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Abstract We perform a comprehensive study on the performance of derivative free opti-
mization (DFO) algorithms for the generation of targeted black-box adversarial attacks on
Deep Neural Network (DNN) classifiers assuming the perturbation energy is bounded by
an `∞ constraint and the number of queries to the network is limited. This paper considers
four pre-existing state-of-the-art DFO-based algorithms along with the introduction of a new
algorithm built on BOBYQA, a model-based DFO method. We compare these algorithms in a
variety of settings according to the fraction of images that they successfully misclassify given
a maximum number of queries to the DNN. The experiments disclose how the likelihood
of finding an adversarial example depends on both the algorithm used and the setting of
the attack; algorithms limiting the search of adversarial example to the vertices of the `∞

constraint work particularly well without structural defenses, while the presented BOBYQA
based algorithm works better for especially small perturbation energies. This variance in per-
formance highlights the importance of new algorithms being compared to the state-of-the-art
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in a variety of settings, and the effectiveness of adversarial defenses being tested using as
wide a range of algorithms as possible.

Keywords Derivative Free Optimization · Deep Learning · Black-Box Attacks

1 Introduction

Deep Neural Networks (DNNs) achieve state-of-the-art performance on a growing number
of applications such as acoustic modelling [22], image classification [20], and fake news
detection [27] to name but a few. Alongside their growing application, there is a literature on
the robustness of deep networks which shows that it is often possible to subtly perturb the
input image of a DNN in order to degrade its performance; these perturbations are referred to
as adversarial examples [15, 36]. For example, see [11, 14, 25, 35, 41] where road signals
are perturbed so as to be wrongly interpreted by self driving cars that analyze images of them
with DNNs. Methods to generate these adversarial examples are classified according to two
main criteria [41]:

Adversarial Specificity establishes what the aim of the adversary is. In non-targeted attacks,
the method perturbs the image in such a way that it is misclassified into any category
other than the original one. While in targeted settings, the adversary specifies a category
into which an image should be misclassified.

Adversary’s Knowledge defines the amount of information available to the adversary. In
White-box settings the adversary has complete knowledge of the network architecture
and weights, while in the Black-box setting the adversary is only able to obtain the
pre-classification output vector. The White-box setting allows for the use of gradients of
a missclassification objective to efficiently compute the adversarial example [4, 8, 15],
while the same optimization formulation of the Black-box setting requires use of a
derivative free approach [2, 9, 23, 29].

In this work we consider the targeted black-box setting. In particular we follow [9] where:

– the perturbation, which causes the network to change the classification, is bounded in
magnitude by a specified `∞-norm, ε∞, i.e. each pixel in the image cannot be perturbed
by more than ε∞;

– the number of queries to the DNN needed to generate a targeted adversarial example
should be as small as possible.

The Zeroth-Order-optimization (ZOO) algorithm proposed in [9] describes a Derivative
Free optimization (DFO) method for computing adversarial examples in the black-box setting
using a coordinate descent optimization method. At the time this was a substantial departure
from previous black-box algorithms which trained a proxy DNN and then employ gradient
based white-box attacks on the proxy network [32, 38]. It was demonstrated in [9] that these
algorithms are especially effective when numerous adversarial examples are computed, but
become less efficient when an individual adversarial examples is considered. Following
the introduction of ZOO, there have been numerous improvements using other model-free
DFO based approaches, see for example [1–3, 7, 23, 24, 28]. Many of these algorithms were
developed in parallel, and so have not yet been bench-marked in a consistent setting, e.g. on
the same network.

In this article, we present two frameworks for comparative evaluation of the existing
algorithms that claim to have the fewest number of DNN queries to generate a successful
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Fig. 1: The success rate (SR) of targeted attacks as a function of the perturbation’s allowed
`∞ magnitude for algorithms: GenAttack [2], Parsimonious [28], Square [3], Frank-Wolfe
[7], and the BOBYQA based algorithm introduced here. Specifically for a ResNet50 network
trained either on the CIFAR10 (a) or the ImageNet (b) dataset with (Adv) and without
(Non-Adv) the defense by MadryLab [13]. An attack is considered successful if the method
found the targeted adversarial example with less than 3’000 or 15’000 queries to the network
trained on CIFAR and ImageNet dataset, respectively; Results for the case SR=0 i.e., when
no perturbations were successful, are excluded from the plot.

