
NORMALIZED ITERATIVE HARD THRESHOLDING FOR MATRIX
COMPLETION∗

JARED TANNER† AND KE WEI‡

Abstract. Matrices of low rank can be uniquely determined from fewer linear measurements,
or entries, than the total number of entries in the matrix. Moreover, there is a growing literature
of computationally efficient algorithms which can recover a low rank matrix from such limited in-
formation, typically referred to as matrix completion. We introduce a particularly simple yet highly
efficient alternating projection algorithm which uses an adaptive stepsize calculated to be exact for
a restricted subspace. This method is proven to have near optimal order recovery guarantees from
dense measurement masks, and is observed to have average case performance superior in some re-
spects to other matrix completion algorithms for both dense measurement masks and from entry
measurements. In particular, this proposed algorithm is able to recover matrices from extremely
close to the minimum number of measurements necessary.

Key words. Matrix completion, compressed sensing, low-rank approximation, alternating pro-
jection

AMS subject classifications. 15A29,15A83,41A29,65F10,65J20,68Q25,90C26,93C41

1. Introduction. Data with a known underlying low dimensional structure can
often be acquired from fewer measurements than simple dimension counting would
suggest. Moreover, there are cases where not only can the measurement process be
independent of the data, giving a linear measurement process, but the data can also
be recovered using computationally efficient algorithms. For example, in compressed
sensing [7, 11, 16], vectors of length n that have only k � n non-zero entries can
often be determined in polynomial time from less than n inner products, for details
see [1, 3, 4, 8, 7, 10, 13, 14, 17, 18, 20, 37] and references therein. Similarly, m × n
matrices with an inherent simplicity can be uniquely determined from p < mn inner
products. A particularly trivial example is the simplicity model of matrices with few
non-zero entries, which can be recast as standard compressed sensing by reforming the
matrix as an mn length sparse vector. Another common notion of matrix simplicity
is low rank.

An m by n matrix, X ∈ Rm×n, has rank(X) = r if and only if X has a sin-
gular value decomposition (SVD) X = UΣV ∗ where U and V are matrices of size
m × r and n × r respectively with orthonormal columns and Σ is a diagonal ma-
trix with non-increasing and non-zero diagonal entries, σi(X) := Σ(i, i). Throughout
this manuscript we reserve the notation U,Σ, and V to denote the singular value
decomposition of an associated matrix. There is currently a rapidly growing liter-
ature examining the acquisition of low rank matrices from what naively appears to
be an insufficient amount of information. The manifold of m × n matrices of rank
r is r(m + n − r) dimensional [43], which specifies the minimum number of values
needed to uniquely determine such matrices; this minimal r(m + n − r) number of

∗The authors thank the Institute for Mathematics and its Applications (University of Minnesota)
for their hospitality during the initial stages of this research. This work has made use of the resources
provided by the Edinburgh Compute and Data Facility (ECDF).

†School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh, UK
(jared.tanner@ed.ac.uk). JT acknowledges support from the Leverhulme Trust and by the EP-
SRC grant EP/J020567/1.

‡School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh, UK
(k.wei@sms.ed.ac.uk). KW acknowledges support from the China Scholarship Council.

1

2 Jared Tanner and Ke Wei

values is referred to as the oracle rate. Unfortunately the oracle rate requires the
ability to request entries of the singular values and vectors, which is impractical.
Consider, instead, acquiring information about the low-rank matrix through p linear
measurements of the form

b` := A(X)` = trace(A∗
`X) for ` = 1, 2, · · · , p (1.1)

where the p distinct m×n matrices A` are the sensing matrices making up the operator
A(·) that maps m × n matrices to vectors of length p. The sensing matrices A` are
typically normalized such that trace(A∗

`A`) is exactly, or approximately, equal to one.
Of particular interest is the case where the sensing matrices A` have only one nonzero
entry, which corresponds to directly measuring entries of X, often where the set of p
measured entries in X are drawn uniformly at random from the

(
mn
p

)
possible choices.

When a subset of the matrix entries are directly measured, finding the unknown
entries is typically referred to as “matrix completion”, [9, 12, 25]. Recovering the
desired matrix when the measurement strategy (1.1) involves dense matrices {A`}p

`=1

lacks a widely agreed moniker; we will refer to recovery of a low rank matrix from
both the entry sensing and dense sensing [38], as matrix completion.

This manuscript considers the question of what is an efficient algorithm capable
of recovering rank r matrices with r as large as possible given p, m, n and A(·)
specified. It is obvious that X is recoverable from p = mn entry measurements, as
this corresponds to directly measuring each entry in X. However, as few as r(m +
n − r) measurements may be sufficient as this is the dimensionality of m × n rank r
matrices. We compare p with the maximum number of measurements required, mn,
and the minimum number of measurements, r(m+n−r), through undersampling and
oversampling ratios,

δ :=
p

mn
and ρ :=

r(m + n− r)
p

(1.2)

respectively. Remarkably there are computationally efficient algorithms, such as
[36, 21, 24, 22, 43, 44, 40, 5, 6, 41, 15, 33, 25, 26, 30, 45, 32, 35, 9, 12, 38, 28, 27], with
the property that if m, n, and r grow proportionally, then the smallest number of mea-
surements p for which it has been proven that algorithms recover any rank r matrix
grows at most logarithmically in max(m,n) faster than the oracle rate r(m + n− r);
this is referred to as near optimal order of recoverability. All of these algorithms are
designed to return a low rank matrix that (possibly approximately) fits the measure-
ments. Their efficacy is measured by both the computational speed of the algorithm,
and by when they are able to return the same answer as the minimum rank problem

min
X

rank(X) subject to A(X) = b. (1.3)

Although there are matrices for which (1.3) is NP-hard [23], there are computa-
tionally efficient algorithms which successfully solve (1.3) for many low rank matrices
encountered in practice. These algorithms can generally be classified as either directly
targeting the non-convex problem (1.3), or solving its convex-relaxation, referred to
as nuclear norm minimization (NNM),

min
X

‖X‖∗ :=
∑

σi(X) subject to A(X) = b (1.4)

in hope that the solution of the convex-relaxation coincides with the solution of (1.3).
In (1.4) the nuclear norm, ‖X‖∗, is the sum of the singular values of X, denoted

Normalized Iterative Hard Thresholding for Matrix Completion 3

σi(X). The convex-relaxation can be recast as a semidefinite program (SDP) [38]
and solved using any of the algorithms designed for SDPs. Algorithms have also been
designed to solve (1.4) specifically for matrix completion; these methods are primarily
based on iterative soft thresholding [5, 33] where the soft thesholding operator shrinks
the singular values toward zero by a specified amount, here τ ,

Sτ (X) := UΣτV ∗ where Στ (i, i) = max(0,Σ(i, i)− τ). (1.5)

Methods which directly approach the non-convex objective (1.3) are typically built
upon iterative hard thresholding [21, 24] where the hard thresholding operator sets
all but a specified number of singular values to zero

Hr(X) := UΣrV
∗ where Σr(i, i) :=

{
Σ(i, i) i ≤ r

0 i > r.
(1.6)

Note that for both soft and hard thresholding the singular values are modified, but the
singular vectors are unperturbed. Both class of algorithms have been proven to be ca-
pable of recovering rank r matrices provided p ≥ Const. r(m+n−r) logα(max(m,n))
for some α ≥ 0. Restricted isometry constants can be used to establish bounds of this
form, but are only applicable for Gaussian sensing and provide constants, Const., of
proportionality that are severely pessimistic.

Definition 1.1 (Restricted isometry constants (RICs), [38]). Let A(·) be a linear
map of m × n matrices to vectors of length p, Rm×n → Rp, as defined in (1.1). For
every integer 1 ≤ r ≤ min(m,n), the restricted isometry constant, Rr, of A(·) is
defined as the smallest number such that

(1−Rr)||X||2F ≤ ||A(X)||22 ≤ (1 + Rr)||X||2F (1.7)

holds for all matrices X of rank at most r.
More quantitative, non RIC based, estimates have been established for the convex-

relaxation (1.4) [39]. A notion of incoherence has also been employed to provide
recovery guarantees [5] for entry sensing. Candès and Recht[9] have proven that
with high probability, NNM (1.4) will recover the measured n × n rank r matrix
provided p ≥ Const. rn6/5 log(n); later Candès and Tao[12] sharpened this result to
p ≥ Const. rn log(n). Unfortunately, the incoherence approach has not given rigorous
guarantees for non-convex algorithms which are the focus of this manuscript, and for
this reason we will not discuss coherence further in this manuscript.

The simplest hard thresholding algorithm for matrix completion is Iterative Hard
Thresholding (IHT), also called Singular Value Projection [24],

Xj+1 = Hr(Xj + µjA∗(b−A(Xj))) (1.8)

where the stepsize µj is selected as a fixed constant (such as µj = 0.65 for all j), and
the adjoint of the sensing operator, A∗(·), is defined as

A∗(y) :=
p∑

`=1

y(`)A` (1.9)

where the A` are the sensing matrices in (1.1). It has been shown in [24] that if
the sensing operator A(·) satisfies R2r < 1/3 then IHT (1.8) with constant stepsize
µj = 1/(1 + R2r) is guaranteed to recover any rank r matrix; this stepsize is selected

4 Jared Tanner and Ke Wei

to make the RIC based recovery condition as lax as possible, and is not advocated for
implementation as RICs are NP-hard to calculate [23] and hence are not available for
the stepsize µj . IHT has also been analysed considering a unit stepsize [21].

