Phase Transitions for Restricted Isometry Properties

Jeffrey D. Blanchard
Department of Mathematics
University of Utah
Salt Lake City, UT 84112-0090
jeff@math.utah.edu

Abstract—Currently there is no framework for the transpar-
ent comparison of sparse approximation recoverability results
derived using different methods of analysis. We cast some of
the most recent recoverability results for ¢;-regularization in
terms of the phase transition framework advocated by Donoho.
To allow for quantitative comparisons across different methods
of analysis a particular random matrix ensemble must be
selected; here we focus on Gaussian random matrices. Methods
of analysis considered include the Restricted Isometry Property
of Candes and Tao, geometric covering arguments of Rudelson
and Vershynin, and convex polytopes formulations of Donoho.

I. INTRODUCTION

There is no widely agreed upon framework for the quanti-
tative comparison of theoretical sparse approximation results
derived from different methods of analysis. Lacking such a
framework it is becoming increasingly unclear if new results
are improvements over existing results, or which methods
of analysis are achieving the best results. In an effort to
alleviate this shortcoming we cast some of the most cited
results of sparse approximation in a simple format which allow
for transparent comparison. We focus on /;-regularization (2)
and Gaussian random matrices, for which there is a well
established literature.

Let A be an n x N matrix with n < N and =z € RY
be a real N-dimensional vector with kK < n nonzero en-
tries. Let the set of k-sparse vectors be denoted x¥ (k) =
{z e RN : ||z||, < k} where |||, counts the number of
nonzero entries. Let b = Ax and from (b, A), we seek the
sparsest vector x such that b = Ax. Now standard in sparse
approximation, we seek the sparsest solution,

min [|z||, subject to b = Ax. (1)

Rather than solve (1) directly through a combinatorial search,
we relax the problem [1] to solving

min [|z||; subject to b = Ax. (2)

When the solution to (2) is identical to the solution of (1), x
is called a point of ¢1 /¢y-equivalence. Our goal is to determine
the largest sparsity level k < n, for a given n and N, such that
every vector x € x™V (k) is a point of /1 /fy-equivalence. We
follow the convention advocated by Donoho in [2], [3]; with
p= % and § = £, we define regions of (9, p) in which there is
a high probability on the draw of a Gaussian matrix A that for
large problem sizes, (k,n, N) — oo, all z € xV (k) are points
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of /¢1/y-equivalence. This region where ¢;/¢y-equivalence
typically occurs for all x € xN (k) is given by (6,p) for
p < (1 —¢€)ps(d) for any € > 0; lower bounds on pg(d)
provide an easily interpreted and comparable quantitative
condition. We compare the best known lower bounds on the
strong (¢1 /{o-equivalence for all = € x™ (k)) phase transition
curves associated with the following techniques of analysis:
convex polytopes [2], geometric functional analysis [4], and
the restricted isometry property [5], [6].

II. THE PHASE TRANSITION FRAMEWORK

In this section, we recast known results in sparse approxi-
mation in terms of lower bounds on the strong phase transition
curve, pg(d), for Gaussian random matrices. The function
ps(8) defines a curve below which there is exponentially
high probability on the draw of a matrix A with Gaussian
i.i.d. entries that every k-sparse vector is a point of /¢1/{y-
equivalence. That is to say for any problem instance with
parameters (k,n, N), if £ = p < (1 —€)pg(6) for any € > 0,
then with high probability on the draw of a matrix A with
entries drawn i.i.d. from N(0,1/y/n), every z € xV (k) is
a point of ¢;/f¢y-equivalence. The lower bounds define the
region in which the associated sufficient condition is satisfied
with high probability on the draw of a Gaussian matrix.

Donoho [2] provided a necessary and sufficient condition
on any matrix A of size n x N such that every = € xV (k)
is a point of ¢;/¢p-equivalence; namely the projection of
the unit ¢; ball, CV, under A preserves all k-faces. This
is the notion of k central-neighborliness. Using k central-
neighborliness, Donoho developed a lower bound on the phase
transition, pg (8, C), for Gaussian matrices which satisfy the
k central-neighborliness condition [3] and therefore exactly
recover every = € YV (k) via (2). In the limit as § — 0, the
lower bound of Donoho, ps (8, CV), approaches the true phase
transition pg(d), [7].

