUMERICAL EXPERIMENTS

In this section we perform a series of numerical experi-
ments to compare Parallel-`0 and Serial-`0 with state-of-the-art
compressed sensing algorithms. These comparisons are done
by adding Parallel-`0 and Serial-`0 to the GAGA software
package [26] which includes CUDA-C implementations of a
number of compressed sensing algorithms as well as a testing
environment to rapidly generate synthetic problem instances.
This approach allows us to solve hundreds of thousands of
randomly generated problems and to solve problems with n
in the millions.

Unless otherwise stated, all tests were performed with the
nonzeros of x drawn from a standard normal distribution
N (0, 1) and the parameter α in Serial-`0 and Parallel-`0 was
set to 2.

Figures 2-8 were computed using a Linux machine with
Intel Xeon E5-2643 CPUs @ 3.30 GHz, NVIDIA Tesla K10
GPUs, and executed from Matlab R2015a. Figures 9-11 were
computed using a Linux machine with Intel Xeon E5-2667 v2
CPUs @ 3.30GHz, NVIDIA Tesla K40 GPUs, and executed
from Matlab R2015a.

A. Substantially higher phase transitions

The phase transition of a compressed-sensing algorithm [27]
is the largest value k/m, which we denote ρ∗(m/n) noting
its dependence on m/n, for which the algorithm is typically
(say greater than half of the instances) able recovery all k
sparse vectors with k < mρ∗(m/n). The value ρ∗(m/n) often
converges to a fixed value as n is increased with m/n being
a fixed fraction. Figure 2 shows the phase transition curve for
each of the CCS algorithms stated in Section III, as well as
Parallel-`0 and Serial-`0. To facilitate comparison with non-
CCS algorithms, Figure 2 also includes the theoretical phase
transition curve for `1-regularization for A drawn Gaussian
[28, 29], which is observed to be consistent [30] with `1-
regularization for A ∈ Em×n

k,ε,d . The curves were computed by
setting n = 218, d = 7, and a tolerance of 10−6. The testing
is done at m = δpn for

δp ∈ {0.02p : p ∈ [4]} ∪
{

0.1 +
89

1900
(p− 1) : p ∈ [20]

}
.

For each δp, we set ρ = 0.01 and generate 10 synthetic
problems to be applied to the algorithms, with x having in-
dependent and identically distributed normal Gaussian entries.
With this restrictions, our signals are dissociated. If at least
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one such problem was recovered successfully, we increase ρ
by 0.01 and repeat the experiment. The recovery data is then
fitted using a logistic function in the spirit of [31] and the
50% recovery transition of the logistic function is computed
and shown in Figure 2.

Note the low phase-transition curve of SMP and the substan-
tially higher phase-transition curve of Parallel-`0 and Serial-`0.
As mentioned previously, the multiple updating mechanism of
SMP gives it sublinear convergence guarantees, but greatly
compromises its region of recovery. We emphasise that the
phase transition curves for Serial-`0 and Parallel-`0 are higher
than those for SMP, SSMP, ER, and parallel-LDDSR. In
particular, they are even higher than `1-regularisation for
δ / 0.4.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← smp

← ssmp ← er

← parallel_lddsr

← parallel_l0 ← serial_l0

← l1−regularization

50% phase transition curve for d = 7 with n = 2
18

δ=m/n

ρ
=

k
/m

Fig. 2: 50% recovery probability logistic regression curves for
Eε,7,k and n = 218. The curve for `1-regularisation is the
theoretical curve for dense Gaussian ensembles, and is shown
for reference.

B. Fastest compressed sensing algorithm
When the signal is dissociated, Parallel-`0 is generally the

fastest algorithm for matrices A ∈ Em×n
k,ε,d . We show this

numerically by computing the phase transitions of

Serial-`0, Parallel-`0, parallel-LDDSR, ALPS, CGIHT, CSMPSP,
ER, FIHT, HTP, NIHT, SMP, SSMP;

and comparing their average time to convergence at each point
of (δ, ρ). The phase transitions are computed similarly to
those in Figure 2, with problem parameters of n = 218 and
d = 7. In particular, Parallel-`0 is also used with α = 2.
The results are shown in Figures 3 and 4. Specifically, Figure
3 shows the time in milliseconds that the fastest algorithm
takes to converge when the problem parameters are located at
(δ, ρ). The fastest algorithm is in turn identified in Figure 4,
where we can see that Parallel-`0 is consistently the fastest
algorithm within its phase transition, except for ρ � 1
where parallel-LDDSR takes less time. However, we note
that the convergence guarantees of parallel-LDDSR come as a
byproduct of our analysis the domain in which it is faster than
Parallel-`0 is the region of least importance for applications
as it indicates more than three fold more measurements were
taken than would have been necessary if Parallel-`0 were used.
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Fig. 3: Average recovery time (ms) of the fastest algorithm at
each (δ, ρ) for Ek,ε,7 and n = 218.
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Fig. 4: Selection map of the fastest algorithm at each (δ, ρ)
for Ek,ε,7 and n = 218.