IHT for matrix completion is the direct extension of IHT for compressed sensing
[2] where the X is a k sparse vector of length N and the sensing operator A(·) is
an n × N matrix. It has been observed that IHT for compressed sensing performs
dramatically better if the stepsize is selected to be optimal when the current iterate
has the same support set as the sparsest solution [3]; with this stepsize selection rule
the method is referred to as Normalized IHT (NIHT). Here we present heuristics for
the iteration dependent selection of the stepsize µj in (1.8), motivated by NIHT for
compressed sensing; we also refer to this best performing heuristic simply as NIHT,
Algorithm 1, with its matrix completion context making clear its distinction from
NIHT for compressed sensing [3].

Algorithm 1 NIHT for Matrix Completion
Input: b = A(M),A, r, and termination criteria
Set X0 = Hr(A∗(b)), j = 0, and U0 as the top r left singular vectors of X0

Repeat
1. Set the projection operator P j

U := UjU
∗
j

2. Compute the stepsize: µu
j = ‖P j

UA
∗(b−A(Xj))‖2F

||A(P j
UA∗(b−A(Xj)))||22

3. Set Xj+1 = Hr(Xj + µu
jA∗(b−A(Xj)))

4. Let Uj+1 be the top r left singular vectors of Xj+1

5. j = j + 1
Until termination criteria is reached (such as ||b−A(Xj)||2 ≤ tol or j > max iter.)
Output: Xj

NIHT has optimal order recovery from dense sensing, proven in Section 2.2 using
a standard RIC based proof reminiscent of [2, 3, 21, 24].

Theorem 1.2. Let A(·) : Rm×n → Rp have RIC R3r < 1/5, then NIHT will
recovery (within arbitrary precision) any rank r matrix measured by A(·).

RIC based guarantees such as Theorem 1.2 are now common for matrix comple-
tion algorithms. Unfortunately such theorems lack quantitative precision sufficient
to advise a practitioner as to which of the many matrix completion algorithms to
use. Much more interestingly than Theorem 1.2, we observe that NIHT is extremely
efficient in a series of empirical tests, see Figures 3.3 and 3.4. For nearly all under-
sampling rates δ, NIHT is able to recover matrices of larger rank than can two of the
state of the art matrix completion algorithms: NNM (1.4) and PowerFactorization
(PF) [22], Algorithm 2. In particular, for δ ∈ (0.1, 1), NIHT is observed to be able
to recover matrices for nearly the largest achievable rank; that is, ρ near one. Note
that guaranteed recovery for all rank r matrices is not possible for ρ > 1/2, but that
algorithms can recovery most low rank matrices for ρ > 1/2 [19].

Throughout this manuscript we will plot curves in the (δ, ρ) plane, below a curve
the associated algorithm is observed to typically recover the sensed matrix, and above
the curve the algorithm is observed to typically fail to recover the sensed matrix. We
refer to these curves in the (δ, ρ) plane as phase transition curves [18]. For Gaussian
sensing the phase transition for NIHT appears to oscillate with ρ between 0.85 and
0.95 independent of δ and for entry sensing to slowly vary from about ρ = 0.9 at
δ = 0.1 to ρ = 1 at δ = 1, see Figure 2.2. Note that ρ = 1 corresponds to achieving

Normalized Iterative Hard Thresholding for Matrix Completion 5

the oracle minimum sampling rate of p = r(m+n−r). Moreover, for ranks where IHT
(with µ = 0.65), NNM, and PF are also able to recover the sensed matrices, NIHT is
observed to be faster for entry sensing and typically faster for Gaussian sensing (1.1),
see Figures 3.5 and 3.6.

The manuscript is organized as follows. In Section 2 we derive and discuss the
theory and practice of NIHT, contrasting the stepsize heuristic with constant stepsize
IHT. In Section 3 we present detailed numerical comparisons of NIHT with NNM
(1.4) and PF, Algorithm 2.

2. Normalized Iterative Hard Thresholding (NIHT). Iterative algorithms
for matrix completion are often designed by successively update a current estimate
Xj in order to decrease a measurement fidelity objective, such as,

‖b−A(Xj)‖2
2.

This is typically achieved by modifying Xj along the objective’s negative gradient

2A∗(b−A(Xj)).

For example, basic gradient descent is given by

Xj + µjA∗(b−A(Xj))

where the stepsize µj is typically selected to ensure a decrease in the objective in
each iteration. This approach can also be employed for constrained problems such as
(1.3) by using alternate projection between a steepest descent update and a projection
back onto the space of rank r matrices, for a more general discussion of alternating
projection methods see [31]. IHT (1.8) is a particularly simple example of such an
alternating projection method [21, 24]. Many, though not all, of the matrix com-
pletion algorithms are more involved variants of projected descent methods, such as:
modifying the descent direction to ensure the update remains on the manifold of rank
r matrices [43, 44, 40, 35], using iterative soft thresholding (1.5) possibly with mod-
ified search directions to solve (1.4) or a variant thereof [21, 5, 6, 41, 33, 25, 26, 32],
and multi-stage variants [15, 30, 45] reminiscent of the compressed sensing algorithms
CoSaMP [37] and Subspace Pursuit [14]. For a recent review and empirical compari-
son of many of these algorithms see [36].

The effectiveness of IHT is determined by the selection of the stepsize µj . Selecting
µj too small causes the algorithm to be both slow and encourages convergence to
local rather than the global minima, whereas selecting µj too large can result in
lack of convergence. This issue has been widely discussed in the field of non-linear
optimization, including for the matrix completion algorithms discussed in [43, 44, 21,
40, 35] which draw from the non-linear optimization literature. Here we consider an
alternative motivation drawn from compressed sensing. Large scale empirical testing
[34] of a fixed stepsize for IHT in compressed sensing suggested µj = 0.65, and we
find this to also be an effective choice for a fixed stepsize for the matrix completion
variant of IHT (1.8), see Figures 3.1 and 3.2. Even more effective than the constant
stepsize µj = 0.65 is the adaptive stepsize of Normalized IHT [3].

Compressed sensing and sparse approximation algorithms seek to find a (possibly
approximate) solution to an underdetermined system of equations b = Ax with fewer
nonzeros than the number of rows in A. The prototypical sparse approximation
algorithm is

min
x
‖x‖0 subject to b = Ax (2.1)

6 Jared Tanner and Ke Wei

where ‖x‖0 counts the number of non-zeros in x. As with (1.3), there are A for which
solving (2.1) is NP-hard to solve [23]. The complication in solving (2.1) is the iden-
tification of the support set of the sparsest vector; once the support set is identified,
it is easy to solve for the nonzero coefficients by solving the resulting overdetermined
system of equations. IHT for compressed sensing is analogous to (1.8),

xj+1 = HTk(xj + µjA
∗(b−Axj)),

but with HTk(·) setting all but the k largest (in magnitude) entries of the vector to
be zero and A∗ denotes the complex conjugate of A. NIHT for compressed sensing
corresponds to selecting the µj to be the optimal stepsize provided xj has identified
the support set of the solution to (2.1); the stepsize is given by

µj :=
‖A∗

Λj (b−Axj)‖2
2

‖AΛj A∗
Λj (b−Axj)‖2

2

where AΛj is the restriction of A to the columns corresponding to the nonzeros in xj .
NIHT for matrix completion, Algorithm 1, is similarly motivated.

When IHT is converging to the minimal rank solution, each of the singular vectors
and values of the current estimate Xj must also be converging to the singular vectors
and values of the minimum rank solution. Proximity to the correct singular vectors
motivates selecting the stepsize as if the singular vectors had been correctly identified
and the update is being used to improve the singular values. Let the iterate Xj be
of rank r with the singular value decomposition Xj = UjΣjV

∗
j , then we denote the

projection onto the top r left and right singular vector spaces as

P j
U := UjU

∗
j (2.2)

and

P j
V := VjV

∗
j (2.3)

respectively. A search direction can be projected to the span of the singular vectors
by applying (2.2) from the left and (2.3) from the right; for instance, the projected
negative gradient descent direction is given by Wuv

j := P j
UA∗(b − A(Xj))P j

V . Al-
ternatively, a search direction can be projected to the span of just the left or right
singular by applying only (2.2) from the left or (2.3) from the right respectively, with
search directions given by Wu

j := P j
UA∗(b − A(Xj)) and W v

j := A∗(b − A(Xj))P j
V .

Using any of these restricted search directions to update the current iterate Xj results
in the next iterate also being restricted to the same projected spaces, which would
not allow the iterates to converge to the lowest rank solution unless the projected
directions had been exactly correctly identified. The analogue in compressed sensing
would be to only update the support set of the past iterate. Although the projected
directions should not be used as the update direction, they provide useful information
for selecting the stepsize.