attack. These are: GenAttack [2] which is based on a genetic direct-search method; Parsimo-
nious algorithm [28], based on a combinatorial direct-search method on the vertices of the
perturbation domain; the Square algorithm [3], based on a randomized direct-search method
on the vertices of the perturbation domain; and the Frank-Wolfe algorithm [7] based on a
momentum mechanism that approximates the gradient via finite differences. We also intro-
duce a new algorithm built on a model-based DFO method [39]. In particular, we consider
the Bounded optimization BY Quadratic Approximation (BOBYQA) [33] model-based DFO
method which explicitly develops pseudo models to approximate the loss function in the
optimization problem and then minimizes the loss function using methods from continuous
optimization on the generated models. The aforementioned list of algorithms covers the
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leading classes of DFO algorithms for limited function evaluations, see e.g., [10, 26] for
recent reviews of DFO methods. The two frameworks are structured as follows:

1. In the first setting we consider attacks on DNNs trained on CIFAR10 and ImageNet
datasets, with or without the adversarial defense by MadryLab [13]; this is the canonical
setup for the comparison of black-box attacks that was considered in previous literature.
We illustrate in Figure 1 a measure of how the performance of the considered algorithms
compare, while further refined measures of comparison are included in Section 4. We
observe that the algorithms that limit the optimization domain to the `∞ perturbation
boundary, i.e. the Parsimonious and Square algorithms, are consistently the most effective.
In particular, the Square algorithm achieves the highest Success Ratio (SR) with a fixed
maximum number of queries, except for when the DNNs have been adversarially trained,
and the Parsimonious algorithm achieves the highest SR when a network is trained with
the MadryLab defense. However, these results are relative to the current state-of-the-art
defense in a field which is in continuous development [12, 40] and newly proposed
methods usually have a varying effect on the different attacking algorithms; for example
the MadryLab defense [13] that we consider is most effective on Square algorithm in the
ImageNet case.

2. In the second framework, the algorithms are allowed to perturb only a fraction of the pixels
in the input; this is especially inspired by the structural defenses that transform the input in
the wavelet space [18]. This framework allows us to understand the sensitivity of different
algorithms to choices such as initialization, experimental protocol, dataset, and adversarial
training. Our results demonstrate that the Parsimonious, Square, and BOBYQA based
algorithms alternatively perform the best for different maximum perturbation energies.

The results in this paper show that the most likely algorithm to find an adversarial example
varies according to the considered setting; the type of dataset, the defense, and the perturbation
energy bound have a varying impact on the different algorithms. As a consequence of these
experiments, new algorithms should be compared to the state-of-the-art in a variety of settings
as done here, and the effectiveness of an adversarial defense should be tested with a variety
of algorithms, including the BOBYQA based algorithm introduced in this paper.

The outline of the paper is as follows: in Section 2 we present how an adversarial
example is generated by solving an optimization problem, and how DFO methods fit in this
context. We also introduce the model-based BOBYQA algorithm. In Section 3 we present two
popular techniques used in existing methods to improve the efficiency and scalability to high
dimensional inputs. Section 4 presents the experimental setup and a comparative analysis of
existing algorithms along with a focus on our proposed BOBYQA based algorithm. We close
with some concluding remarks in Section 5.

2 Adversarial Examples Formulated as an optimization Problem

In classification tasks, a DNN outputs a vector whose length is equal to the number of classes
and the DNN parameters are trained to match the maximum element of the given output
to the correct class of the input. Adversarial perturbations are obtained by modifying the
input in such a way that the maximum element of DNN output corresponds to a target class
different from the original one.

