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ABSTRACT

The infinitely wide neural network has been proven a useful and manageable
mathematical model that enables the understanding of many phenomena appearing
in deep learning. One example is the convergence of random deep networks to
Gaussian processes that allows a rigorous analysis of the way the choice of acti-
vation function and network weights impacts the training dynamics. In this paper,
we extend the seminal proof of Matthews et al. (2018) to a larger class of initial
weight distributions (which we call PSEUDO-IID), including the established cases
of IID and orthogonal weights, as well as the emerging low-rank and structured
sparse settings celebrated for their computational speed-up benefits. We show that
fully-connected and convolutional networks initialized with PSEUDO-IID distribu-
tions are all effectively equivalent up to their variance. Using our results, one can
identify the Edge-of-Chaos for a broader class of neural networks and tune them at
criticality in order to enhance their training.

1 INTRODUCTION

Deep neural networks are often studied at random initialization, in the limit of infinite width, where
they have been shown to generate intermediate entries which approach Gaussian processes. Seemingly
this was first studied for one-layer networks in Neal (2012) when the weight matrices have identically
and independently distributed (IID) entries and became a popular model for deep networks following
the seminal results for fully-connected networks in Lee et al. (2017) where orthogonal matrices
were also studied. Specifically, Lee et al. (2017) gave a framework to compute the Gaussian process
behaviour as a function of the nonlinear activation as well as the variance of the network weights
and biases. This model was then used to explain the exploding and vanishing gradient phenomenon
Schoenholz et al. (2017) and Pennington et al. (2018) amongst other network properties. The Gaussian
process limit has since been extended to a broad class of network architectures and scaling limits, see
Section 1.1.

In this paper, we extend the simultaneous scaling proof of the Gaussian process in Matthews et al.
(2018) to a larger class of initial weight distributions (which we call PSEUDO-IID). The PSEUDO-IID
distribution includes structured low-dimensional matrices such as low-rank and structured sparse
settings celebrated for their computational efficiency and regularizing properties, as well as the
already established cases of IID and orthogonal weights. The PSEUDO-IID distribution is defined in
Definition 1 from the exchangeable distribution Definition 2 combined with a specified variance and
a bounded high order moment.
Definition 1 (PSEUDO-IID). Let m,n be two integers. We will say that the random matrix W =
(Wij) ∈ Rm×n is in the PSEUDO-IID distribution with parameter σ2 if

(i) the matrix is row-exchangeable and column-exchangeable,

(ii) its entries are centered, uncorrelated, with variance E(W 2
ij) =

σ2

n ,

(iii) E
∣∣∑n

j=1 ajWij

∣∣8 = K∥a∥82n−4 for some constant K,

(iv) and limn→∞
n2

σ4E(Wia,jWib,jWic,j′Wid,j′) = δia,ibδic,id , for all j ̸= j′.
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When W (1) has IID Gaussian entries and the other weight matrices W (ℓ), 2 ≤ ℓ ≤ L+1, of a neural
network (see 1) are drawn from a PSEUDO-IID distribution, we will say that the network is under the
PSEUDO-IID regime.

Definition 2 (Exchangeability). Let X1, · · · , Xn be scalar or vector-valued random variables.
We say (Xi)

n
i=1 are exchangeable if their joint distribution is invariant under permutations, i.e.

(X1, · · · , Xn)
d
= (Xσ(1), · · · , Xσ(n)) for all permutations σ : [n] → [n]. A random matrix is called

row- (column-) exchangeable if its rows (columns) are exchangeable random vectors, respectively.

A row-exchangeable and column-exchangeable matrix W ∈ Rm×n is not in general entrywise
exchangeable, which means its distribution is not typically invariant under arbitrary permutations
of its entries; particularly, out of (mn)! possible permutations of its entries, W only needs to be
invariant under m!n! of them — an exponentially smaller number. Matrices drawn uniformly from
the Grassmanian of orthogonal matrices are a special case of random matrices satisfying row- and
column-exchangeability and also entrywise exchangeability but are not independently distributed.

The conditions of PSEUDO-IID are sufficient to prove that fully-connected and convolutional networks
are Gaussian processes, Theorems 1 and 2 respectively. Moreover, we are able to verify the PSEUDO-
IID conditions for common initializations as well as parsimonious (e.g. sparse and/or low-rank)
ones (see Section 3.1). We will illustrate these conditions further in Section 3.1 via some examples.
However, the sharpest variant of Definition 1 condition (iii) remains an open question; its importance
is expanded upon in Appendix D.

1.1 RELATED WORK

To the best of our knowledge, the Gaussian Process behaviour in the infinite width regime was first
established by Neal (2012) in the case of one-layer fully-connected networks when the weights are IID
sampled from standard distributions. The result has then been extended in Matthews et al. (2018) to
deep fully-connected networks, where the depth is fixed, the weights distributed as IID Gaussians and
the hidden layers widths growing jointly to infinity. Jointly scaling the network width substantially
distinguishes their method of proof from the approach taken in Lee et al. (2017), where the authors
considered a sequential limit analysis through layers. That is, analyzing the limiting distribution at
one layer when the previous ones have already converged to their limiting distributions as in Lee et al.
(2017), is significantly different from analyzing the limiting distribution at a current layer when the
previous layers are jointly converging to their limits at the same time, as is done in Matthews et al.
(2018).

Since this Gaussian Process behaviour has been established, two main themes of research have further
been developed. The first one consists in the extension of such results for more general and complex
architectures such as convolutional networks with many channels [Novak et al. (2020), Garriga-
Alonso et al. (2019)] or any modern architectures composed of fully-connected, convolutional or
residual connections, as summarized in Yang (2021), using the Tensor Program terminology. The
second research theme concerns the generalization of this Gaussian Process behaviour to other
possible weight distributions, such as orthogonal weights in Huang et al. (2021) or, alternatively,
any IID weights with finite moments as derived in Hanin (2021). Note that the orthogonal case
does not fit into the latter as entries are exchangeable but not independent (the first column of an
orthogonal matrix cannot be independent from the second one in order to satisfy the orthogonality
constraints). The same kind of results for general architectures in the IID setting have been derived by
Yang in his Tensor Program framework Golikov & Yang (2022) and Yang (2021). Our contribution
fits into this line of research, where we relax the independence requirement of the weight matrix
entries and consider instead the PSEUDO-IID distribution of uncorrelated and exchangeable random
variables. This broader distribution, Definition 1, enables us to present a unified proof that generalizes
the approaches taken so far and encompasses all of them, for two types of architectures, namely,
fully-connected and convolutional networks.

We conclude this section by mentioning that this Gaussian Process behaviour is a special case of a
more general result about the convergence of wide neural networks towards a symmetric α-stable
stochastic process Peluchetti et al. (2020) where independent, but not identically distributed, entries
were considered in contrast to the setting of the present paper with identically distributed but not
independent entries.
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1.2 ORGANIZATION OF THE PAPER

In Section 2, we focus on fully-connected neural networks, formally stating the associated Gaussian
Process in Theorem 1, and outlining its proof in Section 2.2 with further technical details of its proof
relegated to Appendix A. Our PSEUDO-IID regime unifies the previously studied settings of IID and
orthogonal weights, while also allowing for novel settings such as low-rank Gaussian weights. We
extend our results to the convolutional neural networks (CNNs) in Section 2.3. In Section 3, we
provide examples of PSEUDO-IID distributions in practice, supporting our theoretical results with
numerical simulations. Moreover, we explore the problem of stable initialization of deep networks, on
the so-called Edge-of-Chaos (EOC), in our more expansive PSEUDO-IID regime. Lastly, in Section 4,
we review our main contributions and put forward some further research directions.

2 GAUSSIAN PROCESS BEHAVIOUR IN THE PSEUDO-IID REGIME

We consider an untrained fully-connected neural network with width Nℓ at layer ℓ ∈ {1, · · · , L+ 1}.
Its weights W (ℓ) ∈ RNℓ×Nℓ−1 and biases b(ℓ) ∈ RNℓ at layer ℓ are sampled from a centered
probability distribution, respectively µ

(ℓ)
W and µ

(ℓ)
b . Most commonly, the weights and biases are

sampled IID Gaussian. Starting with such a network, with nonlinear activation ϕ : R → R, the
propagation of any input data vector z(0) := x ∈ X ⊆ RN0 through the network is given by the
following equations,

h
(ℓ)
i (x) =

Nℓ−1∑
j=1

W
(ℓ)
ij z

(ℓ−1)
j (x) + b

(ℓ)
i , z

(ℓ)
j (x) = ϕ(h

(ℓ)
j (x)), (1)

where h(ℓ)(x) ∈ RNℓ is referred to as the pre-activation vector at layer ℓ, or the feature maps.