The three above mentioned projected directions motivate the three stepsizes

µu
j :=

‖P j
UA∗(b−A(Xj))‖2

F

||A(P j
UA∗(b−A(Xj)))||22

(2.4)

µv
j :=

‖A∗(b−A(Xj))P j
V ‖2

F

||A(A∗(b−A(Xj))P j
V)||22

(2.5)

µuv
j :=

‖P j
UA∗(b−A(Xj))P j

V ‖2
F

||A(P j
UA∗(b−A(Xj))P j

V)||22
. (2.6)

Normalized Iterative Hard Thresholding for Matrix Completion 7

and three associated variants of NIHT, each of which use the same unrestricted neg-
ative gradient search direction (1.8), but with three different stepsize heuristics (2.4),
(2.5), and (2.6). We refer to the three variants of NIHT associated with these step-
sizes as: NIHT when using (2.4), NIHT with row restriction when using (2.5), and
NIHT with column and row restriction when using (2.6). NIHT is observed to have
the best empirical performance, see Section 3, motivating its abridged name. NIHT
is stated in greater detail in Algorithm 1. Following submission of this manuscript
the authors were alerted to [28] which proposes an algorithm for matrix completion
similar to NIHT in its use of linesearch stepsize based on projection to the subspace
of the top singular vectors of its current iterate.

Although NIHT has much in common with the Riemannian optimization meth-
ods of [43, 44], NIHT lacks the safeguards and sophistication of such non-convex
optimization algorithms. In particular, Algorithm 1 lacks a safeguard to ensure a
decrease in ‖b−A(Xj)‖2 at each step. However, each of the stepsizes in (2.4) - (2.6)
are bounded above and below for sensing operators A(·) with bounded RICs (1.7) and
can be proven to converge when the sensing operator’s RICs are sufficiently small, see
Theorem 1.2. Note that a similar stepsize calculation lacking the projection to rank
r matrices would result in possibly unbounded stepsizes.

2.1. NIHT empirical average case behavior. We observe NIHT, Algorithm
1, to typically be able to recover the same or larger rank than can IHT with a well
chosen fixed stepsize (µj = 0.65), and that NIHT converges faster than IHT. We eval-
uate NIHT’s ability to recover m×n matrices with rank r from p measurements (1.1),
from both entry measurements drawn uniformly at random and dense measurements
where each of the p sensing matrices A` are drawn i.i.d. Gaussian N (0, 1/

√
mn). Tests

are conducted for measured m × n matrices of rank r drawn from two models: the
Gaussian model [38] where the measured matrix is constructed as X0 = CD with
C and D are m × r and r × n matrices with entries drawn i.i.d. Gaussian N (0, 1),
and the “equalized Gaussian model” where the measured matrix is constructed as
X0 = UIrV

∗ with Ir the r × r identity matrix and U and V are m × r and n × r
matrices drawn uniformly at random from the Grassmannian manifold of matrices
with orthonormal columns. The recovery properties of NIHT is observed to be the
same for both of these models. We present results only for the Gaussian model.

Without loss of generality, we order m and n with m ≤ n, and define their ratio
as

γ :=
m

n
. (2.7)

For each value of n tested, we conduct tests for m such that γ = 1/4, 1/2, 3/4 and
1. For each m,n pair we conduct tests with the number of measurements being
p = mn(j/10) for j = 1, 2, . . . , 10, which corresponds to δ = j/10 for the same values
of j. The reconstruction algorithms are substantially faster for entry measurements, as
dense measurements has an additional requirement of pmn scalar multiplications for
the application of A(·), which scales proportionally to n4 in our testing environment.
For this reason the tests for dense Gaussian sensing is conducted for n = 40 and
n = 80, whereas the tests for entry sensing is conducted for n = 40, 80, 160, 200, 400,
and 800. We consider an algorithm to have successfully recovered1 the sensed rank r

1Greater accuracy conditions were tested for a subset of problems. In each instance it was
observed that recovery within arbitrary precision was possible once a matrix was identified to within
2× 10−3 relative error in the Frobenious norm.

8 Jared Tanner and Ke Wei

matrix X0 if it returns a rank r matrix Xoutput that is within 2× 10−3 of the sensed
matrix in the relative Frobenious norm, ‖Xoutput−X0‖F ≤ 2×10−3‖X0‖F . For each
triple m,n, p we select a value of r sufficiently small that the algorithm successfully
recovers the sensed matrix in each of ten randomly drawn tests; we then increase the
rank of the sensed matrices, conducting ten tests per rank, until the rank is sufficiently
large that the algorithm fails to recover the sense matrix in each of ten randomly drawn
tests. We refer to the largest value of r for which the algorithm succeeded in each of
ten tests as rmin and the smallest value of r for which the algorithm failed in each of
the ten tests at rmax. NIHT and IHT terminate if ‖b − A(Xj)‖2/‖b‖2 < 10−5 or if
the multiplicative average of the last fifteen linear convergence rates are greater than
κ,

(
‖b−A(Xj+15)‖2

‖b−A(Xj)‖2

)1/15

> κ. (2.8)

Unless otherwise stated we set κ = 0.999.

The values of rmin and rmax for NIHT, are displayed in Figure 2.1 for Gaussian
sensing with n = 80 (left panel) and entry sensing with n = 800 (right panel). The
same data is displayed in Figure 2.2, but with the vertical axis being the values of ρ
calculated from (rmin +rmax)/2. The exact values of rmin, rmax and associated ρmin,
and ρmax calculated from (1.2) for these, as well as smaller n, are listed in Tables 2.1
and 2.2 for Gaussian sensing and entry sensing respectively.

The remarkable effectiveness of NIHT is evident in Figure 2.2 through the approx-
imate phase transition, calculated using (rmin+rmax)/2. Though the phase transition
for Gaussian sensing displayed in Figure 2.2 (left panel) appears erratic due to the
small value of n = 80 and associated large changes in ρ for a rank one change, it
is surprising that the phase transitions remain between 0.85 and 0.95 for each of
γ = 1, 3/4, 1/2, and 1/4, as well as for each of δ = j/10 for j = 1, 2, . . . , 10. The phase
transition occurring between 0.85 and 0.95 indicates that irrespective of the degree of
undersampling, δ, NIHT is able to recover rank r matrices for the number of measure-
ments being a small multiple of the minimum number; that is p = Const. ·r(m+n−r)
for Const. < 1.2. NIHT exhibits a similarly high phase transition for entry sensing
in Figure 2.2 (right panel). The entry sensing tests for the larger value of n = 800
greatly reduces the sensitivity of ρ to small changes in r, resulting in much smoother
observed phase transitions. For γ = 1, 3/4, and 1/2 we observe phase transitions
that slowly increasing from approximately ρ = 0.9 to one as δ increases from 0.2 to
one. The smaller value of γ = 1/4 show substantially reduced phase transitions for
entry sensing, but in Section 3 we will observe that even this lower phase transition
compares favorably to other matrix completion algorithms. The data in Table 2.1 for
m = n and p = mn/10 suggest that the lower phase transition for δ = 1/10 may be an
artifact of the small problem sizes. Similarly, we observe that increasing the problem
size from n = 80 to 800 results in substantial increases in the phase transitions show
in Figure 3.2, including for γ = 1/4.

Normalized Iterative Hard Thresholding for Matrix Completion 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

p/mn

ra
n

k

Recovery for ranks below solid and failure above dashed

m/n = 0.250
m/n = 0.500
m/n = 0.750
m/n = 1.000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

p/mn
ra

n
k

Recovery for ranks below solid and failure above dashed

m/n = 0.250
m/n = 0.500
m/n = 0.750
m/n = 1.000

Fig. 2.1. For each rank above the dashed lines NIHT failed to recover the sensed matrix in each
of ten randomly drawn tests per rank, whereas for each rank below the solid lines NIHT succeeded in
recovering the sensed matrix in each of ten randomly dawn tests per rank. The vertical axis is the
rank of the sensed matrix and the horizontal axis is the undersampling ratio δ. Left Panel: Gaussian
Sensing with n = 80, Right Panel: Entry Sensing with n = 800.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition

m/n = 0.250
m/n = 0.500
m/n = 0.750
m/n = 1.000

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition

m/n = 0.250
m/n = 0.500
m/n = 0.750
m/n = 1.000

Fig. 2.2. Phase transition of NIHT with horizontal axis δ and vertical axis ρ where ρ is
calculated using the average of rmin and rmax from Tables 2.1 and 2.2. Left Panel: Gaussian
Sensing with n = 80, Right Panel: Entry Sensing with n = 800.