C. Parallelisation brings important speedups: examples with
m� n

As shown in Algorithm 7, the speed of Algorithms 3-6 can
be improved if the scores sj and updates uj are computed in
parallel for each j ∈ [n]. However, implementing this paralleli-
sation is not enough to cut down an algorithm’s complexity to
that of the state-of-the-art’s. Figures 5-6 show the average time
to exact convergence for each of the combinatorial compressed
sensing algorithms. It can be seen in addition to Serial-`0
and Parallel-`0 having higher phase transition than ER and
SSMP, they are also substantially faster to converge to the
true solution for n = 220 and either δ = 0.01 or δ = 0.1.
It is interesting to note that for this problem size Serial-`0 is
substantially faster than ER and SSMP, even when the two
latter are implemented in parallel and run on a modern high
performance computing GPU.

D. Convergence in O(log k) iterations

The theoretical guarantees of Serial-`0 and Parallel-`0 state
that convergence can be achieved in O(nd log k) operations.
The number of operations per iteration can be verified simply
by counting operations in the algorithm, which is O(d) for
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Fig. 5: Average recovery time (sec) with dependence on ρ for
δ = 0.01 and Ek,ε,7 with n = 220.
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Fig. 6: Average recovery time (sec) with dependence on ρ for
δ = 0.1 and Ek,ε,7 with n = 220.

Serial-`0 and O(nd) for Parallel-`0 and recording the number
of iterations. Figure 7 shows that the number of iterations to
convergence for Serial-`0, Parallel-`0, and parallel-LDDSR.
The tests were performed by fixing n = 220, δ = 0.1, and
d = 7, and considering signals with sparsity ranging from
ρ = 0.05 to ρ = 0.1. It can be seen in Figure 7 that the number
of iterations to convergence is bounded by the curve f(k) =
log k, thus verifying our claims. We also make clear that by
Definition III.1, Serial-`0 is shown to converge in O(n log k)
iterations, but for the sake of this experiment, we normalise
the final number of iterations for Serial-`0 by a factor of n.
Note the lower number of iteration by Serial-`0 due to its serial
implementation with residual updates revealing more entries
that satisfy the reduction of the residual by α. Now, to give a
point of comparison, we also compute the number of iterations
for ER and SSMP, which take O(k) iterations to converge. The
results are shown in Figure 8, where the same parameters as
in Figure 7 have been used. In particular, we can see that for a
problem with k/m = 0.8, Parallel-`0 takes 5 iterations, while
ER and SSMP take about 8000 iterations to solve the same
problem.
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Fig. 7: Number of iterations to convergence for Parallel-`0,
Serial-`0, and parallel-LDDSR at δ = 0.1 with Ek,ε,7 and n =
220. The number of iterations of Serial-`0 has been normalised
by n to showcase its O(n log k) guarantee in the number of
iterations.
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Fig. 8: Number of iterations to convergence for ER and SSMP
at δ = 0.1 with Ek,ε,7 and n = 220.

E. Increasing phase transition as δ → 0 and n→∞

It is shown in Figure 2 that Serial-`0 and Parallel-`0 have a
very high phase transition of just over 0.3 even for very small
values of δ. We hypothesise that this high phase transition
persists for any fixed δ ∈ (0, 1) provided n is sufficiently
large. We provide numerical support of this claim in Figure
9, where for fixed δ = 10−3 and d = 7, we have plotted
the average time to convergence for Parallel-`0 as ρ increases.
The experiment was repeated for each n ∈ {222, 224, 226}, by
initialising ρ = 0.01 and generating 30 problems at each ρ. If
at least 50% of the problems converge we average out the time
to convergence for successful cases, and perform the update
ρ ← ρ + 0.01; otherwise, we stop. Our results in Figure 9
show that for δ = 10−3, the phase transition of the algorithm
increases with n to just over 0.3.

