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Abstract

Robust Principal Component Analysis (PCA) (Candès et al., 2011) and low-rank matrix comple-
tion (Recht et al., 2010) are extensions of PCA to allow for outliers and missing entries respectively.
It is well-known that solving these problems requires a low coherence between the low-rank matrix
and the canonical basis, since in the extreme cases – when the low-rank matrix we wish to recover is
also sparse – there is an inherent ambiguity. However, the well-posedness issue in both problems is
an even more fundamental one: in some cases, both Robust PCA and matrix completion can fail to
have any solutions at due to the set of low-rank plus sparse matrices not being closed, which in turn
is equivalent to the notion of the matrix rigidity function not being lower semicontinuous (Kumar et
al., 2014). By constructing infinite families of matrices, we derive bounds on the rank and sparsity
such that the set of low-rank plus sparse matrices is not closed. We also demonstrate numerically that
a wide range of non-convex algorithms for both Robust PCA and matrix completion have diverging
components when applied to our constructed matrices. An analogy can be drawn to the case of sets
of higher order tensors not being closed under canonical polyadic (CP) tensor rank, rendering the
best low-rank tensor approximation unsolvable (Silva and Lim, 2008) and hence encourage the use of
multilinear tensor rank (De Lathauwer, 2000).

1 Introduction

Principal Component Analysis (PCA) plays a crucial role in the analysis of high-dimensional data [43,
38, 1, 18] and is a widely used dimensionality reduction technique [23, 26, 36, 33]. It involves solving a
low-rank approximation which can be easily computed for moderate size problems [13] by computing the
singular value decomposition (SVD), or for larger problem sizes using notions of sketching to compute
leading portions of the SVD [22, 14, 47]. Over the last decade PCA has been extended to allow for
missing data (matrix completion) or data with either corrupted or few entries inconsistent with a low-
rank model (Robust PCA). In this manuscript we show that the set of matrices which are the sum of
low-rank and sparse matrices is not closed for a range of rank, sparsity, and matrix dimensions; see
Theorem 1.1. Consequently there are a number of algorithms which seek such a decomposition where
the constituents diverge while at the same time the sum of the matrices converges, see Section 3. We
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thereby highlight a previously unknown issue practitioners might experience using these techniques. The
situation is analogous to the lack of closedness for Tensor CP decomposition rank [25, 24] which motivates
the notions of multilinear rank approximation [11].

1.1 Prior work

Robust PCA (RPCA) solves a low-rank plus sparse matrix approximation with the sparse component
allowing for few but arbitrarily large corruptions in the low-rank structure; that is, a matrix M ∈ Rm×n
is decomposed into a low-rank matrix L plus a sparse matrix S

min
X∈Rm×n

‖X −M‖F , s.t. X ∈ LSm,n(r, s), (1.1)

where LSm,n(r, s) is the set of m×n matrices that can be expressed as a rank r matrix L plus a sparsity
s matrix S

LSm,n(r, s) =
{
L+ S ∈ Rm×n : rank (L) ≤ r, ‖S‖0 ≤ s

}
.

We omit the subscript and write LS(r, s) where the matrix size is implied from the context and use only a
single subindex LSn(r, s) to denote sets of square matrices LSn,n(r, s). Allowing the addition of a sparse
matrix to the low-rank matrix can be viewed as modelling globally correlated structure in the low-rank
component while allowing local inconsistencies, innovations, or corruptions. Exemplar applications of this
model include image restoration [20], hyperspectral image denoising [17, 10, 45], face detection [32, 48],
acceleration of dynamic MRI data acquisition [35, 49], analysis of medical imagery [2, 16], separation of
moving objects in at otherwise static scene [4], and target detection [34, 39] .

Solving Robust PCA as formulated in (1.1) is an NP-hard problem in general. Provable solutions for
the problem were first provided in [6, 9] by solving the convex relaxation of the problem

min
L∈Rm×n

‖L‖∗ + λ‖S‖1, s.t. M = L+ S, (1.2)

where ‖ · ‖∗ denotes the Schatten 1-norm1 of a matrix (sum of its singular values) and ‖ · ‖1 denotes the
l1 norm of a vectorised matrix (sum of absolute values of its entries). In [6], authors show that exact
decomposition of a low-rank plus sparse matrix is possible for randomly chosen sparsity locations even
for the case of the sparsity level s being a fixed fraction αmn with α ∈ (0, 1). The work of [9] takes a
deterministic approach in which corrupted entries can have arbitrary locations but must be sufficiently
spread such that the sparsity fraction of each row and column does not exceed α. In both the works of
[6] and [9], as well as subsequent extensions, it is common to impose conditions on the singular vectors
of the low-rank component being sufficiently uncorrelated with the canonical basis.