The convergence rate stopping criteria (2.8) plays an important role in achieving
the observed high phase transitions; setting κ to the very slow 0.995 is observed to
noticeably reduce the largest recoverable rank as compared to from the seemingly
impractically slow κ = 0.999. Figure 3.1 shows the increase in the phase transitions
when κ is increased from 0.995 (blue) to 0.999 (black). Figure 2.3 shows that this
increase in κ allows for some of the tests that terminate with error greater than 2×10−3

to further iterate and decrease the error sufficiently for the relative error stopping
criteria ‖b − A(Xj)‖2/‖b‖2 < 10−5 to be active. This raise in the phase transition
by increasing κ comes at the cost of the maximum number of iterations increasing
from approximately 1500 to 6500, and the associated time to completion. Although
this, nearly four-fold, increase in the time to completion may seem inadvisable, no
other algorithm is observed to be able to recover low rank matrices for such large
ranks. The other algorithms tested are unable to increase the recoverable rank by
extending the stopping criteria, see for instance the right panel of Figure 2.3 where

10 Jared Tanner and Ke Wei

Table 2.1
For each listed m, n, p triple, NIHT with p Gaussian measurements is tested for ten randomly

drawn m× n rank r matrices per rank and is observed to recover each of the ten measured matrices
for all r ≤ rmin and failed to recover each of the ten measured matrices per rank for r ≥ rmax.

NIHT with Gaussian Measurements

m n p rmin rmax ρmin ρmax m n p rmin rmax ρmin ρmax

10 40

40 0 0 0.000 0.000

20 80

160 1 2 0.619 1.225
80 1 2 0.613 1.200 320 2 4 0.613 1.200
120 2 3 0.800 1.175 480 4 5 0.800 0.990
160 2 4 0.600 1.150 640 5 7 0.742 1.017
200 3 5 0.705 1.125 800 7 9 0.814 1.024
240 4 5 0.767 0.938 960 9 10 0.853 0.938
280 5 7 0.804 1.075 1120 11 12 0.874 0.943
320 6 7 0.825 0.941 1280 13 14 0.884 0.941
360 7 9 0.836 1.025 1440 14 16 0.836 0.933
400 8 10 0.840 1.000 1600 18 19 0.922 0.962

20 40

80 1 2 0.738 1.450

40 80

320 2 3 0.738 1.097
160 2 3 0.725 1.069 640 4 6 0.725 1.069
240 3 5 0.713 1.146 960 7 8 0.824 0.933
320 4 6 0.700 1.012 1280 10 11 0.859 0.937
400 6 7 0.810 0.927 1600 12 14 0.810 0.927
480 8 9 0.867 0.956 1920 16 18 0.867 0.956
560 9 11 0.820 0.963 2240 19 22 0.857 0.963
640 11 13 0.842 0.955 2560 23 26 0.871 0.955
720 13 15 0.849 0.938 2880 27 30 0.872 0.938
800 16 18 0.880 0.945 3200 32 35 0.880 0.930

30 40

120 1 2 0.575 1.133

60 80

480 2 4 0.575 1.133
240 3 4 0.838 1.100 960 6 7 0.838 0.970
360 4 6 0.733 1.067 1440 9 11 0.819 0.985
480 6 8 0.800 1.033 1920 13 15 0.860 0.977
600 7 10 0.735 1.000 2400 17 19 0.871 0.958
720 11 12 0.901 0.967 2880 21 23 0.868 0.934
840 12 15 0.829 0.982 3360 26 28 0.882 0.933
960 15 17 0.859 0.939 3840 32 34 0.900 0.939
1080 18 21 0.867 0.953 4320 38 41 0.897 0.940
1200 23 25 0.901 0.938 4800 48 49 0.920 0.929

40 40

160 1 2 0.494 0.975

80 80

640 3 4 0.736 0.975
320 3 4 0.722 0.950 1280 7 8 0.837 0.950
480 5 7 0.781 1.065 1920 10 12 0.781 0.925
640 7 9 0.798 0.998 2560 14 17 0.798 0.950
800 9 11 0.799 0.949 3200 19 22 0.837 0.949
960 12 14 0.850 0.963 3840 25 27 0.879 0.935
1120 15 17 0.871 0.956 4480 31 33 0.893 0.935
1280 18 20 0.872 0.938 5120 37 40 0.889 0.938
1440 21 24 0.860 0.933 5760 44 48 0.886 0.933
1600 28 30 0.910 0.938 6400 57 59 0.917 0.931

PowerFactorization is observed to have clear separation between problem instances
where the algorithm converges to the sensed matrix and when it returns a low rank
matrix that differs substantially from the measured matrix.

Normalized Iterative Hard Thresholding for Matrix Completion 11

T
a
b
l
e

2
.2

F
o
r

ea
ch

li
st

ed
m

,n
,p

tr
ip

le
,
N

IH
T

w
it
h

p
en

tr
y

m
ea

su
re

m
en

ts
is

te
st

ed
fo

r
te

n
ra

n
d
o
m

ly
d
ra

w
n

m
×

n
ra

n
k

r
m

a
tr

ic
es

pe
r

ra
n
k

a
n
d

is
o
bs

er
ve

d
to

re
co

ve
r

ea
ch

o
f
th

e
te

n
m

ea
su

re
d

m
a
tr

ic
es

fo
r

a
ll

r
≤

r m
in

a
n
d

fa
il
ed

to
re

co
ve

r
ea

ch
o
f
th

e
te

n
m

ea
su

re
d

m
a
tr

ic
es

pe
r

ra
n
k

fo
r

r
≥

r m
a

x
.