Theorem 1 (Donoho [2]). For any € > 0, as (k,n, N) — oo,
there is an exponentially high probability on the draw of A
with Gaussian i.i.d. entries that every x € X (k) is a point
of £1/lo-equivalence if p < (1 — €)ps(5,CN). ps(6,CN) is
displayed as the black curve in Figure 3.

Using covering/net techniques of geometric functional anal-
ysis, Rudelson and Vershynin [4] provided a sufficient con-
dition under which Gaussian matrices will recover all z €



X~ (k). Here we reformulate their result in terms of a lower
bound on the phase transition, p&" (§), for Gaussian matrices.

Theorem 2 (Rudelson and Vershynin [4]). For any € > 0,
as (k,m, N) — oo, there is an exponentially high probability
on the draw of A with Gaussian i.i.d. entries that every T €
XN (k) is a point of {1 /lo-equivalence if p < (1 — €)pEV (9).
pBV(8) is defined as the solution of (3).
- 1
12+ 8log(1/pd) - a2(pd)
log(1 + 2log(e/pd))
4log(e/pd) ) '

pBV(8) is displayed as the red curve in Figure 3.

p 3)

with  «a(pd) := exp (

With pBV (), we can directly compare Theorem 2 to the
central-neighborliness phase transition pg(8, C™V). The red
curve in Figure 4 shows the fraction p&V (8)/ps(8,CYN).

III. RESTRICTED ISOMETRY PROPERTIES

Candes and Tao [8] introduced the notion of the Restricted
Isometry Property (RIP) and went on to prove various suffi-
cient conditions on the matrix A such that every = € xV (k)
is a point of ¢;/¢y-equivalence. These sufficient conditions
impose restrictions on the RIP constants. A matrix A is said
to have the RIP constant R(k,n, N) = §; when Vz € xV (k)

R(k,n,N) := argmin (1 —c)|lz|[3 < [|Az[3 < (1 + ¢)||z[]3.
c>0
“)

We break from the standard notation in the literature and refer
to the restricted isometry constant as R(k,n,N) in order to
make explicit the dependence on all three problem parameters
(k,n, N) and to avoid conflict with another standard notation,
namely 6 =

The most recent sufficient RIP condition for ¢;/¢o-
equivalence derived by Candes is Theorem 3.

Theorem 3 (Candgs [5]). If R(2k,n, N) < \/2—1 then every
x € XN (k) is a point of {1 /{y-equivalence.

2z

The constant R(k,n, N) measures the maximum deviation
from unity of the smallest and largest singular values of all
submatrices of A with size n x k. By its symmetric definition,
R(k,n,N) must satisfy both inequalities in (4), taking on
the value of the largest deviation from unity of the smallest
and largest singular values of the n x k submatrices of A.
Let A C {1,...,N},|A| = k, be an index set selecting the
k columns of A for the submatrix A,. One of the central
triumphs of random matrix theory is the characterization of
the distribution of the eigenvalues of random Wishart matrices
A3 Ap; as (k,n,N) — oo with p = %, the expected value
of the largest and smallest eigenvalues of the Wishart matrix
AR Ap tend to (14 /p)? [9] and (1—,/p)? [10], respectively.
The asymmetric deviation from unity of the expected value of
the largest and smallest eigenvalues suggests that the largest
eigenvalue of the Wishart matrix A} Ay dominates the RIP
constant R(k,n, N). See Figure 1.
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Fig. 1. The expected value of the largest and smallest eigenvalues of the
random Wishart matrix A} Ay with Ap of size n x k with entries drawn

iid. from A (0,1/y/n).