Throughout this paper, we will consider a specific set of activation functions that satisfy the so-called
linear envelope property, Definition 3, which is satisfied by most activation functions used in practice
(ReLu, Softmax, Tanh, HTanh, etc.).
Definition 3. (Linear envelope property) A function ϕ : R → R is said to satisfy the linear envelope
property if there exist c,M ≥ 0 such that, for any x ∈ R,

|ϕ(x)| ≤ c+M |x|. (2)

2.1 THE PSEUDO-IID REGIME FOR FULLY-CONNECTED NETWORKS

Our proofs of PSEUDO-IID networks converging to Gaussian processes are done in the more sophisti-
cated simultaneous width growth limit as pioneered by Matthews et al. (2018). For a review of the
literature on deep networks with sequential vs. simultaneous scaling see Section 1.1. One way of
characterizing such a simultaneous convergence over all layers is to consider that all widths Nℓ are
increasing functions of one parameter, let us say n, such that, as n grows, all layers’ widths grow:
∀ℓ ∈ {1, · · · , L+ 1}, Nℓ := Nℓ[n]. We emphasize this dependence on n by adding a suffix X[n] to
the random variables X when n is finite and denote by X[∗] its limiting distribution, corresponding
to n → ∞. The width of the first layer N0 is fixed by the input dimension and the final output layer
dimension NL+1 do not scale with n either. Moreover, the input data are assumed to come from a
countably infinite input space X . Equation 1 can thus be rewritten, for any x ∈ X , as

h
(ℓ)
i (x)[n] =

Nℓ−1[n]∑
j=1

W
(ℓ)
ij z

(ℓ−1)
j (x)[n] + b

(ℓ)
i , z

(ℓ)
j (x)[n] = ϕ(h

(ℓ)
j (x)[n]), (3)

and the associated Gaussian process limit is given in Theorem 1.
Theorem 1 (GP limit for fully-connected PSEUDO-IID networks). Suppose a fully-connected neural
network as in equation 3 is under the PSEUDO-IID regime with parameter σ2

W and the activation
satisfies the linear envelope property Def. 3. Let X be a countably-infinite set of inputs. Then, for
every layer 1 ≤ ℓ ≤ L+ 1, the sequence of random fields (i, x) ∈ [Nℓ]× X 7→ h

(ℓ)
i (x)[n] ∈ RNℓ

converges in distribution to a centered Gaussian process (i, x) ∈ [Nℓ] × X 7→ h
(ℓ)
i (x)[∗] ∈ RNℓ ,

whose covariance function is given by

E
[
h
(ℓ)
i (x)[∗] · h(ℓ)

j (x′)[∗]
]
= δi,jK

(ℓ)(x, x′), (4)
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where

K(ℓ)(x, x′) =

{
σ2
b + σ2

WE(u,v)∼N (0,K(ℓ−1)(x,x′))[ϕ(u)ϕ(v)], ℓ ≥ 1

σ2
b +

σ2
W

n0
⟨x, x′⟩, ℓ = 0

. (5)

2.2 SKETCH OF THE PROOF OF THEOREM 1: GP LIMIT OF FULLY-CONNECTED PSEUDO-IID
NETWORKS

This section includes the outline of our proof, which closely follows the steps taken in the original
proof in Matthews et al. (2018) in the Gaussian IID setting for fully-connected networks. We refer
the reader to Appendix A for its complete proof. Some of the results we use are shown in Matthews
et al. (2018), so we intentionally choose our notation similarly to aid readers familiar with the prior
paper. These steps are as follows:

1. The first step consists in reducing the problem of showing the convergence of the stochastic
process (h(ℓ)

i (x)[n])i∈[Nℓ],x∈X to a Gaussian Process, defined on a countably-infinite input
space N × X (e.g. X = {xj}j∈N), to the convergence of a finite-dimensional vector
(h

(ℓ)
i (x)[∗])(i,x)∈L, where |L| < ∞, to a multidimensional Gaussian. This is possible

as the convergence towards the Gaussian Process is ensured with respect to the topology
generated by a specific metric introduced in Matthews et al. (2018). We will therefore
restrict our attention to showing the convergence in distribution of a finite-dimensional
vector (h(ℓ)

i (x)[n])(i,x)∈L, where i refers to the neuron index and x to the input data.
2. Given this finite-dimensional random vector, the problem is once again reduced to proving

the convergence in distribution of any of its linear projections, which are scalars, to the
corresponding linearly projected limiting Gaussians (see Cramér & Wold (1936)). We will
thus consider the totality of these one-dimensional linear projections of the unbiased feature
maps h(ℓ)

i (x)− b
(ℓ)
i onto α(i,x),

T (ℓ)(α,L)[n] :=
∑

(i,x)∈L

α(i,x)

(
h
(ℓ)
i (x)[n]− b

(ℓ)
i

)
, (6)

where the suffix [n] emphasizes on the joint limit to be taken simultaneously, as detailed in
Section 2.1. Given the recursion formulae (equation 3) satisfied by the feature maps, the
latter can be rewritten as

T (ℓ)(α,L)[n] = 1√
Nℓ−1[n]

Nℓ−1[n]∑
j=1

γ
(ℓ)
j (α,L)[n], (7)

where, considering the renormalization ϵ
(ℓ)
ij := σ−1

W

√
Nℓ−1W

(ℓ)
ij , the summands are defined

as,

γ
(ℓ)
j (α,L)[n] := σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
ij z

(ℓ−1)
j (x)[n]. (8)

3. The third step is to apply a version of the Central Limit Theorem (CLT) in the case where
the random variables are exchangeable rather than independent. This CLT is often attributed
to Blum & Rosenblatt (1956). The reason we need such an extension theorem is that, as
opposed to taking the width limit sequentially, the distribution at the previous layer has not
reached its limit, so when taking the joint limit we cannot claim the independence of the
previous activities anymore and the standard CLT is no longer valid.

4. The last step is to proceed by induction through layers, and verifying at each layer that the
moment assumptions of the exchangeable CLT hold in our PSEUDO-IID regime. 1

Note that these steps can also be found in Garriga-Alonso et al. (2019), where the proof technique
of Matthews et al. (2018) is adapted to CNNs, with weights drawn IID Gaussian. In the following
section, we define the PSEUDO-IID regime for the CNNs and present an analogue of Theorem 1.

1The base case is carried out by the Gaussian IID condition on the weights of the first layer, guaranteed by
our PSEUDO-IID regime (see Definition 1).
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2.3 THE PSEUDO-IID REGIME FOR CNNS

We consider a CNN with Cℓ number of channels at layer ℓ ∈ {1, · · · , L+ 1} and two-dimensional
convolutional filters U

(ℓ)
i,j ∈ Rk×k mapping the input channel j ∈ {1, · · · , Cℓ−1} to the output

channel i ∈ {1, · · · , Cℓ}. The input signal X (also two-dimensional) has C0 channels x1, · · · ,xC0

and its propagation through the network is given by

h
(ℓ)
i (X)[n] =


b
(1)
i 1+

C0∑
j=1

U
(1)
i,j ⋆ xj , ℓ = 1

b
(ℓ)
i 1+

Cℓ−1∑
j=1

U
(ℓ)
i,j ⋆ z

(ℓ−1)
j (X)[n], ℓ ≥ 2

, z
(ℓ)
i (X)[n] = ϕ(h

(ℓ)
i (X))[n].

(9)

In equation 9, 1 should be understood as having the same size as the convolution output, non-linearity
ϕ(·) is applied entrywise, and we emphasize the simultaneous scaling with n via the addition of [n]
to the feature maps h(ℓ)

i (X)[n]. We denote spatial (multi-) indices by boldface Greek letters µ, ν,
etc., that are ordered pairs of integers taking values in the range of the size of the array. For example,
if X is an RGB (C0 = 3) image of H × D pixels, i = 2, and µ = (α, β), then Xi,µ returns the
Green intensity of the (α, β) pixel. Moreover, we define JµK to be the patch centered at the pixel µ
covered by the filter, e.g. if µ = (α, β) and the filter covers k × k = (2k0 + 1)× (2k0 + 1) pixels,
then JµK = {(α′, β′) |α− k0 ≤ α′ ≤ α+ k0, β− k0 ≤ β′ ≤ β+ k0}, with the usual convention of
zero-padding for the out-of-range indices. Sufficient conditions for PSEUDO-IID CNNs to converge
to a Gaussian process in the simultaneous scaling limit are given in Definition 4.

Definition 4 (PSEUDO-IID for CNNs). Consider a CNN with random filters and biases {U(ℓ)
i,j } and

{b(ℓ)i } as in equation 9. It is said to be in the PSEUDO-IID regime with parameter σ2 if U(1) has IID

N (0, σ2

C0
) entries and, for 2 ≤ ℓ ≤ L+ 1,

(i) the convolutional kernel U(ℓ) ∈ RCℓ×Cℓ−1×k×k is row-exchangeable and column-
exchangeable, that is its distribution is invariant under permutations of first and second
indices,

(ii) filters’ entries are centered, uncorrelated, with variance E[(U(ℓ)
i,j,µ)

2] = σ2/Cℓ−1,

(iii) E
∣∣∑Cℓ−1

j=1

∑
ν aj,νU

(ℓ)
i,j,ν

∣∣8 = K∥a∥82(Cℓ−1)
−4 for some constant K,

(iv) and limn→∞
Cℓ−1[n]

2

σ4 E
(
U

(ℓ)
ia,j,µa

U
(ℓ)
ib,j,µb

U
(ℓ)
ic,j′,µc

U
(ℓ)
id,j′,µd

)
= δia,ibδic,idδµa,µb

δµc,µd
,

for all j ̸= j′.
Theorem 2 (GP limit for CNN PSEUDO-IID networks). Suppose a CNN as in equation 9 is under the
PSEUDO-IID regime with parameter σ2

W and the activation satisfies the linear envelope property Def.
3. Let X be a countably-infinite set of inputs and µ ∈ I denote a spatial (multi-) index. Then, for
every layer 1 ≤ ℓ ≤ L+ 1, the sequence of random fields (i,X,µ) ∈ [Cℓ]×X × I 7→ h

(ℓ)
i,µ(X)[n]

converges in distribution to a centered Gaussian process (i,X,µ) ∈ [Cℓ]×X × I 7→ h
(ℓ)
i,µ(X)[∗],

whose covariance function is given by

E
[
h
(ℓ)
i,µ(X)[∗] · h(ℓ)

j,µ′(X
′)[∗]

]
= δi,j

(
σ2
b + σ2

W

∑
ν∈JµK∩Jµ′K

K(ℓ)
ν (X,X′)

)
, (10)

where

K(ℓ)
ν (X,X′) =

{
E
(u,v)∼N (0,K

(ℓ−1)
ν (X,X′))

[ϕ(u)ϕ(v)], ℓ ≥ 1
1
C0

∑C0

i=1 Xi,νX
′
i,ν , ℓ = 0

. (11)

Our proof of Theorem 2 for PSEUDO-IID CNNs is derived similarly to that of fully-connected
networks, see Appendix B; Garriga-Alonso et al. (2019) developed a more restrictive proof to the
setting of IID Gaussian CNNs. Note the extra index on the patch µ and how the fully-connected case
is recovered when the filter kernel size is reduced to k = 1.
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3 PSEUDO-IID IN PRACTICE

Untrained networks are typically initialized with IID weights, for example, the Gaussian and the
uniform distributions used as default in PYTORCH. An important non-IID case that also leads to the
Gaussian process limit is the random orthogonal initialization Huang et al. (2021). Our proposed
PSEUDO-IID regime encompasses both IID and orthogonal weights as special cases and also allows
for a broader class of weight distributions such as random low-rank orthogonal matrices Saada &
Tanner (2023) and structured sparse matrices Dao et al. (2022a) and Dao et al. (2022b).