N
IH

T
w

it
h

E
n
tr

y
M

e
a
su

re
m

e
n
ts

m
n

p
r

m
i
n

r
m

a
x

ρ
m

i
n

ρ
m

a
x

m
n

p
r

m
i
n

r
m

a
x

ρ
m

i
n

ρ
m

a
x

m
n

p
r

m
i
n

r
m

a
x

ρ
m

i
n

ρ
m

a
x

5
0

2
0
0

1
0
0
0

0
2

0
.0

0
0

0
.4

9
6

1
0
0

4
0
0

4
0
0
0

1
5

0
.1

2
5

0
.6

1
9

2
0
0

8
0
0

1
6
0
0
0

5
1
0

0
.3

1
1

0
.6

1
9

2
0
0
0

1
5

0
.1

2
4

0
.6

1
3

8
0
0
0

5
1
1

0
.3

0
9

0
.6

7
2

3
2
0
0
0

1
8

2
5

0
.5

5
2

0
.7

6
2

3
0
0
0

3
9

0
.2

4
7

0
.7

2
3

1
2
0
0
0

1
2

1
9

0
.4

8
8

0
.7

6
2

4
8
0
0
0

3
5

4
2

0
.7

0
4

0
.8

3
8

4
0
0
0

6
1
4

0
.3

6
6

0
.8

2
6

1
6
0
0
0

2
0

2
9

0
.6

0
0

0
.8

5
4

6
4
0
0
0

4
9

6
0

0
.7

2
8

0
.8

8
1

5
0
0
0

1
0

1
9

0
.4

8
0

0
.8

7
8

2
0
0
0
0

3
0

3
8

0
.7

0
5

0
.8

7
8

8
0
0
0
0

6
8

7
9

0
.7

9
2

0
.9

0
9

6
0
0
0

1
6

2
3

0
.6

2
4

0
.8

7
0

2
4
0
0
0

3
7

4
7

0
.7

1
4

0
.8

8
7

9
6
0
0
0

8
9

9
8

0
.8

4
5

0
.9

2
1

7
0
0
0

2
0

2
9

0
.6

5
7

0
.9

1
6

2
8
0
0
0

4
8

5
8

0
.7

7
5

0
.9

1
6

1
1
2
0
0
0

1
1
0

1
2
1

0
.8

7
4

0
.9

5
0

8
0
0
0

2
7

3
4

0
.7

5
3

0
.9

1
8

3
2
0
0
0

6
2

6
9

0
.8

4
9

0
.9

2
9

1
2
8
0
0
0

1
3
4

1
4
2

0
.9

0
7

0
.9

5
2

9
0
0
0

3
4

3
9

0
.8

1
6

0
.9

1
4

3
6
0
0
0

7
5

8
2

0
.8

8
5

0
.9

5
2

1
4
4
0
0
0

1
5
9

1
6
3

0
.9

2
9

0
.9

4
7

1
0
0
0
0

5
0

5
0

1
.0

0
0

1
.0

0
0

4
0
0
0
0

1
0
0

1
0
0

1
.0

0
0

1
.0

0
0

1
6
0
0
0
0

2
0
0

2
0
0

1
.0

0
0

1
.0

0
0

1
0
0

2
0
0

2
0
0
0

1
5

0
.1

4
9

0
.7

3
8

2
0
0

4
0
0

8
0
0
0

4
1
0

0
.2

9
8

0
.7

3
8

4
0
0

8
0
0

3
2
0
0
0

1
5

2
3

0
.5

5
5

0
.8

4
6

4
0
0
0

6
1
2

0
.4

4
1

0
.8

6
4

1
6
0
0
0

1
8

2
5

0
.6

5
5

0
.8

9
8

6
4
0
0
0

4
2

5
2

0
.7

6
0

0
.9

3
3

6
0
0
0

1
2

1
9

0
.5

7
6

0
.8

9
0

2
4
0
0
0

3
2

4
0

0
.7

5
7

0
.9

3
3

9
6
0
0
0

8
0

8
1

0
.9

3
3

0
.9

4
4

8
0
0
0

2
2

2
8

0
.7

6
4

0
.9

5
2

3
2
0
0
0

4
7

5
6

0
.8

1
2

0
.9

5
2

1
2
8
0
0
0

1
1
0

1
1
2

0
.9

3
7

0
.9

5
2

1
0
0
0
0

2
8

3
6

0
.7

6
2

0
.9

5
0

4
0
0
0
0

6
5

7
3

0
.8

6
9

0
.9

6
2

1
6
0
0
0
0

1
4
5

1
4
6

0
.9

5
6

0
.9

6
2

1
2
0
0
0

3
8

4
6

0
.8

3
0

0
.9

7
4

4
8
0
0
0

8
4

9
2

0
.9

0
3

0
.9

7
4

1
9
2
0
0
0

1
8
1

1
8
3

0
.9

6
1

0
.9

6
9

1
4
0
0
0

5
1

5
6

0
.9

0
7

0
.9

7
6

5
6
0
0
0

1
0
7

1
1
2

0
.9

4
2

0
.9

7
6

2
2
4
0
0
0

2
2
2

2
2
4

0
.9

6
9

0
.9

7
6

1
6
0
0
0

5
9

6
7

0
.8

8
9

0
.9

7
6

6
4
0
0
0

1
3
0

1
3
5

0
.9

5
5

0
.9

8
1

2
5
6
0
0
0

2
6
8

2
7
0

0
.9

7
6

0
.9

8
1

1
8
0
0
0

7
1

7
5

0
.9

0
3

0
.9

3
8

7
2
0
0
0

1
5
4

1
5
6

0
.9

5
4

0
.9

6
2

2
8
8
0
0
0

3
0
8

3
1
1

0
.9

5
4

0
.9

6
0

2
0
0
0
0

1
0
0

1
0
0

1
.0

0
0

1
.0

0
0

8
0
0
0
0

2
0
0

2
0
0

1
.0

0
0

1
.0

0
0

3
2
0
0
0
0

4
0
0

4
0
0

1
.0

0
0

1
.0

0
0

1
5
0

2
0
0

3
0
0
0

2
8

0
.2

3
2

0
.9

1
2

3
0
0

4
0
0

1
2
0
0
0

5
1
6

0
.2

9
0

0
.9

1
2

6
0
0

8
0
0

4
8
0
0
0

2
4

3
3

0
.6

8
8

0
.9

4
0

6
0
0
0

1
1

1
7

0
.6

2
2

0
.9

4
4

2
4
0
0
0

3
0

3
4

0
.8

3
8

0
.9

4
4

9
6
0
0
0

6
6

6
8

0
.9

1
7

0
.9

4
4

9
0
0
0

2
2

2
6

0
.8

0
2

0
.9

3
6

3
6
0
0
0

4
9

5
3

0
.8

8
6

0
.9

5
3

1
4
4
0
0
0

1
0
3

1
0
5

0
.9

2
8

0
.9

4
4

1
2
0
0
0

3
2

3
7

0
.8

4
8

0
.9

6
5

4
8
0
0
0

6
9

7
3

0
.9

0
7

0
.9

5
4

1
9
2
0
0
0

1
4
2

1
4
5

0
.9

3
0

0
.9

4
8

1
5
0
0
0

4
5

4
8

0
.9

1
5

0
.9

6
6

6
0
0
0
0

9
2

9
5

0
.9

3
2

0
.9

5
8

2
4
0
0
0
0

1
8
6

1
8
9

0
.9

4
1

0
.9

5
4

1
8
0
0
0

5
7

6
0

0
.9

2
8

0
.9

6
7

7
2
0
0
0

1
1
7

1
2
0

0
.9

4
7

0
.9

6
7

2
8
8
0
0
0

2
3
6

2
3
9

0
.9

5
4

0
.9

6
3

2
1
0
0
0

7
1

7
5

0
.9

4
3

0
.9

8
2

8
4
0
0
0

1
4
5

1
4
8

0
.9

5
8

0
.9

7
3

3
3
6
0
0
0

2
9
2

2
9
6

0
.9

6
3

0
.9

7
3

2
4
0
0
0

8
4

9
1

0
.9

3
1

0
.9

8
2

9
6
0
0
0

1
7
9

1
8
2

0
.9

7
1

0
.9

8
2

3
8
4
0
0
0

3
6
0

3
6
3

0
.9

7
5

0
.9

8
0

2
7
0
0
0

9
9

1
0
3

0
.9

2
0

0
.9

4
2

1
0
8
0
0
0

2
1
4

2
1
7

0
.9

6
3

0
.9

7
0

4
3
2
0
0
0

4
3
0

4
3
2

0
.9

6
6

0
.9

6
8

3
0
0
0
0

1
5
0

1
5
0

1
.0

0
0

1
.0

0
0

1
2
0
0
0
0

3
0
0

3
0
0

1
.0

0
0

1
.0

0
0

4
8
0
0
0
0

6
0
0

6
0
0

1
.0

0
0

1
.0

0
0

2
0
0

2
0
0

4
0
0
0

1
9

0
.1

0
0

0
.8

8
0

4
0
0

4
0
0

1
6
0
0
0

7
1
9

0
.3

4
7

0
.9

2
7

8
0
0

8
0
0

6
4
0
0
0

2
4

3
8

0
.5

9
1

0
.9

2
7

8
0
0
0

9
2
0

0
.4

4
0

0
.9

5
0

3
2
0
0
0

3
6

4
0

0
.8

6
0

0
.9

5
0

1
2
8
0
0
0

7
8

7
9

0
.9

2
7

0
.9

3
9

1
2
0
0
0

2
7

3
1

0
.8

3
9

0
.9

5
3

4
8
0
0
0

5
8

6
2

0
.8

9
7

0
.9

5
3

1
9
2
0
0
0

1
1
9

1
2
2

0
.9

1
8

0
.9

3
9

1
6
0
0
0

3
9

4
3

0
.8

8
0

0
.9

5
9

6
4
0
0
0

8
1

8
5

0
.9

1
0

0
.9

5
0

2
5
6
0
0
0

1
6
7

1
6
9

0
.9

3
5

0
.9

4
5

2
0
0
0
0

5
2

5
6

0
.9

0
5

0
.9

6
3

8
0
0
0
0

1
0
8

1
1
1

0
.9

3
4

0
.9

5
6

3
2
0
0
0
0

2
1
8

2
2
0

0
.9

4
1

0
.9

4
9

2
4
0
0
0

6
6

7
1

0
.9

1
8

0
.9

7
3

9
6
0
0
0

1
3
7

1
4
0

0
.9

4
6

0
.9

6
3

3
8
4
0
0
0

2
7
6

2
7
9

0
.9

5
2

0
.9

6
0

2
8
0
0
0

8
4

8
8

0
.9

4
8

0
.9

8
1

1
1
2
0
0
0

1
7
0

1
7
4

0
.9

5
6

0
.9

7
3

4
4
8
0
0
0

3
4
3

3
4
6

0
.9

6
2

0
.9

6
8

3
2
0
0
0

1
0
1

1
0
7

0
.9

4
4

0
.9

8
0

1
2
8
0
0
0

2
1
0

2
1
4

0
.9

6
8

0
.9

8
0

5
1
2
0
0
0

4
2
2

4
2
6

0
.9

7
1

0
.9

7
7

3
6
0
0
0

1
1
9

1
2
4

0
.9

2
9

0
.9

5
1

1
4
4
0
0
0

2
5
7

2
6
0

0
.9

6
9

0
.9

7
5

5
7
6
0
0
0

5
1
7

5
2
0

0
.9

7
2

0
.9

7
5

4
0
0
0
0

2
0
0

2
0
0

1
.0

0
0

1
.0

0
0

1
6
0
0
0
0

4
0
0

4
0
0

1
.0

0
0

1
.0

0
0

6
4
0
0
0
0

8
0
0

8
0
0

1
.0

0
0

1
.0

0
0

12 Jared Tanner and Ke Wei

10
−6

10
−4

10
−2

10
0

10
2

0

500

1000

1500

error

it
e

r
a

ti
o

n
s

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

1000

2000

3000

4000

5000

6000

7000

error

it
e

r
a

ti
o

n
s

10
−15

10
−10

10
−5

10
0

10
5

0

100

200

300

400

500

600

error

it
e

r
a

ti
o

n
s

Fig. 2.3. Iteration vs error for NIHT with Gaussian sensing using convergence rate stopping
criteria 0.995 and 0.999 in the left and middle panels respectively, and for PF [22] in the right
panel. The plots include the results for each of the tests conducted for n = 40 and 80, comprising
20, 640 tests in the left panel, 5, 000 tests for the middle panel, and 4, 410 tests in the right panel.