Robust PCA is closely related to the problem of recovering a low-rank matrix from incomplete obser-
vations referred to as matrix completion [37]. The main difference between the two is that, in the case of
a matrix completion, the indices of missing entries are known, and the aim is to solve

min
L∈Rm×n

‖PΩ (L)− PΩ (M) ‖F , s.t. L ∈ LSm,n(r, 0), |Ωc| = s, (1.3)

where PΩ is entry-wise subsampling of observed entries of M with indices in Ω.
Similarly to the case of Robust PCA, matrix completion can be approached by solving a convex

relaxation formulation of the problem [7, 8, 37], but there are also a number of algorithms that solve
the non-convex formulation directly while also providing recovery guarantees [5, 21, 29, 30, 40, 41, 46].
Such non-convex methods are typically observed to be able to recover matrices with higher ranks than is
possible by solving the convex relaxed problem [40].

1The Schatten 1-norm is often also referred to as the nuclear norm [37].
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1.2 Main contribution

It is well known that the model LSm,n(r, s) from (1.1) need not have a unique solution without further
constraints, such as the singular vectors of the low-rank component being uncorrelated with the canonical
basis as quantified by the incoherence condition with parameter µ

max
i∈{1,...,r}

‖U∗ei‖2 ≤
√
µr

m
, max

i∈{1,...,r}
‖V ∗ei‖2 ≤

√
µr

n
, (1.4)

where L = UΣV ∗ is the singular value decomposition of the rank r component L of size m × n. The
incoherence condition for small values of µ ensures that left and right singular vectors are well spread out
and not sparse [7, 37].

Trivial examples of matrices with non-unique decompositions in LS(r, s) include any matrix with two
nonzero entries in differing rows and columns as they are in LS(r, s) for any r and s such that r+s = 2 with
the entries of the matrix assigned to the sparse or low-rank components selected arbitrarily. Moreover,
completion of a low-rank matrix is impossible for sampling patterns PΩ that are disjoint from the support
of the matrix M , which can be likely for matrices that have few nonzeros. Both of the aforementioned
problems are overcome by imposing a low coherence which ensures the singular vectors of the low-rank
matrix have most entries being nonzero [9].

Herein we highlight the presence of a more fundamental difficulty: There are matrices for which
Robust PCA and matrix completion can have no solution in that their constituents diverge even while
the objective is minimized to zero. This is not because of the ambiguity between possible solutions or
lack of information about the matrix, but instead because LSm,n(r, s) is not a closed set. Moreover, this
is not an isolated phenomenon, as sequences of LSm,n(r, s) matrices converging outside of the set can be
constructed for a wide range of ranks, sparsities and matrix sizes.

Theorem 1.1 (LSn(r, s) is not closed). The set of low-rank plus sparse matrices LSn(r, s) is not closed
for r ≥ 1, s ≥ 1 provided (r + 1)(s + 2) ≤ n, or provided (r + 2)3/2s1/2 ≤ n where s is a multiple of a
squared integer.

Proof. By Theorem 2.1 and Lemma 2.6.

Theorem 1.1 implies that there are matrices M such that problem (1.1) is ill-posed in that the objective
can be decreased to zero with the constituents L and S diverging with unbounded energy. The problem
size bounds in Theorem 1.1 allow for matrices with r = O(nl) to have number of corruptions of order
s = O(n2−3l) for l ∈ [0, 1/2], which for constant rank allows s to be quadratic in n, and for l ∈ (1/2, 1] to
have the number of corruptions of order s = O(n(1−l)). In Section 1.2.1 we illustrate the non-closedness
of LS3(1, 1) and the consequent ill-posedness of the corresponding Robust PCA and low-rank matrix
completion problems.

1.2.1 Simple example of LS3(1, 1) being open

Consider solving for the optimal LS(1, 1) approximation to the following 3 × 3 matrix, which is a spe-
cial case of construction given in [27] in the context of the matrix rigidity function not being lower
semicontinuous.

min
X∈R3×3

‖X −M‖F , s.t. X ∈ LS(1, 1),

M =

0 1 1
1 0 0
1 0 0

 (1.5)
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Consider the following sequence of matrices Xε

Xε =

0 1 1
1 ε ε
1 ε ε

 ∈ LS(1, 1)

=

1/ε 1 1
1 ε ε
1 ε ε


︸ ︷︷ ︸

Lε

+

−1/ε 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

Sε

,

which can decrease the objective function ‖Xε −M‖F = 2ε to zero as ε → 0, but at the cost of the
constituents Lε and Sε diverging with unbounded energy. Moreover, the sequence which minimizes the
error converges to a matrix M lying outside of the feasible set LS(1, 1) and is in the set LS(1, 2) instead.
As a consequence, Robust PCA as posed in (1.5) does not have a global minimum. As the objective
function is decreased towards zero, the energy of both the low-rank and the sparse components diverge
to infinity. Likewise, we could consider an instance of the matrix completion problem (1.3) in which the
top left entry of M is missing and a rank 1 approximation is sought. We see that a rank 1 solution cannot
be obtained as there does not exist a choice for the top left entry that would reduce the rank of M to 1.
However, the sequence Lε decreases the objective arbitrarily close to zero while the energy of the iterates
grows without bounds, ‖Lε‖F →∞.