3.1 EXAMPLES OF PSEUDO-IID DISTRIBUTIONS

Here we give examples of PSEUDO-IID distributions that do not fit in the setting of the prior proofs
of Gaussian process reviewed in Section 1.1.

IID weights. If A = (Aij) ∈ Rm×n has IID entries Aij
iid∼ D, then it is automatically row- and

column-exchangeable, and the entries are uncorrelated. Therefore, as long as the distribution of
the weights D satisfies the moment conditions of Definition 1, then the network is in the PSEUDO-
IID regime. A sufficient condition is that Aij be sub-gaussian with parameter O(n−1/2). Then,
given the independence of entries, the random variable

∣∣∑n
j=1 ajAij

∣∣ would be sub-gaussian with
parameter ∥a∥2n−1/2, and its pth moment is known to be O(∥a∥p2n−p/2); see Vershynin (2018).
Appropriately scaled Gaussian and uniform IID weights, for example, meet the sub-gaussianity
criterion and therefore fall in the PSEUDO-IID class. Condition (iv) is trivial in this case.

Orthogonal weights. Let A = (Aij) ∈ Rn×n be drawn from the uniform (Haar) measure on the
group of orthogonal matrices O(n). While the entries are not independent, they are uncorrelated, and
the rows and columns are exchangeable. To bound the moments, we may employ the concentration
of the Lipschitz functions on the sphere, since one individual row of A, let us say the i-th one
(Ai,1, · · · , Ai,n), is drawn uniformly from Sn−1. Let f(Ai,1, · · · , Ai,n) :=

∣∣∑n
j=1 ajAij

∣∣, then
f is Lipschitz with constant ∥a∥2. By Theorem 5.1.4 of Vershynin (2018), the random variable
f(Ai,1, · · · , Ai,n) =

∣∣∑n
j=1 ajAij

∣∣ is sub-gaussian with parameter ∥f∥Lipn−1/2 = ∥a∥2n−1/2,
which also implies E

∣∣∑n
j=1 ajAij

∣∣p = O(∥a∥p2n−p/2). Moreover, the exact expressions of the pth

moments are known for orthogonal matrices (see Collins et al. (2021) for an introduction to the
calculus of Weingarten functions) and satisfy condition (iv).

Low-rank weights. Low-rank structures are widely recognized for speeding up matrix multiplications
and can be used to reduce memory requirements of feature maps Price & Tanner (2023). Whilst
such structures inevitably impose dependencies between the weight matrix entries A ∈ Rm×n, thus
breaking the IID assumption, Saada & Tanner (2023) introduced a low-rank framework that falls
within our PSEUDO-IID regime. Let C := [C1, · · · , Cr] ∈ Rm×r be a uniformly drawn orthonormal
basis for a random r-dimensional subspace. Let P = (Pij) ∈ Rr×n has IID entries Pij

iid∼ D. If
we set A := CP , it is easy to see that each column of A is a linear combination of the r columns
given by C, with coefficients given by the matrix P . The row and column exchangeability of A
follows immediately from that of C and P and the moment conditions are controlled by the choice of
distribution D. Direct computation of the four-cross product that appears in condition (iv) gives us

E(Aia,1Aib,1Aic,2Aid,2) = s2
∑

1≤k,k′≤r

E
[
Cia,kCib,kCic,k′Cid,k′

]
,

where s := E(P 2
1,1). Using the expression in (Huang et al., 2021, Lemma 3) we can calculate the

above expectation and deduce condition (iv) when r is linearly proportional to m.

Permuted block-sparse weights. Block-wise pruned networks have recently been under extensive
study for their efficient hardware implementation (Dao et al. (2022b), Dao et al. (2022a)). Once
the sparsity pattern is fixed, we may apply random row and column permutations on the weight
matrices without compromising the accuracy or the computational benefit. Let A = (Aij) ∈ Rm×n

has IID entries Aij
iid∼ D and B ∈ Rm×n be the binary block-sparse mask. Let Ã = Pm(A⊙B)Pn,

where Pm and Pn are random permutation matrices of size m×m and n× n respectively, and ⊙
represents entrywise multiplication. Then, by construction, Ã is row- and column-exchangeable and,
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Figure 1: There exist multiple ways to compute convolutions between a tensor filter U and a 2-
dimensional signal X (shown in the middle) based on matrix multiplications. We illustrate the
approach taken in Garriga-Alonso et al. (2019) on the left, where the reshaping procedure is applied
to the filter before computing a matrix multiplication, whilst the method we followed, shown in the
right hand side of the figure consists in reshaping the signal in order to define special structures on
the CNN filters such as orthogonality, sparsity and low-rank.

for suitable choices of underlying distribution D, it satisfies the moment conditions of Definition 1.
Some examples of realisations from such distribution are provided in Appendix E.

Orthogonal CNN filters. Unlike the fully-connected case, it is not obvious how to define the
orthogonality of a convolutional layer and, once defined, how to randomly generate such layers for
initialization. Xiao et al. (2018) defines an orthogonal convolutional kernel U ∈ Rcout×cin×k×k

made of cout filters of size k by k via the energy preserving property ∥U ⋆X∥2 = ∥X∥2, for any
signal X with cin input channels. Wang et al. (2020) requires the matricised version of the kernel to
be orthogonal, while Qi et al. (2020) gives a more stringent definition imposing isometry, i.e.

cout∑
i=1

Ui,j ⋆Ui,j′ =

{
δ, j = j′

0, otherwise
.

Another definition in Huang et al. (2021) calls for orthogonality of “spatial” slices Uµ ∈ Rcout×cin ,
for all positions µ.

We take a different approach than Wang et al. (2020) for matricising the tensor convolution operator,
setting the stride to 1 and padding to 0: reshape the kernel U into a matrix Ũ ∈ Rcout×k2cin and
unfold the signal X into X̃ ∈ Rk2cin×d, where d is the number of patches depending on the sizes
of the signal and the filter. This allows Ũ to be an arbitrary unstructured matrix rather than the
doubly block-Toeplitz matrix in Wang et al. (2020), as shown in Figure 1. Matricising the tensor
convolution operator, imposes the structure on the signal X̃ rather than the filter Ũ . Orthogonal (i.e.
energy-preserving) kernels can then be drawn Ũ uniformly random with orthogonal columns, such
that

Ũ⊤Ũ =
1

k2
I (12)

and then reshaped into the original tensor kernel U. Note that this construction is only possible when
Ũ is a tall matrix with trivial null space, that is when cout ≥ k2cin, otherwise the transpose might be
considered instead. We emphasize that equation 12 is a sufficient (and not necessary) condition for U
to be energy-preserving, since X̃ , by construction, has a very specific structure set T ⊆ Rk2cin×d,
and, therefore, Ũ only needs to preserve norm on T (and not everywhere). Therefore, we do not
claim the generated orthogonal convolutional kernel U is “uniformly distributed” over the set of all
such kernels.
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Now let us verify the conditions of Definition 4. Each filter Ui,j is flattened as Ũi,j ∈ R1×k2

and
forms part of a row of Ũ as shown below:

Ũ =


Ũ1,1 Ũ1,2 · · · Ũ1,cin

Ũ2,1 Ũ2,2 · · · Ũ2,cin
...

...
. . .

...
Ũcout,1 Ũcout,2 · · · Ũcout,cin

 . (13)

Applying permutations on the indices i and j translates to permuting rows and “column blocks” of
the orthogonal matrix Ũ , which does not affect the joint distribution of its entries. Hence, the kernel’s
distribution is unaffected, that is U is row- and column-exchangeable. The moment conditions are
both straightforward to check as Ui,j,µ = Ũi,(j−1)k2+µ, µ ∈ {1, · · · , k2}, where µ is the counting
number of the pixel µ. To check condition (iv), note that E

(
U

(ℓ)
ia,1,µa

U
(ℓ)
ib,1,µb

U
(ℓ)
ic,2,µc

U
(ℓ)
id,2,µd

)
=

E
(
Ũia,µa

Ũib,µb
Ũic,k2+µc

Ũid,k2+µd

)
, that is a four-cross product of the entries of an orthogonal

matrix, whose expectation is explicitly known to be Cℓ+1
(Cℓ−1)Cℓ(Cℓ+2)δia,ibδic,idδµa,µb

δµc,µd
(Huang

et al., 2021, Lemma 3).

3.2 SIMULATION OF THE GAUSSIAN PROCESSES IN THEOREMS 1 FOR FULLY-CONNECTED
NETWORKS WITH PSEUDO-IID

Theorem 1 establishes that in the infinite width simultaneous scaling the fully-connected PSEUDO-IID
networks converge to Gaussian processes. Here we conduct numerical simulations which validate
this for modest dimensions of width Nℓ = n for n = 3, 30, and 300. Fig. 2 shows histograms of
entries equation 3 weight matrices with uniform IID entries, Gaussian IID with dropout, PSEUDO-IID
low-rank matrices, and PSEUDO-IID structured sparse matrices 2. Even at n = 30 there is excellent
agreement of the histogram and the variance of hℓ

i(x)[∗] in the infinite width limit. These histograms
in Fig. 2 are quantified with Q-Q plots in Appendix F.