2.2. Proof of Theorem 1.2. This proof of Theorem 1.2 is similar to those in
[2, 3, 21, 24], differing only in how the stepsize µu

j is bounded, and is equally valid
for each of the three variants of NIHT using the stepsizes (2.4) - (2.5). The proof
follows by first deriving an inequality where ‖Xj+1 − X0‖F is bounded by a factor
multiplying ‖Xj −X0‖F , and then showing that this multiplicative factor is less than
one when the theorem’s condition that the sensing operator has RIC R3r < 1/5 is
satisfied. Let X0 be the measured rank r matrix, with measurements b = A(X0) and
let

W j = Xj + µu
jA∗(b−A(Xj))

be the intermediate update to Xj in NIHT, as stated in Algorithm 1, before it is
projected to the rank r update Xj+1. Echart-Young’s Theorem, ensures that Xj+1

is the rank r matrix nearest to W j in the Frobenious Norm,

‖W j −Xj+1‖2
F ≤ ‖W j −X0‖2

F . (2.9)

Expanding ‖W j −Xj+1‖2
F and bounding it from above using (2.9) gives

||W j −Xj+1||2F = ||W j −X0 + X0 −Xj+1||2F
= ||W j −X0||2F + ||X0 −Xj+1||2F

+2〈W j −X0, X0 −Xj+1〉
≤ ||W j −X0||2F .

Cancelling ||W j −X0||2F in the above inequality gives the inequality

||Xj+1 −X0||2F ≤ 2〈W j −X0, X
j+1 −X0〉 (2.10)

= 2〈Xj −X0, X
j+1 −X0〉 − 2µu

j 〈A∗A(Xj −X0), Xj+1 −X0〉
= 2〈Xj −X0, X

j+1 −X0〉 − 2µu
j 〈A(Xj −X0),A(Xj+1 −X0)〉

Let Qj ∈ Rm×3r have orthonormal columns which span the space of all of the
columns of X0, Xj , and Xj+1, and let P j

Q := QjQ
∗
j be the projection operator to this

Normalized Iterative Hard Thresholding for Matrix Completion 13

column space; in particular, P j
QX0 = X0, P j

QXj = Xj , and P j
QXj+1 = Xj+1. Define

AQ(Z) := A(P j
QZ) which corresponds to replacing the sensing matrices {A`}p

`=1 of
the unrestricted sensing operator A(·) with the sensing matrices {P j

QA`}p
`=1 and the

correspondingly associated adjoint operator A∗
Q(·) as would follow in the definition

(1.9) with A` replaced with P j
QA`. With these projected operators we can express

and further bound the inequality (2.10) as follows

||Xj+1 −X0||2F ≤ 2〈Xj −X0, X
j+1 −X0〉 − 2µu

j 〈A(Xj −X0),A(Xj+1 −X0)〉
= 2〈Xj −X0, X

j+1 −X0〉 − 2µu
j 〈AQ(Xj −X0),AQ(Xj+1 −X0)〉

= 2〈Xj −X0, (Xj+1 −X0)− µu
jA∗

Q(AQ(Xj+1 −X0))〉
= 2〈Xj −X0, (I − µu

jA∗
Q(AQ))(Xj+1 −X0)〉

≤ 2||I − µu
jA∗

QAQ||2 · ||Xj −X0||F · ||Xj+1 −X0||F .

Cancelling one power of ||Xj+1−X0||F from each side of the last inequality gives the
desired bound on the error at step j + 1 as compared to the error at step j

||Xj+1 −X0||F ≤ 2||I − µu
jA∗

QAQ||2 · ||Xj −X0||F (2.11)

and it only remains to bound the operator norm ||I − µu
jA∗

QAQ||2.
The operator A∗

QAQ(·) is self adjoint and acts on the projected space of rank 3r

matrices defined by P j
Q; as such, its spectrum satisfied the RIC bounds

1−R3r ≤ λ(A∗
QAQ) ≤ 1 + R3r. (2.12)

Similarly, the inverse of the stepsize µu
j is the ratio of the operator A(·) acting on a

rank r matrix in the space defined by P j
U , giving the RIC based bounds

1
1 + Rr

≤ µu
j =

‖P j
UA∗(b−A(Xj))‖2

F

||A(P j
UA∗(b−A(Xj)))||22

≤ 1
1−Rr

. (2.13)

Combining the bounds on the spectrum of A∗
QAQ in (2.12) and the stepsize in

(2.13), we bound the spectrum of I − µu
jA∗

QAQ as

1− 1 + R3r

1−Rr
≤ λ(I − µu

jA∗
QAQ) ≤ 1− 1−R3r

1 + Rr
.

The magnitude of the lower bound above is greater than that of the upper bound,
giving the operator bound

||I − µu
jA∗

QAQ||2 ≤
1 + R3r

1−Rr
− 1 (2.14)

which is strictly less than 1/2 due to the condition of the theorem R3r < 1/5. Conse-
quently, the bound (2.11) results in a strict linear decrease in the error ‖Xj −X0‖F

at each iteration, proving the convergence of Xj to X0.

3. Comparison with other algorithms. Matrix completion is a rapidly evolv-
ing field with numerous algorithms introduced in the last few years [21, 24, 22, 43,
44, 40, 5, 6, 41, 15, 33, 25, 26, 30, 45, 32, 35, 9, 12, 38]. A recent review of matrix
completion algorithms, including most of the afore mentioned, is presented in [36]

14 Jared Tanner and Ke Wei

along with extensive numerical comparisons. The focus of the numerical tests pre-
sented here is on quantifying the largest possible rank recoverable for an algorithm
as a function of p/mn, and to explore if this phase transition is stable as the matrix
size increases. This testing environment probes algorithms in the region where their
convergence rates slow, causing the tests to have an unusually high computational
burden. The tests presented in this manuscript required 4.67 CPU years2 run on hex
core Intel X5650 CPUs with 24 GB of RAM.

The empirical behavior of NIHT has been presented in Section 2.1. Here we
contrast the performance of NIHT with: fixed stepsize IHT (µj = 0.65), NNM using a
semidefinite programming formulation [38] and the software package SDPT3 [42], and
PF [22], Algorithm 2. These three algorithms are selected as representative examples

Algorithm 2 PowerFactorization (PF) for Matrix Completion
Input: U0 ∈ Rm×r, V 0 ∈ Rr×n

Repeat
1. Hold V j−1 fixed, solve U j = arg min

U
||A(UV j−1)− b||2

2. Hold U j fixed, solve V j = arg minV ||A(U jV)− b||2
3. j = j + 1

Until some criteria meets
Ouput Xj = U jV j

of hard thresholding algorithms, IHT, convex relaxations, NNM, and a quite distinct
variant of optimization on the manifold of low rank matrices, PF. PF was selected due
to both its simplicity and its remarkably high phase transition [22]. The primary focus
of this comparison is to determine of the largest rank recoverable by an algorithm for
a given m,n, p triple. Timings are included for completeness. Each algorithm is tested
as described in the first paragraph of Section 2.1.

3.1. Comparison of IHT and NIHT. We consider (1.8) with four stepsize
choices, IHT with fixed stepsize µj = 0.65 as well as three variants of NIHT with it-
eration adaptive stepsizes as stated in (2.4) - (2.6). The RIC based analysis of NIHT
with stepsize (2.4) presented in Section 2.2 is equally valid for stepsizes (2.5) and (2.6).
Unfortunately, this worst case analysis gives little indication of their average case effec-
tiveness. Tests were conducted for matrices with aspect ratio m/n = 1, 3/4, 1/2, 1/4,
and 1/8 for n = 40 and n = 80. The variant with stepsize (2.5) was able to recover
matrices of the same rank as (2.4) when m/n = 1, 3/4, and 1/2, but was only able
to recover substantially lower rank matrices for the more rectangular aspect ratios
m/n = 1/4 and 1/8. The NIHT variant with stepsize (2.6) was able to only recover
matrices of greatly reduced rank as compared to (2.4) and (2.5). For conciseness we
limit ourselves to presenting only the results for the adaptive stepsize variant (2.4),
which we refer to simply as NIHT and state in greater detail as Algorithm 1.

Figures 3.1 and 3.2 display the estimated phase transition with ρ calculated using
the average of rmin and rmax as described in Section 2.1. Figure 3.1 displays the phase
transition with Gaussian sensing for NIHT with stopping criteria κ = 0.999 (black)
and 0.995 (blue) as well as IHT with fixed stepsize µj = 0.65 (red) with κ = 0.999.
Increasing κ is observed to substantially increase the recoverable rank. For the same
stopping criteria, NIHT is observed to recover rank r matrices for r at least as high as

2All algorithms were written using Matlab R2011b with the default SVD, as opposed to the
potentially faster PROPACK [29].

Normalized Iterative Hard Thresholding for Matrix Completion 15

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p
Recovery phase transition with m/n = 1.000

NIHT: Column Projection (0.999) with Gaussian Measurements
IHT: stepsize=0.65 (0.999) with Gaussian Measurements
NIHT: Column Projection (0.995) with Gaussian Measurements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.750

NIHT: Column Projection (0.999) with Gaussian Measurements
IHT: stepsize=0.65 (0.999) with Gaussian Measurements
NIHT: Column Projection (0.995) with Gaussian Measurements

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.500

NIHT: Column Projection (0.999) with Gaussian Measurements
IHT: stepsize=0.65 (0.999) with Gaussian Measurements
NIHT: Column Projection (0.995) with Gaussian Measurements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.250

NIHT: Column Projection (0.999) with Gaussian Measurements
IHT: stepsize=0.65 (0.999) with Gaussian Measurements
NIHT: Column Projection (0.995) with Gaussian Measurements

(c) (d)

Fig. 3.1. Phase transition for Gaussian Sensing and algorithms: NIHT with stopping criteria
κ = 0.999 and κ = 0.995 as well as IHT with stepsize µj = 0.65 and stopping criteria κ = 0.999.
Horizontal axis δ and vertical axis ρ as defined in (1.2). Each transition is for n = 80 and the
values of ρ shown are calculated using the average of rmin and rmax.