1.3 Connection with matrix rigidity

Robust PCA is closely related to the notion of the matrix rigidity function which was originally introduced
in complexity theory by Valiant [42] and refers to the minimum number of entries of M that must be
changed in order to reduce it to rank r or lower.

Rig(M, r) = min
S∈Rm×n

‖S‖0, s.t. rank(M − S) ≤ r.2

Matrix rigidity is upper bounded for any M ∈ Rn×n and rank r as

Rig(M, r) ≤ (n− r)2. (1.6)

due to elementary matrix properties [42]. Matrices which achieve this upper bound for every r are referred
to as maximally rigid and it was only recently showed in [27] how to construct them explicitly, which was
a long standing open question originally posed by Valiant in 1977.

Matrix rigidity has important consequences for complexity of linear algebraic circuits but is also of
interest for its mathematical properties. The work of [27] also provides an example of the rigidity function
not being lower semicontinuous, which implies the set LSm,n(1, 1) is not closed. Here, we generalize
the result, providing non-closedness examples for many ranks, sparsities and matrix sizes, and discuss
consequences for Robust PCA and matrix completion problems. In Section 2 we prove Theorem 1.1 and
in Section 3 we illustrate how this phenomenon can cause several Robust PCA and matrix completion
algorithms to diverge.

2Note that the original definition [42] works with rank(M + S) ≤ r. Here, we change the sign to be consistent with
RPCA notation, M = L + S and rank(L) ≤ r.
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2 Main result

We extend the example of LS3(1, 1) with M3 ∈ R3×3 given in (1.5) by constructing Mn, Nn 6∈ LSn(r, s)

and yet for which there exists a sequence of matrices M
(i)
n (ε) which are in LSn(r, s) and limε→0 ‖M (i)

n −
M

(i)
n (ε)‖F = 0. Matrix Mn(ε) as in (2.5) demonstrates that LSn(r, s) is not closed for r ≤ s (Lemma 2.2)

and matrix Nn(ε) as in (2.11) is constructed for r > s (Lemma 2.3). In both cases we require n to be
sufficiently large in terms of r and s.

For the case r ≤ s, consider Mn and Mn(ε) of the following general form

Mn =

(
0r,r A
B 0n−r,n−r

)
, Mn(ε) =

(
0r,r A
B εB A

)
, (2.1)

where A,BT ∈ Rr×(n−r) and 0k,k denotes the k × k matrix with all zero entries. These constructed
matrices satisfy the following properties.

Lemma 2.1 (General form of Mn). Let Mn and Mn(ε) be as defined in (2.1). Then Mn(ε) ∈ LS(r, r).
Furthermore

lim
ε→0
‖Mn(ε)−Mn‖F = 0. (2.2)

Proof. We can write Mn(ε) in the form(
1
ε Ir
B

)(
Ir εA

)
+

(
− 1
ε Ir 0
0 0

)
, (2.3)

which shows that Mn(ε) ∈ LSn(r, r). It also follows trivially from the definition (2.1) that (2.2) is
satisfied.

Remark 2.1 (Nested property of LS(r, s) sets). Note that LS(r, s) sets form a partially ordered set

LS(r, s) ⊆ LS(r′, s′), (2.4)

for any r′ ≥ r and s′ ≥ s. As a consequence Mn(ε) ∈ LSn(r, r) implies that also Mn(ε) ∈ LSn(r, s) for
s ≥ r.

With Lemma 2.1 we give the general form of Mn and Mn(ε) such that Mn(ε) ∈ LSn(r, s) for s ≥ r. It
remains to show that, for a more specific choice of A and B, we also have Mn 6∈ LSn(r, s). In particular,
we construct Mn and Mn(ε) as follows.

Mn =



0r,r β A(1) . . . A(l)

αT 0k,k . . . . . . 0k,r

B(1)
...

. . .
...

...
...

. . .
...

B(l) 0r,k . . . . . . 0r,r

 ,

Mn(ε) =



0r,r β A(1) . . . A(l)

αT εαTβ . . . . . . εαTA(l)

B(1)
...

. . .
...

...
...

. . .
...

B(l) εB(l)β . . . . . . εB(l)A(l)

 ,

(2.5)

5



where α, β ∈ Rr×k are matrices with all non-zero entries, A(i), B(i) ∈ Rr×r are arbitrary non-singular
matrices which may, but need not, be the same, 0a,b and 1a,b denote a× b matrices with all entries equal
to zero or one respectively, and we set l = d(s+ 1)/2e, k = dl/re.