Fig. 3 explores the rate with which two independent inputs xa and xb, generate uncorrelated Gaussian
processes for the same neuron. This is done by plotting the joint distribution of h(ℓ)

i (xa)[n] and
h
(ℓ)
i (xb)[n] for the same value of i and ℓ with the same network. Convergence to the limiting

correlation between h
(ℓ)
i (xa)[∗] and h

(ℓ)
i (xb)[∗] given by Theorem 1 is also shown with the overlayed

level curves. These experiments are conducted for weight matrices with IID uniform entries with
dropout as well as PSEUDO-IID orthogonal and PSEUDO-IID Gaussian low-rank and structured sparse
matrices. Interestingly the PSEUDO-IID orthogonal converge to the large width distribution most
quickly with good agreement at even n = 3. The other distributions considered show good agreement
at n = 30 which improves at n = 300. The horizontal and vertical axis in each subplot of Fig. 7 are
h
(5)
1 (xa) and h

(5)
1 (xb) respectively with xa and xb drawn independently.

3.3 PROPAGATION OF GAUSSIAN PROCESSES THROUGH DEEP NETWORKS

Poole et al. (2016) and Xiao et al. (2018) developed formulae for the dynamics of the co-variance
matrix of a Gaussian process through layers of fully-connected and convolutional networks respec-
tively. These formulae determine fixed points of the covariance matrices along with sensitivity of
the networks to small perturbations of inputs. Specifically, they derive the Edge-of-Chaos (EoC)
condition for which the network is stable to perturbations. This same EoC condition was subsequently
shown in Schoenholz et al. (2017) and Pennington et al. (2018) to avoid the exploding and vanishing
gradient phenomenon.

All of the aforementioned results require the network to generate a Gaussian process in the large
width limit. Theorems 1 and 2 extend this theory to networks in the PSEUDO-IID regime, allowing for
the first initialization conditions for the first time a rigorous EoC analysis of random networks with

2Experiments conducted for Fig. 2-7 used a fully-connected network with activation ϕ(x) = tanh(x),
weight variance σw = 2 and without bias. Dropout used probability 1/2 of setting an entry to zero, low-rank
used rank ⌈n/2⌉, and block-sparsity used randomly permuted block-diagonal matrices with block-size ⌈n/5⌉.
The code to reproduce all these figures can be found at https://shorturl.at/gNOQ0.

8

https://shorturl.at/gNOQ0


width = 3 width = 30 width = 300

IID Uniform

IID Gaussian
with dropout
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Gaussian low-
rank

PSEUDO-IID
Gaussian struc-
tured sparse

Figure 2: For different instances of the PSEUDO-IID regime, as the width of a fully-connected network
grows, the pre-activation given in the first neuron at the fifth layer tend to a Gausssian whose moments
are given by Theorem 1. The experiments were conducted 10000 times on a network whose depth is
set to be 7 and the input data is sampled from S8.
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Figure 3: The empirical joint distribution of two pre-activation values at the same neuron resulting
from two distinct inputs. Different PSEUDO-IID regimes for fully-connected networks are simulated
and their large width limiting distribution from Theorem 1 included as level curves. The input data x
are taken from S9 and 10000 experiments were conducted on a 7-layer deep network.
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parsimonious initialization as developed in Saada & Tanner (2023). More precisely, Theorems 1 and
2 can be expected to form the foundation of developing initialization theory for networks designed
for greater efficiency (and accuracy) by using structured sparse and low-rank weight matrices.

4 CONCLUSION

Here we have presented the first Gaussian process theory for deep networks with weight matrices
having low-dimensional dependent entries. Theorems 1 and 2 for fully-connected and convolutional
networks allow calculation of conditions necessary for initialization of these networks which train
efficiently Saada & Tanner (2023). We anticipate these theorems will be extended to additional
network architectures and may serve as a roadmap for yet other network regularizers. Moreover, the
theory presented here can be further refined to determine finite dimensional corrections, following the
approach of Roberts et al. (2022), such as the rate of convergence of these quantities and the variance
of these quantities for finite dimensions.
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A PROOF OF THEOREM 1: GAUSSIAN PROCESS BEHAVIOUR IN
FULLY-CONNECTED NETWORKS IN THE PSEUDO-IID REGIME

A.1 STEP 1: REDUCTION OF THE PROBLEM FROM COUNTABLY-INFINITE TO FINITE
DIMENSIONAL

Firstly, we must clarify in what sense a sequence of stochastic processes hi[n], i ∈ N converges
in distribution to its limit hi[∗]. For a sequence of real-valued random variables, we can define
convergence in distribution Xn

d
→X by the following condition: Ef(Xn) → Ef(X) for all continuous

functions f : R → R. Similarly, we can define weak convergence for random objects taking values
in RN (countably-indexed stochastic processes), provided that we equip RN with a “good” topology3

that maintains a sufficiently rich class of continuous functions. The metric ρ on the space of real
sequences RN defined by

ρ(h, h′) :=

∞∑
i=1

2−i min(1, |hi − h′
i|) (14)

is one example. Thus, we can speak of the weak convergence hi[n] d→hi[∗] in the sense that
Ef(hi[n]) → Ef(hi[∗]) for all f : RN → R continuous with respect to the metric ρ.

Fortunately, to prove the weak convergence of infinite-dimensional distributions, it is sufficient to
show the convergence of their finite-dimensional marginals Billingsley (1999).

A.2 STEP 2: REDUCTION OF THE PROBLEM FROM MULTIDIMENSIONAL TO
ONE-DIMENSIONAL

Let L = {(i1, x1), · · · , (iP , xP )} be a finite subset of the index set [Nℓ]×X . We need to show that
the vector

(
h
(ℓ)
ip

(xp)[n]
)
∈ RP converges in distribution to

(
h
(ℓ)
ip

(xp)[∗]
)
∈ RP . By the Cramér-Wold

theorem (Cramér & Wold (1936)), we may equivalently show the weak convergence of an arbitrary
linear projection

T (ℓ)(α,L)[n] =
∑

(i,x)∈L

α(i,x)

(
h
(ℓ)
i (x)[n]− b

(ℓ)
i

)
(15)

=
∑

(i,x)∈L

Nℓ−1[n]∑
j=1

α(i,x)W
(ℓ)
ij z

(ℓ−1)
j (x)[n] (16)

=
1√

Nℓ−1[n]

Nℓ−1[n]∑
j=1

γ
(ℓ)
j (α,L)[n], (17)

where
γ
(ℓ)
j (α,L)[n] := σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
ij z

(ℓ−1)
j (x)[n], (18)

and ϵij is centered and normalized, i.e. Eϵij = 0, Eϵ2ij = 1. We will be using a suitable version
of Central Limit Theorem (CLT) to prove the weak convergence of the series in equation 17 to a
Gaussian random variable.

A.3 STEP 3: USE OF AN EXCHANGEABLE CENTRAL LIMIT THEOREM

The classical Central Limit Theorem (CLT) establishes that for a sequence of IID random variables,
the properly scaled sample mean converges to a Gaussian random variable in distribution. Here we
recall an extension of the Central Limit Theorem introduced in Blum & Rosenblatt (1956), where the
independence assumption on the summands is relaxed and replaced by an exchangeability condition.
The following statement is an adapted version derived in Matthews et al. (2018), which is more suited
to our case.

3In fact, it needs to be a Polish space, i.e. a complete separable metric space.
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Theorem 3 (Matthews et al. (2018), Lemma 10). For each positive integer n, let (Xn,j ; j ∈ N∗)
be an infinitely exchangeable process with mean zero, finite variance σ2

n, and finite absolute third
moment. Suppose also that the variance has a limit limn→∞ σ2

n = σ2
∗. Define

Sn :=
1√
N [n]

N [n]∑
j=1

Xn,j , (19)

where N : N → N is a strictly increasing function. If

(a) E[Xn,1Xn,2] = 0,

(b) limn→∞ E[X2
n,1X

2
n,2] = σ4

∗,

(c) E[|Xn,1|3] = on→∞(
√
N [n]),

then Sn converges in distribution to N (0, σ2
∗).

Comparing equation 17 with equation 19, we need to check if the summands Xn,j := γ
(ℓ)
j (α,L)[n]

satisfy the conditions of Theorem 3. We will carefully verify each condition in the following sections.

A.3.1 EXCHANGEABILITY OF THE SUMMANDS

To apply Theorem 3, we must first prove that the random variables γ(ℓ)
j (α,L)[n] are exchangeable.

Let us expand the expression for γ(ℓ)
j (α,L)[n] further and write it in terms of the pre-activations of

layer ℓ− 2, i.e.

γ
(ℓ)
j (α,L)[n] = σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
ij ϕ(h

(ℓ−1)
j (x)[n])

= σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
ij ϕ

(Nℓ−2[n]∑
k=1

W
(ℓ−1)
jk z

(ℓ−2)
k (x)[n] + b

(ℓ−1)
j

)
.

If we apply a random permutation on the index j, let us say σ : {1, · · · , Nℓ−1} → {1, · · · , Nℓ−1},
then the row-exchangeability and column-exchangeability of the PSEUDO-IID weights ensure that
W

(ℓ)
iσ(j) has same distribution as W

(ℓ)
ij and that W (ℓ−1)

σ(j)k has same distribution as W
(ℓ−1)
jk , for any

i ∈ {1, · · · , Nℓ}, k ∈ {1, · · · , Nℓ−2}. Note that this extends easily to the normalized versions
of the weights ϵ

(ℓ)
ij . Additionally, as the biases are set to be IID Gaussians, they are a fortiori

exchangeable and their distributions remain unchanged when considering random permutations of
indices. Therefore, γ(ℓ)

j (α,L)[n] is equal to γ
(ℓ)
σ(j)(α,L)[n] in distribution, hence exchangeability.

A.3.2 MOMENT CONDITIONS

We mean by moment conditions the existence of a limiting variance σ2
∗, as well as the conditions

(a)-(c) in Theorem 3. We will prove the moment conditions by induction on the layer number ℓ.

Existence of the limiting variance of the summands. To show the existence of the limiting
variance of the summands, let us first write down such a variance at a finite width. Since γ

(ℓ)
j ’s are

exchangeable (see A.3.1), their distribution is identical and we may simply calculate the variance of
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γ
(ℓ)
1 as follows.