To increase the family of matrices satisfying a sufficient
RIP condition, we remove the unnecessary restriction on
R(k,n,N) imposed by the symmetry inherent in (4). The
matrix A is said to have the asymmetric RIP constants
L(k,n,N) and U(k,n, N) when Vz € xV (k)

L(k,n,N) = argmin (1 —c)||z[3 < ||Az[]5, (5
c>0

U(k,n,N) :=argmin (1 +c)\|x||§ > ||A$H§ (6)
c>0

It is straightforward to reformulate the known RIP state-
ments in terms of the asymmetric restricted isometry constants
L(k,n,N) and U(k,n, N). For example, the generalization of
Theorem 3 becomes:

Theorem 4. If (1 + /2)L(2k,n, N) + U(2k,n,N) < V2,
then every x € XV (k) is a point of {1 /ly-equivalence.

Clearly, if L(2k,n, N) = U(2k,n,N) in Theorem 4, we
recover Theorem 3.

IV. PHASE TRANSITIONS FOR RIP

Using bounds developed by Edelman [11] on the probability
distribution functions for the largest and smallest eigenvalues
of the k x k Wishart matrix A} A, we perform a large
deviation analysis on the most extreme eigenvalues of the
(]Z ) matrices A} Ap derived from A. From this analysis, we
derive upper bounds, L(d, p) and U(4, p), on the constants
L(k,n,N) and U(k,n, N), satisfied with high probability on
the draw of A as (k,n, N) — oo with p,d fixed [6]. These
bounds permit the formulation of lower bounds on the phase
transition pg(d) which hold with high probability on the draw
of a matrix A with Gaussian i.i.d. entries. The lower bounds on
the phase transition clearly identify the regions of (4, p) such
that for large problem instances (k,n,N), p = %, 0= %,
a Gaussian matrix A satisfies the associated sufficient RIP
condition. Therefore, with high probability on the draw of
A, every z € xV(k) is a point of ¢ /ly-equivalence. These
regions allow comparison of RIP based results with those



Fig. 2. Bounds, L(d, p) and U (4, p) (top and bottom respectively), for which
it is exponentially unlikely that the RIP constants L(k,n, N) and U(k,n, N)

will exceed; A drawn i.i.d. N(0,1/4/n) and in the limit as n — oo with

% — p and % — J; see Theorem 5.

obtained from other methods of analysis, such as Theorems 1
and 2.

Theorem 5 (Blanchard, Cartis, and Tanner [6]). Let A be
a matrix of size n x N whose entries are drawn i.i.d. from
N(0,1/y/n) and let n — oo with £ — p and 3+ — 6. For
any € > 0, as n — 09,

Prob (L(k,n,N) < L(é,p) +€) =1 and
Prob (U(k,n,N) <U (6,p) +¢€) — 1,

with L(0, p) and U(9, p) displayed in Figure 2; formulae for
their calculation are presented in [6].

The details of the proof of Theorem 5 appear in [6], but a
sketch is as follows. The bounds are derived using a simple
union bound over all () of the k x k Wishart matrices
A} Ap formed from columns of A. Bounds on the tail behavior
of the probability distribution function for the largest and
smallest eigenvalues of A} Ay can be expressed in the form
p(n, A) exp(ni(A, p)) with p a polynomial in n, A and ¢
defined in [6]. Following standard practices in large deviation
analysis, the tails of the probability distribution functions are
balanced against the exponentially large number of Wishart
matrices to define upper and lower bounds on the most
extreme eigenvalues of all (J,\Cf ) Wishart matrices, with bounds

Amin (0, p) and Aaz (9, p), respectively. Overestimation of the

union bound over the combinatorial number of (],\j ) Wishart
matrices cause these bounds to be pessimistic; however they
appear to be the best available bounds at the time of writing.
The asymptotic bounds of the asymmetric RIP constants,
L(4, p) and U(4, p), follow directly.

The symmetry inherent in (4) implies that R(k,n, N) =
max {L(k,n,N),U(k,n,N)}. Therefore, Theorem 5 also
provides an upper bound for the symmetric RIP constant
R(k,n,N); clearly R(J,p) is the maximum of the bounds
L(6,p) and U (4, p).

Corollary 1. Let A be a matrix of size nx N whose entries are
drawn ii.d. from N'(0,1/y/n), let n — oo with £ — p and
~ — 0, and let L(0, p) and U (9, p) be defined as in Theorem
5. Define R(0,p) := max{L(d,p),U(d,p)}. For any ¢ > 0,
as n — oo,

Prob (R(k,n,N) < R(d,p) +¢€) — 1.