By construction, the matrix size is n = r(l+ 1) +k, due to the l matrices A(i) and B(i) for i = 1, . . . , l
each being of size r × r, the top left r × r zero matrix and k columns of α and β.

Lemma 2.2. LSn(r, s) is not closed for 1 ≤ r ≤ s provided

n ≥ r
(⌈

s+ 1

2

⌉
+ 1

)
+

⌈
d(s+ 1)/2e

r

⌉
. (2.6)

Proof. Take Mn as in (2.5). By Lemma 2.1 there exists a matrix sequence Mn(ε) ∈ LSn(r, r) such that
‖Mn(ε) − Mn‖F → 0 as ε → 0. Since for r ≤ s we have LSn(r, r) ⊆ LSn(r, s), it follows also that
Mn(ε) ∈ LSn(r, s).

It remains to prove that Mn 6∈ LSn(r, s), which is equivalent to showing Rig(Mn, r) > s. We show
that having a sparse component ‖S‖0 ≤ s is insufficient for rank(Mn − S) ≤ r, because for any choice
of such S with at most s non-zero entries, the matrix Mn − S must have a (r + 1)× (r + 1) minor with
nonzero determinant implying rank(Mn − S) ≥ r + 1.

In order to establish rank(Mn−S) ≥ r+ 1 we consider 2l minors of Mn each of size (r+ 1)× (r+ 1).
For l of these we select minors that include A(i), i = 1, . . . , l, along with an additional column from the
first r columns and an additional row entry from row index r+1 to k+r from Mn; and for the remaining
l minors we similarly choose a B(i) and an additional row and column as before.

These minors are of the form Ci as shown in (2.7) where the αi, βi are chosen to be different entries from
α, β for each i = 1, . . . , l. This requires α, β to be of size r× k for k = dl/re. Recall that, by construction
of Mn, the α, β have no zero entries and A(i), B(i) are each full rank. The Ci are constructed as

Ci =



(
0r,1 A(i)

αi 01,r

)
, i = 1, . . . , l,(

01,r βi−l

B(i−l) 0r,1

)
, i = l + 1, . . . , 2l,

(2.7)

where 0u,v denotes the u × v matrix with all entries equal to zero. Note that matrices Ci do not have
disjoint supports as they have some elements from the top left r× r submatrix of Mn in common. These
are the left r zero entries in the first row of Ci for i = 1, . . . , l and the top r zero entries in the first
column of Ci for i = (l + 1, . . . , 2l). We refer to these entries as the intersecting part of Ci.

We now consider the possible S such that rank(Mn − S) = r and show that any such S must have
at least 2l nonzeros, thus Rig(Mn, r) ≥ 2l. This follows by noting that although the Ci have intersecting
portions, S restricted to the ith subminor associated with Ci will have at least one distinct nonzero per i.
Consider the Ci for i = 1, . . . , l associated with αi and A(i) and let Si be the corresponding (r+1)×(r+1)
sparsity mask of S. It follows that Si must have at least one entry in the non-intersecting set otherwise
Ci + Si is of the form

Ci + Si =

∣∣∣∣∣∣∣∣
si A(i)

αi 0 . . . 0

∣∣∣∣∣∣∣∣ = αi|A(i)| 6= 0, (2.8)

which is insufficient for the rank of Ci to become rank deficient; similarly for i = l + 1, . . . , 2l.
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Having shown Rig(Mn, r) ≥ 2l we set l = d(s+ 1)/2e, which then implies that Mn 6∈ LSn(r, s). By
the construction of Mn in this argument we have

n ≥ r(l + 1) + k (2.9)

due to the l matrices A(i) and B(i) each of size r× r, the top left r× r matrix 0r,r and k columns of β or
rows of α respectively, and by zero padding of the matrix we can arbitrarily increase its size. Substituting
l = d(s+ 1)/2e and k = dl/re, we conclude that LSn(r, s) is not a closed set for s ≥ r ≥ 1 provided

n ≥ r
(⌈

s+ 1

2

⌉
+ 1

)
+

⌈
d(s+ 1)/2e

r

⌉
. (2.10)

Turning to the r > s case, we now build upon Lemma 2.3 by constructing matrices Nn and Nn(ε) as

Nn =


M̂n′ 0 . . . 0

0 E(1,1) . . . E(1,s+1)

...
...

. . .

0 E(s+1,1) E(s+1,s+1)

 =

(
M̂n′ 0n′, (s+1)(r−s)

0(s+1)(r−s), n′ E

)

Nn(ε) =

(
M̂n′(ε) 0n′, (s+1)(r−s)

0(s+1)(r−s), n′ E

) , (2.11)

where E(i,j) ∈ R(r−s)×(r−s) are identical full rank matrices and

M̂n′ =



0s,s β A(1) . . . A(l)

αT 0 . . . . . . 01,s

B(1)
...

. . .
...

...
...

. . .
...