(σ(ℓ))2(α,L)[n] := E
(
γ
(ℓ)
1 (α,L)[n]

)2
= E

[
σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
i,1z

(ℓ−1)
1 (x)[n]

]2
= σ2

W

∑
(ia,xa)∈L
(ib,xb)∈L

α(ia,xa)α(ib,xb)E
[
ϵ
(ℓ)
ia,1

ϵ
(ℓ)
ib,1

]
E
[
z
(ℓ−1)
1 (xa)[n] · z(ℓ−1)

1 (xb)[n]
]

= σ2
W

∑
(ia,xa)∈L
(ib,xb)∈L

α(ia,xa)α(ib,xb)δia,ibE
[
z
(ℓ−1)
1 (xa)[n] · z(ℓ−1)

1 (xb)[n]
]
, (20)

where we first considered the independence between the normalized weights at layer ℓ and the
activations at layer ℓ − 1; then used the fact that the normalized weights are uncorrelated in the
PSEUDO-IID regime.

The convergence of the second moment of the summands is thus dictated by the convergence of
the covariance of the activations of the last layer. By the induction hypothesis, the feature maps
h
(ℓ−1)
j (x)[n] converge in distribution, so the continuous mapping theorem guarantees the existence

of a limiting distribution for the activations z(ℓ−1)
1 (xa)[n] and z

(ℓ−1)
1 (xb)[n] as n tends to infinity.

Note that this result holds even if the activation function has a set of discontinuity points of Lebesgue
measure zero, e.g. the step function. Thus, the product inside the expectation in equation 20 converges
in distribution to a limiting random variable z

(ℓ−1)
1 (xa)[∗]z(ℓ−1)

1 (xb)[∗].
From Billingsley (1999), one knows that if a sequence weakly converges to a limiting distribution
and is uniformly integrable, then we can swap the order of taking the limit and the expectation. Thus,
by Proposition 1, we have

(σ(ℓ))2(α,L)[∗] := lim
n→∞

(σ(ℓ))2(α,L)[n]

= σ2
W

∑
(ia,xa)∈L
(ib,xb)∈L

α(ia,xa)α(ib,xb)δia,ibE
[
z
(ℓ−1)
1 (xa)[∗] · z(ℓ−1)

1 (xb)[∗]
]
. (21)

Condition (a). At a given layer ℓ, we need to show that Xn,1 := γ
(ℓ)
1 (α,L)[n] and Xn,2 :=

γ
(ℓ)
2 (α,L)[n] are uncorrelated. We have

E
(
Xn,1Xn,2

)
= E

[(
σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
i,1z

(ℓ−1)
1 (x)[n]

)
·
(
σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
i,2z

(ℓ−1)
2 (x)[n]

)]
= σ2

W

∑
(ia,xa)∈L
(ib,xb)∈L

α(ia,xa)α(ib,xb)E
[
ϵ
(ℓ)
ia,1

ϵ
(ℓ)
ib,2

]
E
[
z
(ℓ−1)
1 (xa)[n] · z(ℓ−1)

2 (xb)[n]
]

= 0,

since ϵ
(ℓ)
ia,1

and ϵ
(ℓ)
ib,2

are uncorrelated by the PSEUDO-IID assumption.
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Condition (b).

E
[
X2

n,1X
2
n,2

]
= E

[(
σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
i,1z

(ℓ−1)
1 (x)[n]

)2

·
(
σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
i,2z

(ℓ−1)
2 (x)[n]

)2]
= σ4

W

∑
(it,xt)∈L
t∈{a,b,c,d}

( ∏
t∈{a,b,c,d}

α(it,xt)

)

E
[( ∏

t∈{a,b}

ϵ
(ℓ)
it,1

z
(ℓ−1)
1 (xt)[n]

)
·
( ∏

t∈{c,d}

ϵ
(ℓ)
it,2

z
(ℓ−1)
2 (xt)[n]

)]
= σ4

W

∑
(it,xt)∈L
t∈{a,b,c,d}

( ∏
t∈{a,b,c,d}

α(it,xt)

)
Fn(ia, ib, ic, id)

E
[( ∏

t∈{a,b}

z
(ℓ−1)
1 (xt)[n]

)
·
( ∏

t∈{c,d}

z
(ℓ−1)
2 (xt)[n]

)]
,

(22)

where
Fn(ia, ib, ic, id) := E

[
ϵia,1ϵib,1ϵic,2ϵid,2

]
. (23)

We justify the convergence in distribution of the random variable inside the expectation in the exact
same way as in the previous section, referring to the continuous mapping theorem and the induction
hypothesis. By Proposition 1, as n → ∞, the above expectation converges to the expectation of the
limiting Gaussian process, i.e.

lim
n→∞

E
[( ∏

t∈{a,b}

z
(ℓ−1)
1 (xt)[n]

)
·
( ∏

t∈{c,d}

z
(ℓ−1)
2 (xt)[n]

)]
= E

[( ∏
t∈{a,b}

z
(ℓ−1)
1 (xt)[∗]

)
·
( ∏

t∈{c,d}

z
(ℓ−1)
2 (xt)[∗]

)]
.

Moreover, condition (iv) of Definition 1 implies that

lim
n→∞

Fn(ia, ib, ic, id) = δia,ibδic,id .

Substituting the two limits back in the equation 22 and using the independence of the activations at
layer ℓ− 1 given by the induction hypothesis, we get

lim
n→∞

E
[
X2

n,1X
2
n,2

]
= σ4

W

∑
(it,xt)∈L
t∈{a,b,c,d}

( ∏
t∈{a,b,c,d}

α(it,xt)

)
δia,ibδic,id

E
[( ∏

t∈{a,b}

z
(ℓ−1)
1 (xt)[∗]

)
·
( ∏

t∈{c,d}

z
(ℓ−1)
2 (xt)[∗]

)]
= σ4

W

( ∑
(it,xt)∈L
t∈{a,b}

( ∏
t∈{a,b}

α(it,xt)

)
δia,ibE

[ ∏
t∈{a,b}

z
(ℓ−1)
1 (xt)[∗]

])
( ∑

(it,xt)∈L
t∈{c,d}

( ∏
t∈{c,d}

α(it,xt)

)
δic,idE

[ ∏
t∈{c,d}

z
(ℓ−1)
1 (xt)[∗]

])

= σ4
W (σ(ℓ))4(α,L)[∗].

Condition (c). To show that the third absolute moment of the γ
(ℓ)
1 (α,L)[n] grows slower than√

Nℓ−1[n] as n → ∞, it is sufficient to bound it by a constant. Applying Hölder’s inequality on
X =

∣∣γ(ℓ)
1 (α,L)[n]

∣∣3, Y = 1, p = 4/3, q = 4, we obtain

E(
∣∣γ(ℓ)

1 (α,L)[n]
∣∣3) ≤ [

E
∣∣γ(ℓ)

1 (α,L)[n]
∣∣4] 1

4 × 1.
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Therefore, condition (c) boils down to showing that limn→∞ E
∣∣γ(ℓ)

1 (α,L)[n]
∣∣4 is finite, for which

we will once again make use of the uniform integrability of the feature maps derived in C. Define

Gn(ia, ib, ic, id) := E
[
ϵia,1ϵib,1ϵic,1ϵid,1

]
, (24)

and observe that

E
∣∣γ(ℓ)

1 (α,L)[n]
∣∣4 = E

[(
σW

∑
(i,x)∈L

α(i,x)ϵ
(ℓ)
i,1z

(ℓ−1)
1 (x)[n]

)4]
= σ4

W

∑
(it,xt)∈L
t∈{a,b,c,d}

( ∏
t∈{a,b,c,d}

α(it,xt)

)
Gn(ia, ib, ic, id)E

[ ∏
t∈{a,b,c,d}

z
(ℓ−1)
1 (xt)[n]

]
.

Using Cauchy-Schwarz inequality, we can bound Gn by the fourth moment of the normalized weights,
i.e.

Gn ≤
√
Var(ϵia,1ϵib,1)Var(ϵic,1ϵid,1) = Var(ϵia,1ϵib,1)

= E
[
ϵ2ia,1ϵ

2
ib,1

]
≤ Var(ϵ2ia,1) = E

[
ϵ4ia,1

]
− 1.

Then, we use condition (iii) of the Definition 1 with p = 4 and a = (1, 0, · · · , 0)⊤ to bound the
fourth moment:

E
[
ϵ4ia,1

]
=

n2

σ4
E
[
W 4

ia,1

]
=

n2

σ4
K4∥a∥42n−2 =

K4

σ4
= on(1).

Furthermore, the induction hypothesis gives the convergence in distribution of the feature maps
from the last layer, and combined with the continuous mapping theorem we get the convergence in
distribution of the above product inside expectation. Using Lemma 1, the uniform integrability of
the activations follows, and Billingsley’s theorem (Lemma 2) enables us to swap the limit and the
expectation. Thus,

lim
n→∞

E
[ ∏
t∈{a,b,c,d}

z
(ℓ−1)
1 (xt)[n]

]
= E

[ ∏
t∈{a,b,c,d}

z
(ℓ−1)
1 (xt)[∗]

]
.

To bound the product of four different random variables on R, it is sufficient to bound the fourth
order moment of each (see Lemma 3). We can do so using the linear envelope property (Definition 3)
satisfied by the activation function to get, for any (i, x) ∈ L,

E
[
z
(ℓ−1)
1 (x)[∗]4

]
≤ 24−1E

[
c4 +M4

∣∣h(ℓ−1)
1 (x)[∗]

∣∣4].
The induction hypothesis indicates that h(ℓ−1)

1 (x)[∗] follows a Gaussian distribution, whose fourth
moment is bounded. Using the fact that we chose the set L to be finite, we can take the supremum
over all x. Therefore, we have

E
[
z
(ℓ−1)
1 (xt)[∗]4

]
≤ 24−1 sup

(i,x)∈L
E
[
c4 +M4

∣∣h(ℓ−1)
1 (x)[∗]

∣∣4] = on(1).