Finally, in Table III we show the average timing depicted in
Figure 9 for ρ = 0.05 which shows the approximate increase
in the average computation time being proportional to n.
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Fig. 9: Average recovery time (sec) for Parallel-`0, with depen-
dence on ρ for δ = 0.001 and Ek,ε,7 with n ∈ {222, 224, 226}.

n time tn ratio t4n/tn

222 0.0167 3.338

224 0.0557 4.163

226 0.2319 -

TABLE III: Average recovery time (sec) for Parallel-`0 at ρ =
0.05 and δ = 10−3 for n ∈ {222, 224, 226}.

F. Almost dissociated signals

The analysis of Parallel-`0 and Serial-`0 relied on the model
of dissociated signals (1). We explore the effect on recovery
ability of Parallel-`0 and Serial-`0 as the signal model is no
longer dissociated, with a fixed fraction of the values in x
being equal. To do this, we consider signals x ∈ χn

k with
nonzero values composed of two bands: one in which all
entries are equal to a fixed value drawn at random from
a standard normal distribution N (0, 1), and another one in
which each entry is drawn independently of each other from
N (0, 1). Our results are shown in Figure 10, where we can see
that as the fraction of values which are equal increases (shown
in the figure by the parameter band), the phase transitions
gracefully decrease from the flat shape observed for perfectly
dissociated signals to an increasing log-shaped curve when
band = 0.9. Note that the overall phase transition decreases,
with the greatest decrease for δ � 1.

G. d should be small, but not too small

Selection of the number of nonzeros per column, d, has
not been adressed. In our numerical experiments we have
consistently chosen d = 7 as the left-degree of our expander.
Our choice of d = 7 for our problem size’s order of magnitude
is justified by Figure 11, where we have computed the phase
transitions for Parallel-`0 for all odd values of d between 5
and 19. For d = 5, the phase transition of the algorithm is very
low, thus signalling expanders of bad quality. For d = 7 the
phase transition is substantially greater than when d = 5, and
gradually decreases for values of d greater than seven. Note
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Fig. 10: 50% recovery probability logistic regression curves
for Parallel-`0 with Ek,ε,7 and n = 218, with signals having
a fixed proportion, band, of identical nonzero elements in its
support.

that the expander condition implies (1 − ε)dk < m which
encourages small values of d in order that m/k can be as
large as possible.
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Fig. 11: 50% recovery probability logistic regression curves
for Parallel-`0 with Ek,ε,d and n = 218 for d ∈
{5, 7, 9, 11, 13, 15, 17, 19}.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed two algorithms for combinatorial com-
pressed sensing with provable convergence guarantees in
O(dn log k) operations and very high phase transitions when
the signal x is dissociated. In particular, Parallel-`0 is observed
to be empirically the fastest algorithm in compressed sensing
when the signal is dissociated. We have used the dissociated
signal model in the convergence proofs, but that in practice
one can relax this assumption and still get reasonably high
phase transitions.

As future work it remains to address the case of noisy
observations, and to extend the scope of the algorithms to
more general signal models. The proofs presented in this
paper should extend trivially to noise which is bounded to be
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less than half the minimal distance between obtainable values∑
i∈T xi by introducing an equivalence class. A variant which

is robust to Gaussian noise is scope for future work.

APPENDIX

For completeness, we give a proof of Lemma II.4
Proof: For any unbalanced, left d-regular, bipartite graph

it holds that:

|N1(S)|+ |N>1(S)| = |N (S)|, (45)

|N1(S)|+ 2|N>1(S)| ≤ d|S|. (46)

Where (45) follows from the definition ofN>1(S), and (46) by
double-counting the edges emanating from S to N (S). Now,
to prove that (7) is necessary, assume that G is a (k, ε, d)-
expander graph. Then, for S ∈ [n](≤k) we have that

|N (S)| > (1− ε)d|S|. (47)

Combining (45), (46) and (47) we get the chain of inequalities

d|S| − |N>1(S)| ≥ |N (S)| > (1− ε)d|S|, (48)

which yield
|N>1(S)| < εd|S|. (49)

Plugging (49) into (45) and using (47) we obtain

|N1(S)| > (1− 2ε)d|S|. (50)

To prove the sufficiency of (7) for graph expansion, we couple
it with (46) into the system

(1− 2ε)d|S| < |N1(S)| ≤ d|S| − 2|N>1(S)|, (51)

and use the left and right hand sides recover (49). Now, using
(7) and (45) we obtain

|N (S)| − |N>1(S)| > (1− 2ε)d|S|. (52)

And using (49) in (52) allows us to recover (47), implying
that G is a (k, ε, d)-expander graph.
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