B(l) 0s,1 . . . . . . 0s,s

 , M̂n′(ε) =



0s,s β A(1) . . . A(l)

αT εαTβ . . . . . . εαTA(l)

B(1)
...

. . .
...

...
...

. . .
...

B(l) εB(l)β . . . . . . εB(l)A(l)

 , (2.12)

have the same structure as in (2.5) but with r replaced by s and as a result A(i,j), B(i,j) ∈ Rs×s, α, β ∈ Rs,
l = d(s+ 1)/2e, so M̂n′ 6∈ LSn′(s, s) while M̂n′(ε) ∈ LSn′(s, s).

By construction, the size of M̂n′ is n′ = s(l + 1) + 1 and the size of Nn is n = n′ + (s+ 1)(r − s).

Lemma 2.3. LSn(r, s) is not closed for r > s ≥ 1 provided

n ≥ s
(⌈

s+ 1

2

⌉
+ 1

)
+ 1 + (s+ 1)(r − s). (2.13)

Proof. Consider Nn and Nn(ε) from (2.11). By additivity of rank for block diagonal matrices, rank (E) =
(r − s) and M̂n′(ε) ∈ LSn′(s, s), we have that Nn(ε) ∈ LSn(r, s).

It remains to show that Nn 6∈ LSn(r, s) by proving that Rig(Nn, r) > s. We show that having a sparse
component ‖S‖0 ≤ s is insufficient for rank(Nn − S) ≤ r, because for any such S, matrix (Nn − S) must
have at least one (r + 1)× (r + 1) minor with non-zero determinant, implying rank(Nn − S) ≥ r + 1.

We consider minors Di of size (r+ 1)× (r+ 1) by diagonally appending a minor Ĉi ∈ R(s+1)×(s+1) of
M̂n′ of a similar structure as in (2.7) and the whole ith diagonal block E(i,i) ∈ R(r−s)×(r−s)

Di =

(
Ĉi 0
0 E(i,i)

)
, i = 1, . . . , s+ 1. (2.14)
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Due to matrices E(i,i) being picked from the block diagonal, the intersecting parts of supports between
Di are only the intersecting parts between individual Ĉi as explained in (2.7) in the proof of Lemma 2.2.
We will ensure that in order for rank (Di) ≤ r we require Si to have at least one non-zero in a part of
Di that is disjoint from Dj for j 6= i. Either Si has at least one non-zero on a zero block or E(i,j) or Ĉi.
If the non-zero is in a zero block or E(i,j), then these are disjoint which implies at least s + 1 non-zero
entries. On the other hand, if the non-zero is in Ĉ(i) then at least one entry of E must be changed in the
non-intersecting part of Ĉi as argued following equation (2.7). Therefore for every Di at least one distinct
entry per i must be changed using the corresponding sparsity component Si, and since i = 1, . . . , s + 1,
we must also change at least s+ 1 entries of Nn. We thus have Rig(Nn, r) ≥ s+ 1.

By the construction of Nn in this argument we have

n ≥ s(l + 1) + 1︸ ︷︷ ︸
n′, size of M̂n′

+ (s+ 1)(r − s)︸ ︷︷ ︸
size of 1s+1⊗N

, (2.15)

where the size of M̂n′ comes from l times repeating the matrices A(i) and B(i) each of size s× s, the top
left s × s matrix 0s,s, the β column and α row respectively and s + 1 times repeating matrix E of size
(r − s). By zero padding of the matrix we can arbitrarily increase its size. Substituting l = d(s+ 1)/2e
gives that LSn(r, s) is not a closed set for r > s provided

n ≥ s
(⌈

s+ 1

2

⌉
+ 1

)
+ 1 + (s+ 1)(r − s). (2.16)

The following theorem gives a sufficient lower bound on the matrix size such that both size require-
ments derived in Lemma 2.2 and Lemma 2.3 are met, thus unifying both results.

Theorem 2.1. The low-rank plus sparse set LSn(r, s) is not closed provided n ≥ (r+1)(s+2) and r ≥ 1,
s ≥ 1.

Proof. Suppose n ≥ (r + 1)(s + 2). We show that this is a sufficient condition for the matrix size
requirements in (2.6) in Lemma 2.2 and (2.13) in Lemma 2.3 to hold.