Combining the above bounds, we then have

lim
n→∞

E
∣∣γ(ℓ)

1 (α,L)[n]
∣∣4 < ∞.
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A.3.3 CONCLUSION FROM THE EXCHANGEABLE CLT

In the above sections, we showed by induction that at any depth, if the feature maps from previous
layers converge in distribution to IID Gaussian processes, then the assumptions of Theorem 3 hold and
the one-dimensional projection of the feature maps at the current layer also converges in distribution
to a Gaussian random variable with a specified variance. More precisely, we showed that for any
finite set L and projection vector α, any linear one-dimensional projection of the feature maps at the
current layer, T (ℓ)(α,L)[n], converges in distribution to a Gaussian N

(
0, σ(ℓ)(α,L)[∗]

)
as n grows.

This gives the convergence of the feature maps at layer ℓ to Gaussian processes.

Considering the unbiased quantity

T (ℓ)(α,L)[∗] :=
∑

(i,x)∈L

α(i,x)

(
h
(ℓ)
i (x)[∗]− b

(ℓ)
i

)
,

we can compute its variance:

E
[
T (ℓ)(α,L)[∗]

]2
=

∑
(ia,xa)∈L
(ib,xb)∈L

α(ia,xa)α(ib,xb)

(
E
[
h
(ℓ)
ia

(xa)[∗] · h(ℓ)
ib

(xb)[∗]
]
− σ2

bδia,ib

)
.

As we saw in the previous sections,

σ(ℓ)(α,L)[∗] = σ2
W

∑
(ia,xa)∈L
(ib,xb)∈L

α(ia,xa)α(ib,xb)δia,ibE
[
z
(ℓ−1)
1 (xa)[∗] · z(ℓ−1)

1 (xb)[∗]
]
.

Thus, by identification, and using the inductive hypothesis, one recovers the recursion formula for the
variance as described in Theorem 1: For any ia, ib ∈ N, xa, xb ∈ X ,

E
[
h
(ℓ)
ia

(xa)[∗]h(ℓ)
ib

(xb)[∗]
]
= δia,ib

(
σ2
WE

[
z
(ℓ−1)
1 (xa)[∗] · z(ℓ−1)

1 (xb)[∗]
]
+ σ2

b

)
= δia,ib

(
σ2
WE

(u,v)∼N
(
0,K(ℓ−1)(x,x′)

)[ϕ(u)ϕ(v)]+ σ2
b

)
.

A.4 IDENTICAL DISTRIBUTION AND INDEPENDENCE OVER NEURONS

As we saw, for any n, the feature maps h(ℓ)
j (α,L)[n] are exchangeable, and, in particular, identically

distributed. This still holds after taking the limit, that is h(ℓ)
j [∗] and h

(ℓ)
k [∗] have the same distribution

for any j, k ∈ N.

It still remains to show the independence between h
(ℓ)
i [∗] and h

(ℓ)
j [∗] for i ̸= j. As we now know the

limiting distribution is Gaussian, it suffices to analyze their covariance to conclude about their inde-
pendence. As derived in the previous section, for any x, x′ ∈ X , i ̸= j, E

[
h
(ℓ)
i (x)[∗]h(ℓ)

j (x′)[∗]
]
= 0,

hence the independence.

B PROOF OF THEOREM 2: GAUSSIAN PROCESS BEHAVIOUR IN
CONVOLUTIONAL NEURAL NETWORKS IN THE PSEUDO-IID REGIME

We apply the same machinery to show the Gaussian Process behaviour in CNNs under the PSEUDO-
IID regime, closely following the steps detailed in the fully-connected case. To reduce the problem to
a simpler one, one can proceed as previously by considering a finite subset of the feature maps at
layer ℓ, L = {(i1,X1,µ1), · · · , (iP ,XP ,µP )} ⊆ [Cℓ]×X × I , where I consists of all the spatial
multi-indices. We will follow the same strategy outlined in Sections A.1-A.3. Given a finite set L
and the projection vector α ∈ R|L|, we may form the unbiased one-dimensional projection as

T (ℓ)(α,L)[n] :=
∑

(i,X,µ)∈L

α(i,X,µ)

(
h
(ℓ)
i,µ(X)[n]− b

(ℓ)
i

)
, (25)
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which can be rewritten, using equation 9, as the sum

T (ℓ)(α,L)[n] = 1√
Cℓ−1[n]

Cℓ−1[n]∑
j=1

γ
(ℓ)
j (α,L)[n], (26)

where the summands are

γ
(ℓ)
j (α,L)[n] := σW

∑
(i,X,µ)∈L

α(i,X,µ)

∑
ν∈JµK

E
(ℓ)
i,j,νz

(ℓ−1)
j,ν (X)[n]. (27)

As before, we introduced the renormalized version E(ℓ) of the filter U(ℓ) such that E(ℓ)
i,j,ν :=

σ−1
W

√
CℓU

(ℓ)
i,j,ν .

We will proceed once again by induction forward through the network’s layer verifying the assump-
tions of the exchangeable CLT (Theorem 3) and using it on T (ℓ)(α,L)[n] to conclude its convergence
in distribution to a Gaussian random variable.

The exchangeability of the summands. Similar to the fully-connected case, we employ the row-
and column-exchangeability of the PSEUDO-IID convolutional kernel to show the exchangeability of
γ
(ℓ)
j ’s. Let us expand equation 27 and write

γ
(ℓ)
j (α,L)[n] = σW

∑
(i,X,µ)∈L

α(i,X,µ)

∑
ν∈JµK

E
(ℓ)
i,j,νϕ(h

(ℓ−1)
j,ν (X)[n])

= σW

∑
(i,X,µ)∈L

∑
ν∈JµK

α(i,X,µ)E
(ℓ)
i,j,νϕ

(Cℓ−2[n]∑
k=1

∑
ξ∈JνK

U
(ℓ−1)
j,k,ξ z

(ℓ−2)
k,ξ (X)[n]

)
.

The joint distributions of
(
U

(ℓ)
i,j,ν

)Cℓ−1

j=1
and

(
U

(ℓ−1)
j,k,ξ

)Cℓ−1

j=1
are invariant under any permutation j 7→

σ(j), therefore γ
(ℓ)
j ’s are exchangeable.

Moment conditions. Condition (a) is straightforward as the filters’ entries are uncorrelated by the
PSEUDO-IID assumption: E

[
U

(ℓ)
i,j,µU

(ℓ)
i′,j′,µ′

]
=

σ2
W

Cℓ−1
δi,i′δj,j′δµ,µ′ .

The moment conditions are shown to be satisfied by induction through the network and the proofs
boil down to showing the uniform integrability of the activation vectors to be able to swap limit and
expectation. This uniform integrability in the CNN case under PSEUDO-IID weights is rigorously
demonstrated in proposition 2. One can compute the variance of one representative of the summands,
let us say the first one, as follows:
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(σ(ℓ))2(α,L)[n] := E
(
γ
(ℓ)
1 (α,L)[n]2

)
= E

[
σW

∑
(i,X,µ)∈L

α(i,X,µ)

∑
ν∈JµK

E
(ℓ)
i,1,νz

(ℓ−1)
1,ν (X)[n]

]2
= σ2

W

∑
(ia,Xa,µa)∈L
(ib,Xb,µb)∈L

α(ia,Xa,µa)α(ib,Xb,µb)

∑
νa∈JµaK
νb∈JµbK

E
[
E

(ℓ)
ia,1,νa

E
(ℓ)
ib,1,νb

]
E
[
z
(ℓ−1)
1,νa

(Xa)[n] · z(ℓ−1)
1,νb

(Xb)[n]
]

= σ2
W

∑
(ia,Xa,µa)∈L
(ib,Xb,µb)∈L

α(ia,Xa,µa)α(ib,Xb,µb)

∑
νa∈JµaK
νb∈JµbK

E
[
E

(ℓ)
ia,1,νa

E
(ℓ)
ib,1,νb

]
E
[
z
(ℓ−1)
1,νa

(Xa)[n] · z(ℓ−1)
1,νb

(Xb)[n]
]

= σ2
W

∑
(ia,Xa,µa)∈L
(ib,Xb,µb)∈L

α(ia,Xa,µa)α(ib,Xb,µb)

∑
νa∈JµaK
νb∈JµbK

δia,ibδνa,νb
E
[
z
(ℓ−1)
1,νa

(Xa)[n] · z(ℓ−1)
1,νb

(Xb)[n]
]
.

Given the uniform integrability of the product the activations in a CNN, we may swap the order of
taking the limit and the expectation to have

(σ(ℓ))2(α,L)[∗] := lim
n→∞

(σ(ℓ))2(α,L)[n]

= σ2
W

∑
(ia,Xa,µa)∈L
(ib,Xb,µb)∈L

α(ia,Xa,µa)α(ib,Xb,µb)

∑
νa∈JµaK
νb∈JµbK

δia,ibδνa,νb
E
[
z
(ℓ−1)
1,νa

(Xa)[∗] · z(ℓ−1)
1,νb

(Xb)[∗]
]
.

As in the fully-connected case, we conclude that the feature maps at the next layer converge to
Gaussians processes, whose covariance function is given by

E
[
h
(ℓ)
ia,µa

(Xa)[∗] · h(ℓ)
ib,µb

(Xb)[∗]
]
= δia,ib

(
σ2
b + σ2

W

∑
ν∈JµaK∩JµbK

K(ℓ)
ν (Xa,Xb)

)
,

where

K(ℓ)
ν (Xa,Xb) =

{
E
(u,v)∼N (0,K

(ℓ−1)
ν (Xa,Xb))

[ϕ(u)ϕ(v)], ℓ ≥ 1
1
C0

∑C0

j=1(Xa)j,ν(Xb)j,ν , ℓ = 0
.

C LEMMAS USED IN THE PROOF OF THEOREMS 1 AND 2

We will present in this section the lemmas used in the derivation of our results. The proofs are omitted
in cases where they can easily be found in the literature.