Forall p= £ and 6 = %, U(6, p) > L(6, p) and therefore
R(6,p) = U(4, p); this is consistent with the conjecture that
the more rapid deviation from unity of the largest eigen-
value suggests that the symmetric RIP (4) is controlled by
U(k,n, N). Using the bound R(d,2p) from Corollary 1 we
establish a lower bound on the phase transition, pg(J), for
Theorem 3 when A is an n x N Gaussian matrix.

Theorem 6. For any ¢ > 0, as (k,n,N) — oo, there is
an exponentially high probability on the draw of A with
Gaussian i.i.d. entries that every x € xN (k) is a point of
01 /lo-equivalence if p < (1 — €)p%(0). p§(8) is defined as
the solution of R(6,2p) = V2 — 1 and is displayed as the
green curve in Figures 3 and 5.

We observe that p§ (§) is substantially lower than p&Y (&)
and ps(5,C™) (see the green curve of Figure 3) capturing
less than 2% of the region defined by pg(5,CY) (see the
green curve of Figure 4). Since U (4, p) > L(9, p), the heavier
weighting of L(2k,n, N) allows a larger portion of Gaussian
matrices to satisfy Theorem 4 than Theorem 3. Using L(J, 2p)
and U(J,2p) from Theorem 5 we establish a lower bound on
the phase transition, pECT(é), for Theorem 4. See the blue
curves of Figures 3-5.

Theorem 7. For any € > 0, as (k,n,N) — oo, there is an
exponentially high probability on the draw of A with Gaussian
iid. entries that every x € XN (k) is a point of l1/lo-
equivalence if p < (1 — €)pE°T (). pBCT(5) is defined as
the solution of (1 + \/2)L(6,2p) + U(6,2p) = V2 and is
displayed as the blue curve in Figures 3 and 5.

From these phase transitions we see a nontrivial perfor-
mance improvement from Theorem 3 to Theorem 4 via an
improved lower bound on the phase transition for ¢;/{y-
equivalence from Theorem 6 to Theorem 7 (see Figure 5).
However, even with this improvement, pE¢7(§) still fails
to capture the vast majority of the Gaussian matrices which
satisfy Theorem 1 (see the blue curve of Figure 4).



Fig. 3. Lower bounds on the ¢1 /£p-equivalence phase transition for Gaussian
random matrices; pg (6, CN) (black), pBV () (red), ngT(é) (blue), and
pg(é) (green).
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Fig. 4.  The fractions pEV(5)/ps(5,CN) (red), pECT (6)/ps(s,CN)
(blue), and p§ (8)/ps (8, C™N) (green).

V. DISCUSSION

The lower bounds on the phase transitions permit straight-
forward comparisons of Theorems 1, 2, 6, and 7. Although
the ordering of p§(8) < pECT(5) < pBY(5) < ps(d,CN)
makes clear the advantage of using the inherent geometry of
¢1-regularization in its analysis, other advantages and disad-
vantages of the techniques of analysis exist. For instance, the
conditions based upon the RIP also have related results, for
yet smaller p, which ensure stability when x is not strictly
k-sparse. Lower bounds on the ¢; /{y-equivalence phase tran-
sition have been developed for specified stability constants [6].
This analysis, including stability, has also been extended to the
setting of ¢,-regularization for ¢ € (0,1], (where ¢, replaces
¢y in (2)) [6].

No such stability analysis exists for either of the geometric
techniques of analysis presented here. However, the geomet-
ric approach of Donoho can be extended to derive weak
phase transitions, py/ (6, CY) characterizing where ¢;//,-
equivalence is satisfied for most x € xV(k), or to take into
account other models of data sparsity [12], [13], [14]. The
superior performance of Theorems 1 and 2 in the setting of
exact sparsity suggests that stability analysis using these tech-
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Fig. 5. Lower bounds on the ¢1 /£g-equivalence phase transition for Gaussian
random matrices; pZ €T (§) (blue) and pg (8) (green).

niques of geometric analysis are likely to result in substantial
improvements over results derived using the RIP.
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