We first obtain a sufficient condition on the matrix size in (2.6) in Lemma 2.2, bounding

r

(⌈
s+ 1

2
+ 1

⌉)
+

⌈
d(s+ 1)/2e

r

⌉
≤ r

(
s+ 1

2
+ 2

)
+

(
1

r

)(
s+ 1

2
+ 1

)
+ 1

≤ r
(
s+ 5

2

)
+

(
s+ 5

2

)
= (r + 1)

(
s+ 5

2

)
≤ (r + 1)(s+ 2), (2.17)

where the first inequality in (2.17) comes from an upper bound on the ceiling function dxe ≤ x+ 1, the
second inequality follows from r ≥ 1 and the last inequality holds for s ≥ 1.
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We also obtain a sufficient bound condition on the matrix size in (2.13) in Lemma 2.3 of the form

s

(⌈
s+ 1

2
+ 1

⌉)
+ 1 + (s+ 1)(r − s)

≤ s
(
s+ 1

2
+ 2

)
+ (s+ 1)(r − s) = −s

2

2
+

3

2
+ rs+ 1

≤ (r + 1)(s+ 1) ≤ (r + 1)(s+ 2). (2.18)

The first inequality in (2.18) comes from an upper bound on the ceiling function and the second inequality
holds for s ≥ 1.

Combining (2.17), (2.18) with Lemma 2.2 and Lemma 2.3 gives that LSn(r, s) is not a closed set for
n ≥ (r + 1)(s+ 2) and r ≥ 1, s ≥ 1.

2.1 Quadratic sparsity

Note that the condition n ≥ (r + 1)(s + 1) limits the order of r and s; in particular if r = O(nl) then
s = O(n1−l) which for l ≥ 0 constrains s to be at most linear in n, s = O(n). In Lemma 2.4 and Lemma
2.5, we extend the result so that for r = O(nl) and l ≤ 1/2 we obtain s = O(n2−3l) which for constant
rank, l = 0, allows s to be quadratic O(n2).

Lemma 2.4 establishes a lower bound on the rigidity of block matrices in terms of the rigidity of a
single block. Lemma 2.5 shows that the sequence K(ε) converging to K is an example of LSn(r, p2r) not
being closed provided n ≥ p

(
r
(⌈
r+1

2

⌉
+ 1
)

+ 1
)
. Let

K =


M̂

(1,1)
n′ · · · M̂

(1,p)
n′

...
. . .

...

M̂
(p,1)
n′ · · · M̂

(p,p)
n′

 , K(ε) =


M̂

(1,1)
n′ (ε) · · · M̂

(1,p)
n′ (ε)

...
. . .

...

M̂
(p,1)
n′ (ε) · · · M̂

(p,p)
n′ (ε)

 (2.19)

where matrices M̂
(i,j)
n′ (ε) ∈ LSn′(r, r) and M̂

(i,j)
n′ 6∈ LSn′(r, r) are of the same structure as in (2.12) and

limε→0K(ε) = K where K ∈ R(n′p)×(n′p) is constructed by repeating M̂n′ in p row and column blocks.

Lemma 2.4. For K as in (2.19)

Rig(K, r) ≥ p2 Rig(M̂n′ , r). (2.20)

Proof. Let S be the sparsity matrix corresponding to Rig(K, r), such that

rank(K − S) ≤ r, ‖S‖0 = Rig(K, r),

and S =

Ŝ
(1,1) · · · Ŝ(1,p)

...
. . .

...

Ŝ(p,1) · · · Ŝ(p,p)

 ,
(2.21)

where Ŝ(i,j) ∈ Rn′×n′ denotes the sparsity matrix used in the place of the M̂
(i,j)
n′ block. A necessary

condition for rank(K −S) ≤ r is that also the rank of individual blocks is less than or equal to r, that is

rank(M̂n′ − Ŝ(i,j)) ≤ r, ∀i, j ∈ {1, . . . , p} . (2.22)
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By definition of the rigidity function as the minimal sparsity of S such that rank(M̂n′ − S) ≤ r, we have
that

‖Ŝ(i,j)‖0 ≥ Rig(M̂n′ , r). (2.23)

Summing over all blocks i, j ∈ {1, . . . , p} yields the result

‖S‖0 =

p,p∑
i,j

‖Ŝ(i,j)‖0 ≥
p,p∑
i,j

Rig(M̂n′ , r), (2.24)

and consequently that
Rig(K, r) ≥ p2 Rig(M̂n′ , r). (2.25)

Lemma 2.5. LSn(r, p2r) is not closed provided

n ≥ p
(
r

(⌈
r + 1

2

⌉
+ 1

)
+ 1

)
and r ≥ 1, p ≥ 1.

Proof. Consider K and K(ε) as in (2.19). Repeating M̂n′ ∈ LSn′(r, r) p times in row and column blocks
does not increase the rank, so rank (K(ε)) = r and by additivity of sparsity we have that K (ε) ∈
LSn(r, p2r). By Lemma 2.4 and Rig(M̂n′ , r) > r we have the strict lower bound on the rigidity of K

Rig(K, r) ≥ p2 Rig(M̂n′ , r) > p2r, (2.26)

which implies that K 6∈ LSn(r, p2r) while K(ε) ∈ LSn(r, p2r).
Recall that the size of M̂n′ as defined in (2.12) is n′ = r(l+ 1) + 1 and, since M̂n′ is repeated p times,

we obtain

n ≥ p (r(l + 1) + 1) = p

(
r

(⌈
r + 1

2

⌉
+ 1

)
+ 1

)
, (2.27)

where the inequality comes from zero padding of the matrix to arbitrarily expand its size.