Lemma 1 (Hölder’s inequality). For a probability space (Ω,F ,P), let X,Y be two random variables
on Ω and p, q > 1 such that p−1 + q−1 = 1. Then,

E|XY | ≤
(
E|X|p

) 1
p
(
E|Y |q

) 1
q .
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Lemma 2 (Bellingsley’s theorem). Let X[n] be a sequence of random variables, for n ∈ N and
X another random variable. If X[n] is uniformly integrable and the sequence X[n] converges in
distribution to X[∗] = X , then X is integrable and one can swap the limit and the expectation, i.e.

lim
n→∞

EX[n] = EX[∗].

We adapt Lemma 18 from Matthews et al. (2018) to our setting and the proof can trivially be obtained
from the proof derived in the cited article.
Lemma 3 (Sufficient condition to uniformly bound the expectation of a four-cross product). Let X1,
X2, X3, and X4 be random variables on R with the usual Borel σ-algebra. Assume that E|Xi|4 < ∞
for all i ∈ {1, 2, 3, 4}. Then, for any choice of pi ∈ {0, 1, 2} (where i ∈ {1, 2, 3, 4}), the expectations
E
[∏4

i=1 |Xi|pi
]

are uniformly bounded by a polynomial in the eighth moments E|Xi|8 < ∞.

This Lemma can be easily derived from standard Pearson correlation bounds.

We now have the tools to show that all four-cross products of the activations are uniformly integrable
in the PSEUDO-IID setting, which enables us to swap the limit and the expectation in the previous
sections of the appendix.
Proposition 1 (Uniform integrability in the PSEUDO-IID regime – fully-connected networks). Con-
sider a fully-connected neural network in the PSEUDO-IID regime. Consider the random activations
z
(ℓ)
i (xa)[n], z

(ℓ)
j (xb)[n], z

(ℓ)
k (xc)[n], z

(ℓ)
l (xd)[n] with any i, j, k, l ∈ N, xa, xb, xc, xd ∈ X , neither

necessarily distinct, as in 3. Then, the family of random variables

z
(ℓ)
i (xa)[n]z

(ℓ)
j (xb)[n]z

(ℓ)
k (xc)[n]z

(ℓ)
l (xd)[n],

indexed by n is uniformly integrable for any ℓ = 1, · · ·L+ 1.

Proof. The proof is adapted from Matthews et al. (2018) to the PSEUDO-IID regime in fully-connected
neural networks described in equation 3.

If a collection of random variables is uniformly Lp-bounded for p > 1, then it is uniformly integrable.
So, we will show that our family of random variables is uniformly L1+ϵ−bounded for some ϵ > 0,
i.e. there exists K < ∞ independent of n such that,

E
∣∣∣z(ℓ)i (xa)[n]z

(ℓ)
j (xb)[n]z

(ℓ)
k (xc)[n]z

(ℓ)
l (xd)[n]

∣∣∣1+ϵ

≤ K,

which is equivalent to

E
[∣∣z(ℓ)i (xa)[n]

1+ϵ
∣∣∣∣z(ℓ)j (xb)[n]

1+ϵ
∣∣∣∣z(ℓ)k (xc)[n]

1+ϵ
∣∣∣∣z(ℓ)l (xd)[n]

1+ϵ
∣∣] ≤ K.

To do so, Lemma 3 gives us a sufficient condition: bounding the moment of order 4(1 + ϵ) of each
term in the product by a constant independent of n. For any xt ∈ X and i ∈ N, this moment can be
rewritten in terms of the feature maps using the linear envelope property 3 and the convexity of the
map x 7→ x4(1+ϵ) as

E
[∣∣z(ℓ)i (xt)[n]

∣∣4(1+ϵ)
]
≤ 24(1+ϵ)−1E

[
c4(1+ϵ) +M4(1+ϵ)

∣∣h(ℓ)
i (xt)[n]

∣∣4(1+ϵ)
]
.

Thus it is sufficient to show that the absolute feature maps
∣∣h(ℓ)

i (xt)[n]
∣∣ have a finite moment of

order 4 + ϵ, independent of xt, i, and n, for some ϵ. For the sake of simplicity, we will show this by
induction on ℓ for ϵ = 1.

Base case. For ℓ = 1, the feature maps h(1)
i =

∑N0

j=1 W
(1)
i,j xj + b

(1)
i are identically distributed for

all i ∈ {1, · · · , N1[n]} from the row-exchangeability of the weights. Moreover, from the moment
condition of Definition 1, there exists p = 8 such that

E
∣∣h(1)

i (x)[n]
∣∣p ≤ E

∣∣∣ N0∑
j=1

xjW
(1)
i,j

∣∣∣p + E
∣∣b(1)i

∣∣p
= K∥x∥p2N

−p/2
0 + E

∣∣b(1)i

∣∣p.
The RHS of the above equality is independent of N1 (and n). Therefore, for all n ∈ N and
i ∈ {1, · · · , N1[n]}, we have found a constant bound for the feature map’s moment of order p = 8.
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Inductive step. Let us assume that for any {xt}4t=1 and i ∈ N, the eigth-order moment of∣∣h(ℓ−1)
i (xt)[n]

∣∣ is bounded by a constant independent from n.

We will show that this implies

E
[∣∣h(ℓ)

i (xt)[n]
∣∣8] < ∞.

Considering the vector of activations ϕ
(
h
(ℓ−1)
⊙ (xt)

)
[n], we have, from the moment condition (iii) of

the PSEUDO-IID regime the following conditional expectation,

E
[∣∣∣Nℓ−1[n]∑

j=1

W
(ℓ)
ij ϕ

(
h
(ℓ−1)
j (xt)

)
[n]

∣∣∣8 | ϕ
(
h
(ℓ−1)
⊙ (xt)

)
[n]

]
= K||ϕ

(
h
(ℓ−1)
⊙ (xt)

)
[n]||82Nℓ−1[n]

− 8
2 .

Thus using the recursion formulae for the data propagation in such architecture given by 3, the
convexity of x 7→ x8 on R+ and taking conditional expectations,

E
[∣∣h(ℓ)

i (xt)[n]
∣∣8] ≤ 28−1E

[∣∣b(ℓ)i

∣∣8 + ∣∣∣Nℓ−1[n]∑
j=1

W
(ℓ)
ij ϕ

(
h
(ℓ−1)
j (xt)

)
[n]

∣∣∣8] (28)

= 28−1E
[∣∣b(ℓ)i

∣∣8]+ E
[
E
∣∣∣Nℓ−1[n]∑

j=1

W
(ℓ)
ij ϕ

(
h
(ℓ−1)
j (xt)

)
[n]

∣∣∣8 | ϕ
(
h
(ℓ−1)
⊙ (xt)

)
[n]

]
= 28−1E

[∣∣b(ℓ)i

∣∣8]+KNℓ−1[n]
−4E

[
||ϕ

(
h
(ℓ−1)
⊙ (xt)

)
[n]||82

]
. (29)

As the biases are IID Gaussians, the first expectation involving the bias is trivially finite and does not
depend on i as they are identically distributed. For the second expectation, we compute,

E||ϕ
(
h
(ℓ−1)
⊙ (xt)

)
[n]||82 = E

[Nℓ−1[n]∑
j=1

(
ϕ
(
h
(ℓ−1)
j (xt)

)
[n]

)2] 8
2

(30)

≤ E
[Nℓ−1[n]∑

j=1

(
c+M

(
h
(ℓ−1)
j (xt)

)
[n]

)2] 8
2

= E
[Nℓ−1[n]∑

j=1

c2 +M2
(
h
(ℓ−1)
j (xt)

)2
[n] + 2cM

(
h
(ℓ−1)
j (xt)

)
[n]

]4
.

This last expression can be written as a linear combination of Nℓ−1[n]
4 quantities of the form

E
[(
h
(ℓ−1)
j1

(xt)
)p1

[n]
(
h
(ℓ−1)
j2

(xt)
)p2

[n]
(
h
(ℓ−1)
j3

(xt)
)p3

[n]
(
h
(ℓ−1)
j4

(xt)
)p4

[n]
]
,

and we bound each of them making use of Lemma 3. The factor Nℓ−1[n]
−4 in 29 thus cancels out

with the number of terms in the sum 30. As the pre-activations are exchangeable, they are identically
distributed so the dependence on the neuron index i can be ignored, and taking the supremum over
the finite set of input data {xt} does not affect the uniformity of the bound; which concludes the
proof.

Proposition 2 (Uniform integrability in the PSEUDO-IID regime – CNN.). Consider a convolu-
tional neural network in the PSEUDO-IID regime. Consider a collection of random variables
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z
(ℓ)
i (xa)[n], z

(ℓ)
j (xb)[n], z

(ℓ)
k (xc)[n], z

(ℓ)
l (xd)[n] with any i, j, k, l ∈ N,Xa,Xb,Xc,Xd ∈ X , nei-

ther necessarily distinct, obtained by the recursion 9. Then, the family of random variables

z
(ℓ)
i (Xa)[n]z

(ℓ)
j (Xb)[n]z

(ℓ)
k (Xc)[n]z

(ℓ)
l (Xd)[n],

indexed by n is uniformly integrable for any ℓ = {1, · · ·L+ 1}.

Proof. As previously, this proposition holds some novelty of this paper, extending already known
proofs in the standard Gaussian IID setting to the PSEUDO-IID regime in CNNs. Note that this directly
implies the universality of the Gaussian Process behaviour for CNNs in the IID regime, which has
been established so far only by Yang (2021) to the best of our knowledge. Our result goes beyond.
We recall that the data propagation is described by Equation 9.

Once again, we observe it is sufficient to show such that the moment of order 8 of the feature maps is
uniformly bounded. We do this again by induction.

Base case. Since h
(1)
i,µ(X)[n] = b

(1)
i +

∑C0

j=1

∑
ν∈JµK U

(1)
i,j,νxj,ν , and weights and biases are

independent, for some p = 8 we can write

E
∣∣h(1)

i,µ(X)[n]
∣∣p ≤ E

∣∣∣ C0∑
j=1

∑
ν∈JµK

xj,νU
(1)
i,j,ν

∣∣∣p + E
∣∣b(1)i

∣∣p
= Kp∥XJµK∥p2C

−p/2
0 + E

∣∣b(1)i

∣∣p,
where XJµK is the part of signal around the pixel µ and we have used the condition (iii) of Definition
4 in the last line. Observe that the RHS is independent of i and n.