IHT. The average timings for the associated tests with κ = 0.999 and m = n = 40 are
displayed in Figure 3.5 Panels (b) and (d) for NIHT and IHT respectively, and the
ratio of their average timings is displayed in Figure 3.6 Panel (b). NIHT is observed
to be faster than IHT except for the region of large δ and ρ where IHT is beginning
to fail to recover the solution to (1.3) but NIHT remains able to recover the solution
to (1.3).

Figure 3.2 displays the phase transition for entry sensing (1.1) and NIHT with
n = 800 (blue) and n = 80 (black) as well as IHT with stepsize µj = 0.65 and n = 80
(red). NIHT and IHT are observed to be able to recover rank r matrices for nearly the
same rank with n = 80. Increasing the matrix size from n = 80 to n = 800 results in
a dramatic increase in the phase transitions, with each curve surprisingly close to the
maximum achievable ρ = 1. All entry sensing tests use stopping criteria κ = 0.999.

16 Jared Tanner and Ke Wei

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p
Recovery phase transition with m/n = 1.000

NIHT: Column Projection (0.999) with Entry Measurements
IHT: stepsize=0.65 (0.999) with Entry Measurements
NIHT: Column Projection (0.999) with Entry Measurements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.750

NIHT: Column Projection (0.999) with Entry Measurements
IHT: stepsize=0.65 (0.999) with Entry Measurements
NIHT: Column Projection (0.999) with Entry Measurements

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.500

NIHT: Column Projection (0.999) with Entry Measurements
IHT: stepsize=0.65 (0.999) with Entry Measurements
NIHT: Column Projection (0.999) with Entry Measurements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.250

NIHT: Column Projection (0.999) with Entry Measurements
IHT: stepsize=0.65 (0.999) with Entry Measurements
NIHT: Column Projection (0.999) with Entry Measurements

(c) (d)

Fig. 3.2. Phase transition for entry sensing and algorithms: NIHT with column projection for
n = 80 (black) and n = 800 (blue) and IHT with stepsize µj = 0.65 (red) with n = 80. Horizontal
axis δ and vertical axis ρ as defined in (1.2). The values of ρ shown are calculated using the average
of rmin and rmax.

The average timings for the associated tests with n = m = 80 are displayed in Figure
3.5 Panels (a) and (c) for NIHT and IHT respectively, and the ratio of their average
timings is displayed in Figure 3.6 Panel (a). NIHT is observed to always be faster
than IHT, typically taking just under half the time.

3.2. Comparison of NIHT with Nuclear Norm Minimization and Power
Factorization. Nuclear norm minimization (NNM), (1.4), is the convex relaxation
of the rank minimization question (1.3), and is the most studied approach for matrix
completion [9, 12, 38]. In particular, it is the only matrix completion formulation
with a quantitatively accurate analysis [39] of the ability to recover the solution to
(1.3). Having a formulation in terms of the well studied semidefinite programming,
there are many existing algorithms and software packages that can be used to solve

Normalized Iterative Hard Thresholding for Matrix Completion 17

(1.4); moreover, numerous algorithms have been designed to solve NNM specifically
for matrix completion, [5, 6, 41, 33] to name a few. These matrix completion focused
methods for the solution of (1.4) are designed to more accurately and/or more rapidly
return the solution, but remain designed to give the solution to (1.4) and do not in-
crease the range of the parameters δ and ρ where the solution to (1.4) corresponds
to that of (1.3). With our focus of determining the largest recoverable rank for an
algorithm, we use the well established software package SDPT3 [42], but are aware
that specialized software is likely able to solve (1.4) in substantially less time. In ad-
dition to contrasting NIHT with NNM, we also compare NIHT with the very different
manifold optimization method PowerFactorization (PF) [22], see Algorithm 2.

PF seeks to directly solve the minimum rank problem (1.3) and is a particularly
simple example of a class of methods [26, 45, 35] which are designed to remain on the
manifold of rank r matrices throughout each iteration. Despite its simplicity, PF is
capable of recovering matrices of surprisingly large rank. In contrast, NIHT updates
the solution with directions that result in intermediate updates which are not on the
manifold of rank r matrices; the algorithms presented in [43, 44, 28, 27, 40] are similar
to NIHT in their use of (possibly restricted) descent directions of the measurement
residual followed by projection onto the manifold of rank r matrices.

Figure 3.3 displays the phase transition for Gaussian sensing and NIHT (black),
PF (red), and NNM (blue). NIHT and PF use the stopping criteria κ = 0.999, and
SDPT3 uses a tolerance based stopping criteria to solve NNM. In every instance PF
is observed to be able to recover matrices of larger rank than can NNM. NIHT is
observed to be able to recover even larger rank for all but the largest values of δ.
The average timings for NNM and PF with m = n = 40 are displayed in Figure 3.5
Panels (f) and (h) respectively, and the ratio of their average timings as compared
with NIHT is displayed in Figure 3.6 Panels (d) and (f) for NNM and PF respectively.
NIHT is observed to be faster than NNM for all but δ and ρ simultaneously large,
where NIHT is observed to be extremely slow. NIHT is observed to always be slower
than PF for Gaussian sensing, typically by three to seven times as slow.

Figure 3.4 displays the phase transition for entry sensing and NIHT (black), PF
(red), and NNM (blue). Again, NIHT and PF use the stopping criteria κ = 0.999,
and SDPT3 uses a tolerance based stopping criteria. Memory requirements limit the
size of problems that NNM and PF are able to solve to n = 80. In every instance
NIHT is observed to be able to recover matrices of a larger rank than can PF, which is
able to recover matrices of larger rank than can NNM. The average timings for NNM
and PF for m = n = 80 are displayed in Figure 3.5 Panels (e) and (g) respectively,
and the ratio of their average timings as compared with NIHT is displayed in Figure
3.6 Panels (c) and (e) for NNM and PF respectively. NIHT is observed to be faster
than both NNM and PF, often more than ten times as fast; however, it should be
noted that algorithms designed to solve (1.4) specifically for matrix completion can
be expected to be substantially faster than that of SDPT3 and the use of iterative
numerical linear algebra algorithms can be expected to accelerate PF.

4. Conclusions. Matrix completion is a seemingly very challenging problem,
including an infinite dimensional component lacking in compressed sensing. Despite
this, even quite simple algorithms have the ability to recover a low rank matrix from
only slightly more than the necessary number of linear measurements. NIHT is ob-
served to be particularly effective; for the same number of measurements NIHT is
typically able to recover matrices of rank higher than can NNM or PF. NIHT’s abil-
ity to recover the largest rank matrices comes at the cost of allowing the method to

18 Jared Tanner and Ke Wei

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p
Recovery phase transition with m/n = 1.000

NIHT: Column Projection (0.999) with Gaussian Measurements
Power Factorization with Gaussian Measurements
Nuclear Norm Minimization with Gaussian Measurements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.750

NIHT: Column Projection (0.999) with Gaussian Measurements
Power Factorization with Gaussian Measurements
Nuclear Norm Minimization with Gaussian Measurements

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.500

NIHT: Column Projection (0.999) with Gaussian Measurements
Power Factorization with Gaussian Measurements
Nuclear Norm Minimization with Gaussian Measurements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.250

NIHT: Column Projection (0.999) with Gaussian Measurements
Power Factorization with Gaussian Measurements
Nuclear Norm Minimization with Gaussian Measurements

(c) (d)

Fig. 3.3. Phase transition for Gaussian Sensing and algorithms: NIHT, PF, and NNM, all
with n = 80. Horizontal axis δ and vertical axis ρ as defined in (1.2). The values of ρ shown are
calculated using the average of rmin and rmax.

converge at an extremely slow rate for the largest rank matrices. Neither PF or NNM
appear able to extend their recovery region in this way, though this may be possible
for other algorithms related to NIHT, including [43, 44]. The ability to increase the
recovery region at the cost of slow convergence rates suggest the need for accelerated
variants of NIHT.

REFERENCES

[1] J. D. Blanchard, C. Cartis, and J. Tanner. Compressed sensing: how sharp is restricted isometry
property? SIAM Review, 53:105–125, 2011.

[2] T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing. Applied
and Computational Harmonic Analysis, 27(3):265–274, 2009.