Lemma 2.6. The low-rank plus sparse set LSn(r, s) is not closed provided

n ≥ (r + 2)3/2s1/2

and r ≥ 1, p ≥ 1.

Proof. We weaken the condition of Lemma 2.5 and show that it suffices to have n ≥ (r + 2)3/2s1/2 for
LSn(r, s) not closed by substituting s = p2r

p

(
r

(⌈
r + 1

2

⌉
+ 1

)
+ 1

)
=
(s
r

) 1
2

(
r

(⌈
r + 1

2

⌉
+ 1

)
+ 1

)
(2.28)

≤ s1/2

(
r1/2

(
r + 5

2

)
+ 1

)
= s1/2

(
r3/2

2
+ 2r1/2 + r−1/2

)
(2.29)

≤ s1/2

(
r3/2

2
+ 2r1/2 +

3

2
r−1/2

)
= s1/2 (r + 1)(r + 2)

2
√
r

(2.30)

≤ s1/2(r + 2)3/2, (2.31)

where in the first line we substitute s = p2r, the first inequality comes from an upper bound on the ceiling
function, the second inequality follows from r−1/2 ≤ 3

2r
−1/2, and the last inequality holds for r ≥ 1.
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2.2 Almost maximally rigid examples of non-closedness

We would like to prove non-closedness of LSn(r, s) sets for as high ranks r and sparsities s as possible.
There cannot be a maximally rigid sequence converging outside LS

(
r, (n− r)2

)
because LS

(
r, (n− r)2

)
corresponds to the set of all Rn×n matrices. Similarly, it is necessary that both r ≥ 1 and s ≥ 1 hold
since sets of rank r matrices LS(r, 0) and sets of sparsity s matrices LS(0, s) are both closed. As a
consequence, the highest possible rank and sparsity for which we may hope to prove that LSn(r, s) is not
closed corresponds to one strictly less than the maximal rigidity bound, i.e. LS

(
r, (n− r)2 − 1

)
for r ≥ 1

and also s = (n− r)2 − 1 ≥ 1.
It is shown in [27] that the matrix rigidity function might not be semicontinuous even for maximally

rigid matrices. This translates into the set LS3(1, 3) not being closed as we have M(ε) ∈ LS3(1, 3) which
converges to M 6∈ LS3(1, 3) by choosing

M =

a b c
d e 0
g 0 i

 and M(ε) =

a b c
d e εcd
g εbg i

 . (2.32)

It is easy to check that for a general choice of {a, . . . , i}, M is maximally rigid with Rig(M, 1) = 4.
However, Rig (M(ε), 1) = 3 since M(ε) can be expressed in the following way

M(ε) =

ε−1 b c
d εbd εcd
g εbg εcg

+

a− ε−1 0 0
0 e− εbd 0
0 0 i− εcg

 . (2.33)

We therefore have that LS3(1, 3) is not a closed set, which is the optimal result with the highest possible
sparsity for sets of rank 1 matrices of size 3 × 3. We pose the question as to whether this result can be
generalized and the following conjecture holds.

Conjecture 2.1 (Almost maximally rigid non-closedness). The low-rank plus sparse set LSn(r, s) is not
closed provided

n ≥ r + (s+ 1)1/2, (2.34)

for s ∈ [1, (n− 1)2 − 1] and r ∈ [1, n− 2].

3 Numerical examples with divergent Robust PCA and matrix
completion

Theorem 1.1 and the constructions in Section 2 indicate that there are matrices for which Robust PCA
and matrix completion, as stated in (1.1) and (1.3) respectively, are not well defined. In particular, the
objective can be driven to zero while the components diverge with unbounded norms. Herein we give
examples of two simple matrices which are of a similar construction to M in (1.5),

M (1) =

 2 −1 −1
−1 0 0
−1 0 0

 , M (2) =

 1 −2 −2
−2 0 0
−2 0 0

 ,

which are not in LS(1, 1), but can be approximated by an arbitrarily close M
(1)
ε ,M

(2)
ε ∈ LS(1, 1), and for

which popular RPCA and MC algorithms exhibit this divergence. This is analogous to the problem of
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(a) FastGD [50] applied to M (1).
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(b) AltMin [19] applied to M (2).
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(c) AltProj [15] applied to M (2).
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(d) GoDec [31] applied to M (2).

Figure 1: Solving for an LS(1, 1) approximation to M (1) and M (2) using four non-convex Robust PCA
algorithms. Despite the norm of the residual ‖M − (Lt + St)‖F converging to zero, norms of the con-
stituents Lt, St diverge. We set algorithms parameters r = 1, s = 1 where possible. For FastGD we set
λ = 3.23 and stepsize η = 1/6 which corresponds to choosing s = 1. For GoDec we set the low-rank
projection precision parameter to be 10.

diverging components for CP-rank decomposition of higher order tensors which is especially pronounced
for algorithms employing alternating search between individual components [12].