Inductive step. Let us assume that for any {Xt}4t=1, µ ∈ I and i ∈ N, there exists ϵ0 ∈ (0, 1) such
that the eighth moment of the pre-activations from the previous layer

∣∣h(ℓ−1)
i,µ (Xt)[n]

∣∣ is bounded by
a constant independent from j ∈ N,ν ∈ I, and n, for all Xt ∈ X
Mirroring our proof in the fully-connected case, we will show that this propagates to the next layer,

E
∣∣h(ℓ)

i,µ(Xt)[n]
∣∣8 < ∞.

From the third condition of the PSEUDO-IID regime, we can compute the expectation conditioned on
the vector of activations ϕ

(
h
(ℓ−1)
⊙,⊙ (Xt)

)
[n],

E
[∣∣∣Cℓ−1[n]∑

j=1

∑
ν∈JµK

U
(ℓ)
i,j,νϕ

(
h
(ℓ−1)
j,ν (Xt)

)
[n]

∣∣∣8] = E
[
E
∣∣∣Cℓ−1[n]∑

j=1

∑
ν∈JµK

U
(ℓ)
i,j,νϕ

(
h
(ℓ−1)
j,ν (Xt)

)
[n]

∣∣∣8
| ϕ

(
h
(ℓ−1)
⊙,⊙ (Xt)

)
[n]

]
= KCℓ−1[n]

−4E∥ϕ
(
h
(ℓ−1)
⊙,⊙ (Xt)

)
[n]K∥82,

where the norm of the activations can be computed using the linear envelope property,

E∥ϕ
(
h
(ℓ−1)
⊙,⊙ (Xt)

)
[n]K∥82 ≤ E

[Cℓ−1[n]∑
j=1

∑
ν∈JµK

(
ϕ
(
h
(ℓ−1)
j,ν (Xt)

)
[n]

)2]4

≤ E
[Cℓ−1[n]∑

j=1

∑
ν∈JµK

c2 +M2h
(ℓ−1)
j,ν (Xt)

2[n] + 2cMh
(ℓ−1)
j,ν (Xt)

]4
.
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This last quantity turns out to be the weighted sum of (k × Cℓ−1[n])
4 terms (recall k being the filter

size, which is finite) of the form

E
[
h
(ℓ−1)
j1,ν

(Xt)
p1 [n]h

(ℓ−1)
j2,ν

(Xt)
p2 [n]h

(ℓ−1)
j3,ν

(Xt)
p3 [n]h

(ℓ−1)
j4,ν

(Xt)
p4 [n]

]
,

that can be bounded using Lemma 3 combined with our inductive hypothesis. Observe how the
factors Cℓ−1[n]

4 cancel out and lead to a bound independent from n.

Using the recursion formulae for the data propagation in the CNN architecture recalled in 9 and the
convexity of the map x 7→ x8 on R+, we have

E
∣∣h(ℓ)

i,µ(Xt)[n]
∣∣8 ≤ 28−1E

[∣∣b(ℓ)i

∣∣8 + ∣∣∣Cℓ−1[n]∑
j=1

∑
ν∈JµK

U
(ℓ)
i,j,νϕ

(
h
(ℓ−1)
j,ν (Xt)

)
[n]

∣∣∣8].
The first expectation is finite and uniformly bounded as the biases are IID Gaussians in the PSEUDO-
IID regime and we have just shown above the boundedness of the second expectation.

Therefore,

E
∣∣ϕ(h(ℓ−1)

j,ν (Xt)
)
[n]

∣∣8 < ∞, (31)

and taking the supremum over the finite input data set does not change the uniformly bounded
property, which was needed to be shown.

D EXAMPLES CONCERNING THE BOUNDED MOMENT CONDITION (III) OF THE
PSEUDO-IID DISTRIBUTION

The bounded moment condition (iii) of the PSEUDO-IID distribution in Definition 1 is a key condition
in the distinct proof of IID matrices taken in Hanin (2021) (Lemma 2.9). We show some examples of
distributions in Figure 4 which verify or violate the conditions we identified as sufficient to rigorously
prove the convergence of random neural networks to gaussian processes in the large width limit.

E STRUCTURED SPARSE WEIGHT MATRICES IN THE FULLY-CONNECTED
SETTING

Fig. 5 shows examples of permuted block-sparse weight matrices used to initialize a fully-connected
network in order to produce the plots given in Fig. 2-7.

F FURTHER NUMERICAL SIMULATIONS VALIDATING THEOREM 1

Fig. 6 shows Q−Q plots for the histograms in Fig. 2 as compared to their infinite with Gaussian
limit. These Q − Q plots show how the PSEUDO-IID networks approach the Gaussian process at
somewhat different rates with IID uniform approaching the fastest.

Fig. 7 explores the growing independence of entries in h
(ℓ)
i (x)[n] for different i by showing their joint

distributions for two distinct choices of i; moreover, convergence to the limiting isotropic Gaussian
distribution h

(ℓ)
i (x)[∗] is overlayed in the same plots. Uniform IID converges the quickest, while

PSEUDO-IID Gaussian low-rank and structured sparse converge towards an isotropic distribution
somewhat slower, albeit already showing good agreement at n = 30. The horizontal and vertical axis
in each subplot of Fig. 7 are h

(5)
i (x) for i = 1 and 2 respectively.
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Figure 4: Different cases where conditions (ii) and (iii) of the pseudo IID regime are either satisfied
or violated. Condition (iii) is considered with p = 8 and a = (1, · · · , 1) such that it becomes
E
∣∣∑n

j=1 Xj

∣∣8 = K, where X = (X1, · · · , XN ) is regarded as one row of the weight matrix. The
chosen distribution for the vector X impacts whether the network is in the PSEUDO-IID regime. In
the identical coordinates case, X = (X1, · · · , X1) is the concatenation of the same realisation X1

sampled from a standard normal. Not only the traditional IID assumption is broken as the coordinates
are obviously dependent but also condition (iii) is violated, thus resulting in an unbounded expectation
when growing the dimension N . The autoregressive process (X1, · · · , XN ) shown is obtained by
Xi = ϵi + Xi−1, where ϵi are IID multivariate gaussian noises of dimension N . The correlation
between the coordinates does not decrease fast enough with the dimension to get a bound on the
computed expectation and condition (iii) is once again violated. On the contrary, from the plot
produced by sampling IID Cauchy distributions, it is not obvious whether condition (iii) holds.
Nonetheless, condition (ii) which ensures the finiteness of the variance is not, thus a random network
initialized with IID Cauchy weights falls outside the scope of our identified broad class of distributions
to ensure a convergence towards a gaussian process. The last cases of samples taken either from scaled
multivariate normals in red or uniformly sampled from the unit sphere in orange (with appropriate
scaling such that condition (ii) holds) show that there exists a bound independent from the dimension
on the expectation of interest. The empirical expectations are taken considering averages over 100000
samples.
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Figure 5: Example of a permuted block-sparse weight matrix at initialization of a fully-connected
network with increasing width N . The matrix is initialized with identically and independently
sampled diagonal blocks from a scaled Gaussian. Its rows and columns are then randomly permuted
in order to satisfy the PSEUDO-IID conditions. The block size is set to be ⌈0.2 ∗N⌉. Entries in yellow
are zero and entries in black are nonzero..

25



width = 3 width = 30 width = 300

IID Uniform

4 2 0 2 4
Theoretical Quantiles

4

2

0

2

4

Sa
m

pl
e 

Qu
an

til
es

4 3 2 1 0 1 2 3 4
Theoretical Quantiles

4

3

2

1

0

1

2

3

4

Sa
m

pl
e 

Qu
an

til
es

4 3 2 1 0 1 2 3
Theoretical Quantiles

4

3

2

1

0

1

2

3

Sa
m

pl
e 

Qu
an

til
es

IID Gaussian
with dropout

4 2 0 2 4
Theoretical Quantiles

4

2

0

2

4

Sa
m

pl
e 

Qu
an

til
es

4 3 2 1 0 1 2 3 4
Theoretical Quantiles

4

3

2

1

0

1

2

3

4

Sa
m

pl
e 

Qu
an

til
es

4 3 2 1 0 1 2 3 4
Theoretical Quantiles

4

3

2

1

0

1

2

3

4

Sa
m

pl
e 

Qu
an

til
es

PSEUDO-IID
Gaussian low-
rank

4 2 0 2 4
Theoretical Quantiles

4

2

0

2

4

Sa
m

pl
e 

Qu
an

til
es

4 2 0 2 4
Theoretical Quantiles

4

2

0

2

4

Sa
m

pl
e 

Qu
an

til
es

4 2 0 2 4
Theoretical Quantiles

4

2

0

2

4

Sa
m

pl
e 

Qu
an

til
es

PSEUDO-IID
Gaussian struc-
tured sparse

6 4 2 0 2 4 6
Theoretical Quantiles

6

4

2

0

2

4

6

Sa
m

pl
e 

Qu
an

til
es

4 2 0 2 4
Theoretical Quantiles

4

2

0

2

4

Sa
m

pl
e 

Qu
an

til
es

4 2 0 2 4
Theoretical Quantiles

4

2

0

2

4

Sa
m

pl
e 

Qu
an

til
es

Figure 6: Q-Q plots of the pre-activations values in Fig. 2 as an alternative way of showing the
convergence of the pre-activation of a fully-connected network to a Gaussian as fully characterized in
Theorem 1. The settings of the experiment are the same as those in Fig. 2.
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Figure 7: For fully-connected networks in the PSEUDO-IID regime, it is shown in Theorem 1 that in
the large width limit, at any layer, two neurons fed with the same input data become independent. We
compare the joint distribution of the pre-activations given in the first and second neurons at the fifth
layer with an isotropic Gaussian probability density function. Initializing the weight matrices with
IID Cauchy realisations falls outside of our defined framework, resulting in a poor match. The inputs
were sampled from S8 and 10000 experiments conducted on a depth 7 network.
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