[3] T. Blumensath and M. E. Davies. Normalized iterative hard thresholding: guaranteed stability
and performance. IEEE Journal of Selected Topics in Signal Processing, 4(2):298–309,

Normalized Iterative Hard Thresholding for Matrix Completion 19

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p
Recovery phase transition with m/n = 1.000

NIHT: Column Projection (0.999) with Entry Measurements
Power Factorization with Entry Measurements
Nuclear Norm Minimization with Entry Measurements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.750

NIHT: Column Projection (0.999) with Entry Measurements
Power Factorization with Entry Measurements
Nuclear Norm Minimization with Entry Measurements

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.500

NIHT: Column Projection (0.999) with Entry Measurements
Power Factorization with Entry Measurements
Nuclear Norm Minimization with Entry Measurements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/mn

r(
m

+
n

−
r)

/p

Recovery phase transition with m/n = 0.250

NIHT: Column Projection (0.999) with Entry Measurements
Power Factorization with Entry Measurements
Nuclear Norm Minimization with Entry Measurements

(c) (d)

Fig. 3.4. Phase transition for entry sensing and algorithms: NIHT with n = 800, and NNM
and PF both with n = 80. Horizontal axis δ and vertical axis ρ as defined in (1.2). The values of ρ
shown are calculated using the average of rmin and rmax.

2010.
[4] A. Bruckstein, D. Donoho, and M. Elad. From sparse solutions of systems of equations to

sparse modeling of signal and images. SIAM Review, 51:34–81, 2009.
[5] J. F. Cai, E. J. Candès, and Z. Sun. A singular value thresholding algorithm for matrix

completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.
[6] J. F. Cai and S. Osher. Fast singular value thresholding without singular value decomposition.

Technical report, Rice University, 2010.
[7] E. J. Candès. Compressive sampling. In International Congress of Mathematics, 2006.
[8] E. J. Candès. The restricted isometry property and its implications for compressed sensing.

Comptes Rendus de l’Acandemie Des Sciences, Serie I:589–592, 2008.
[9] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of

Computational Mathematics, 9(6):717–772, 2009.
[10] E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate

measurements. Communications in Pure and Applied Mathematics, 59:1207–1223, 2006.
[11] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information

Theory, 51:4203–4215, 2005.

20 Jared Tanner and Ke Wei

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/(m*n)

r*
(m

+n
−r

)/p

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p/(m*n)

r*
(m

+n
−r

)/p

20

40

60

80

100

120

140

160

180

200

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/(m*n)

r*
(m

+n
−r

)/p

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p/(m*n)

r*
(m

+n
−r

)/p

10

20

30

40

50

60

70

80

90

(c) (d)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/(m*n)

r*
(m

+n
−r

)/p

50

100

150

200

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p/(m*n)

r*
(m

+n
−r

)/p

20

30

40

50

60

70

80

(e) (f)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/(m*n)

r*
(m

+n
−r

)/p

50

100

150

200

250

300

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p/(m*n)

r*
(m

+n
−r

)/p

10

20

30

40

50

60

(g) (h)

Fig. 3.5. Median time (seconds) for: (a) NIHT with entry sensing, (b) NIHT with Gaussian
sensing, (c) IHT with entry sensing, (d) IHT with Gaussian sensing, (e) NNM with entry sensing,
(f) NNM with Gaussian sensing, (g) PF with entry sensing, and (h) PF with Gaussian sensing.
Entry sensing tests are for m = n = 80 and Gaussian sensing texts for m = n = 40. IHT uses the
fixed stepsize µj = 0.65.

Normalized Iterative Hard Thresholding for Matrix Completion 21

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/(m*n)

r*
(m

+
n

−
r)

/p

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p/(m*n)

r*
(m

+
n

−
r)

/p

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/(m*n)

r*
(m

+
n

−
r)

/p

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p/(m*n)

r*
(m

+
n

−
r)

/p

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(c) (d)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p/(m*n)

r*
(m

+
n

−
r)

/p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p/(m*n)

r*
(m

+
n

−
r)

/p

3.5

4

4.5

5

5.5

6

6.5

(e) (f)

Fig. 3.6. Ratio of median time for NIHT divided by: (a) IHT with entry sensing, (b) IHT with
Gaussian sensing, (c) NNM with entry sensing, (d) NNM with Gaussian sensing, (e) PF with entry
sensing, and (f) PF with Gaussian sensing. Entry sensing tests are for m = n = 80 and Gaussian
sensing texts for m = n = 40. IHT uses the fixed stepsize µj = 0.65.

22 Jared Tanner and Ke Wei

[12] E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion.
IEEE Transactions on Information Theory, 56(5):2053–1080, 2009.

[13] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation.
Journal of the AMS, 22(1):211–231, 2009.

[14] W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction.
IEEE Transactions on Information Theory, 55:2230–2249, 2009.

[15] W. Dai, O. Milenkovic, and E. Kerman. Subspace evolution and transfer (SET) for low-rank
matrix completion. IEEE Transactions on Signal Processing, 59(7):3120–3132, 2011.

[16] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, 2006.

[17] D. L. Donoho. Neighborliness polytopes and sparse solution of underdetermined linear equa-
tions. Technical report, Stanford University, 2006.

[18] D. L. Donoho and J. Tanner. Precise undersampling theorems. Proceedings of the IEEE,
98(6):913–924, 2010.

[19] Y. C. Eldar, D. Needell, and Y. Plan. Unicity conditions for low-rank matrix recovery. Applied
and Computational Harmonic Analysis, 33(2):309–314, 2012.

[20] S. Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM Journal
on Numerical Analysis, 49(6):2543–2563, 2011.

[21] D. Goldfarb and S. Ma. Convergence of fixed-point continuation algorithms for matrix rank
minimization. Foundations of Computational Mathematics, 11(2):183–210, 2011.

[22] J. P. Haldar and D. Hernando. Rank-constrained solutions to linear matrix equations using
power-factorization. IEEE Signal Processing Letters, 16:584–587, 2009.

[23] N. J. A. Harvey, D. R. Karger, and S. Yekhanin. The complexity of matrix completion. SODA
2006, Proceedings of the seventeenth annual ACM-SIAM symposium on discrete algo-
rithms, pages 1103–1111, 2006.

[24] P. Jain, R. Meka, and I. Dhillon. Guaranteed rank minimization via singular value projection.
Proceedings of the Neural Information Processing Systems Conference (NIPS), pages 937–
945, 2010.

[25] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. IEEE
Transactions on Information Theory, 56(6):2980–2998, 2010.

[26] R. H. Keshavan and S. Oh. Optspace: A gradient descent algorithm on the grassmann manifold
for matrix completion. http://arxiv.org/abs/0910.5260v2, 2009.

[27] A. Kyrillidis and V. Cevher. Matrix alps: Accelerated low rank and sparse matrix reconstruc-
tion. Technical report.

[28] A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. Technical report.
[29] R. M. Larsen. PROPACK (software package). http://sun.stanford.edu/˜rmunk/PROPACK/.
[30] K. Lee and Y. Bresler. ADMiRA: Atomic decomposition for minimum rank approximation.

IEEE Transactions on Information Theory, 56(9):4402–4416, 2010.
[31] A. S. Lewis and J. Malick. Alternating projections on manifolds. Mathematics of Operations

Research, 33:216–234, 2008.
[32] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier method for exact recovery of

corrupted low-rank matrices. http://arxiv.org/abs/1009.5055, 2010.
[33] S. Ma, D. Goldfarb, and L. Chen. Fixed point and bregman iterative methods for matrix rank

minimization. Mathematical Programming Series A, 128(1):321–353, 2011.
[34] A. Maleki and D. L. Donoho. Optimally tuned iterative reconstruction algorithms for com-

pressed sensing. IEEE Journal of Selected Topics in Signal Processing, 4(2):330–341,
2010.

[35] G. Meyer, S. Bonnabel, and R. Sepulchre. Linear regression under fixed-rank constraints: a
riemannian approach. In Proc. of the 28th International Conference on Machine Learning
(ICML2011), Bellevue (USA), 2011.

[36] M. Michenkova. Numerical algorithms for low-rank matrix completion problems. Technical
report, http://www.math.ethz.ch/˜kressner/students/michenkova.pdf, 2011.

[37] D. Needell and J. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate
samples. Applied and Computational Harmonic Analysis, 26(3):301–321, 2009.

[38] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

[39] B. Recht, W. Xu, and B. Hassibi. Null space conditions and thresholds for rank minimization.
Mathematical Programming Series B, pages 175–211, 2011.

[40] U. Shalit, D. Weinshall, and G. Chechik. Online learning in the manifold of low-rank matrices.
Neural Information Processing Systems (NIPS spotlight), 2010.

[41] K. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized
least squares problems. Pacific Journal of Optimization, pages 615–640, 2010.

Normalized Iterative Hard Thresholding for Matrix Completion 23

[42] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3 4.0(beta) (software package).
http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html, July 2006.

[43] B. Vandereycken. Low rank matrix completion by riemannian optimization. submitted, 2012.
[44] B. Vandereycken and S. Vandewalle. A riemannian optimization approach for computing low-

rank solutions of lyapunov equations. SIAM Journal on Matrix Analysis and Applications,
31(5):2553–2579, 2010.

[45] Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix completion
by a non-linear successive over-relaxation algorithm. Mathematical Programming Compu-
tation, published online, 2012.