Non-convex algorithms for solving the Robust PCA problem (1.1) are typically observed to be faster
than convex relaxations of the problem and often are able to recover matrices with higher ranks than
possible by solving the convex relaxation (1.2). We explore the performance of four widely considered
non-convex Robust PCA algorithms: Fast Robust PCA via Gradient Descent (FastGD) [50], Alternating
Minimization (AltMin) [19], Alternating Projection (AltProj) [15], and Go Decomposition (GoDec) [31]
applied to M (1) or M (2) with algorithm parameters set to rank r = 1 and sparsity s = 1. In each case
Figure 1 shows the convergence of the residual minX∈Rm×n ‖X −M‖F to zero while the norms of the
constituents of M = L+ S diverge.

Convex relaxations of RPCA such as posed in (1.2) do not suffer from the divergence of constituents
as shown in Figure 1 due to their explicit minimization of their norms. However, they suffer from sub-
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(a) PCP [6] applied to M (1).
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(b) IALM [28] applied to M (1).

Figure 2: Recovered ranks and sparsities using two convex Robust PCA algorithms applied to M (1) with
varying choice of λ. Both PCP and IALM do not recover the r = 1, s = 1 solution for any λ. IALM
recovers solutions with overspecified degrees of freedom r = 2, s = 5 for λ roughly 1/2.

optimal performance. Figure 2 depicts recovered ranks, sparsities and their convex relaxations based on
choice for λ of M (1) for Principal Component Pursuit by Alternating Directions (PCP) [6] and Inexact
Augmented Lagrangian Method (IALM) [28]. For both PCP and IALM, as the regularization parameter
λ is increased from near zero it first produced a solution with r = 0 and s = 5, then at approximately
λ = 1/2 transitions to solutions with overspecified degrees of freedom r = 2 and s = 5, and then for
large values of λ gives solutions with r = 2 and s = 0. It is interesting to note that for these convex
relaxations of RPCA there were no values of λ that would produce a solutions with r = 1 and s = 1 which
are the parameters for which the non-convex RPCA algorithms diverge. In contrast, the aforementioned
non-convex algorithms for RPCA applied to M (1) converge to zero residual with bounded constituents
for the rank and sparsity parameters generated by PCP and IALM.

Similar to the divergence of the non-convex RPCA algorithms, non-convex matrix completion algo-
rithms applied to M (1) with only the top left, index (1, 1), entry missing can diverge3. Figure 3 depicts
the residual error converging to zero and energy of the recovered low-rank matrix diverging for four ex-
emplar non-convex algorithms: Power Factorization (PF) [21], Low-Rank Matrix Fitting (LMaFit) [46],
Conjugate Gradient Iterative Hard Thresholding (CGIHT) [3] and Alternating Steepest Descent (ASD)
[41].

4 Conclusion

This work brings to attention an overlooked issue in Robust PCA and matrix completion: that both
problems can be ill-posed because the set of low-rank plus sparse matrices is not closed without further
conditions being set on the constituent matrices. It remains to be determined what fraction of the set
Lm,n(r, s) is open, or similarly what fraction has constituents whose norm exceeds a prescribed threshold
to ensure well conditioning; it should be noted that in the case of Tensor CP rank the fraction of the space
of tensors with unbounded constituent energy is a positive measure [12]. It also remains to determine
what is the maximal matrix size n, as a function of (r, s), such that the set LSn(r, s) is open. We give

3It is required to provide the algorithm with an initial guess that does not have 0 as the top left entry.
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(a) PF [21] applied to M (1).
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(b) LMaFit [46] applied to M (1).
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(c) CGIHT with restarts [3] applied to M (1).
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(d) ASD [41] applied to M (1).

Figure 3: Recovery of M (1) given a rank 1 constraint by four non-convex matrix completion algorithm.
Despite the norm of the residual ‖y − PΩ(Xt)‖F converging to zero, the norm of the recovered matrix
Xt diverges.

lower bound of n(r, s) ≥ (r + 1)(s+ 2) and n(r, s) ≥ (r + 2)(3/2)s1/2 in Theorem 1.1 and conjecture the
best attainable bound is achieved at n(r, s) ≥ r + (s+ 1)1/2 using bounds on maximum matrix regidity,
see Conjecture 2.1. Moreover, we note that there are references in the literature [19, 44] which reference
the use of a restricted isometry property for LSn(r, s) in order to prove recovery of RPCA using non-
convex algorithms. A consequence of our result is that the lower RIP bound is not satisfied for some
M ∈ LS(r, s) unless further restrictions are imposed on the constituents such as bounds on the energy of
L and S which compose M .
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