Consider a classification operator F : X → C from input space X to output space C
of classes. A targeted adversarial perturbation ηηη to an input X ∈X has the property that it
changes the classification to a specified target class t, i.e F(X) = c and F(X+ηηη) = t 6= c.
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Following the formulation in [2]; given an input space X = [l,u]n, with l and u being
respectively the minimum and maximum values of the interval in which the pixels may vary,
an output space C = {1, . . . ,nc}, where nc is the number of classes, a maximum energy budget
ε∞, and a suitable loss function L , then the task of computing the adversarial perturbation ηηη

can be cast as an optimization problem such as

min
ηηη

L (X,ηηη) (1)

s.t. ‖ηηη‖∞ ≤ ε∞;

[X+ηηη ] j ≥ l ∀ j ∈ 1, ...,n

[X+ηηη ] j ≤ u ∀ j ∈ 1, ...,n

where the final two inequality constraints are due to the perturbed image being still an image,
i.e. (X+ηηη)∈X . Denoting the pre-classification output vector by f (X), i.e. F(X) = argmax f (X),
then the misclassification of X to target label t is achieved by ηηη if f (X+ηηη)t ≥max j 6=t f (X+
ηηη) j. As demonstrated in [2, 4, 9], in this study we consider the following loss function for
computing ηηη in (1)

L (X,ηηη) = log
(
Σ j 6=t f (X+ηηη) j

)
− log( f (X+ηηη)t) . (2)

Not having access to the internal parameters of the DNN, the gradient of the loss over the
input space cannot be readily computed and instead the adversarial perturbation is found
using specially adapted DFO algorithms.

2.1 Derivative Free optimization for Adversarial Examples

Derivative Free optimization is a well developed field with numerous classes of methods,
see [10] and [26] for reviews on DFO principles and algorithms. Example classes of such
methods include: direct search methods such as simplex, model-based methods, hybrid
methods such as finite differences or implicit filtering, as well as randomized variants of the
aforementioned and methods specific to convex or noisy objectives. For the generation of
adversarial examples, the algorithms that we consider rely on three types of DFO methods:

– those where the gradient is computed via finite differences, either by sampling all the
canonical directions as in ZOO attack [9] or random directions as in the Frank-Wolfe
algorithm [7];

– those where the solution is thought to be in one of the vertices of the `∞ domain, i.e.
ηηη i ∈ {−ε∞,ε∞} for any i. The Parsimonious algorithm [28] implements a combinatorial
direct-search within the different possible vertices, initializing the perturbation to −ε∞

for all the pixels and then switching collections of them to +ε∞, when such an action
decreases the loss function. The Square algorithm [3] instead implements a randomized
direct-search method where square blocks of pixels are iteratively perturbed to be either
+ε∞ or −ε∞;

– those where a direct search over the perturbation domain is performed using a genetic
method such as GenAttack [2].

The optimization formulation in (1) is amenable to virtually all DFO methods, making
it unclear which of the methods would be most effective in this context. Further, model-
based methods are notably missing from the aforementioned list. Thus for completeness,
we introduce an algorithm relying on a model-based method; specifically, BOBYQA is
considered given its proven effectiveness in solving complex problems such as climate
modelling [37].
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2.2 Model-Based DFO

Given a set of q samples Y = {y1, ...,yq} with yi ∈ Rn, model-based DFO methods start
by identifying the minimizer of the objective among the samples at iteration k, xk =
argminy∈Y L (y). Following this, a model for the objective function L is constructed,
typically centered around the minimizer. In its simplest form one uses a polynomial approxi-
mation to the objective, such as a quadratic model centered in xk

mk(xk +p) = ak + c>k p+
1
2

p>Mkp, (3)

with ak ∈ R, ck, p ∈ Rn, and Mk ∈ Rn×n being also symmetric. In a white-box setting one
would set ck = ∇L (xk) and Mk = ∇2L (xk), but this is not feasible in the black-box setting
as we do not have access to the derivatives of the objective function. Thus at each iteration k,
the parameters ak, ck and Mk are usually defined by imposing interpolation conditions

mk(yi) = L (yi) ∀i ∈ 1,2, . . . ,q, (4)

and when q < 1+n+n(n+1)/2 (i.e. the system of equations is under-determined) other
conditions are introduced according to which method is considered. The objective model (3)
is considered to be a good estimate of the objective in a neighborhood referred to as a trust
region. Once the model mk is generated, the update step p is computed by solving the trust
region problem

min
p

mk(xk +p) (5)

s.t. ‖p‖ ≤ ∆ ,

where ∆ is the radius of the region where we believe the model to be accurate, for more
details see [31]. The new point xk +p is added to Y and a prior point is potentially removed.
In this paper, we consider an exemplary model-based method called BOBYQA.

2.2.1 BOBYQA

The Bound Optimization BY Quadratic Approximation (BOBYQA) method, introduced in
[33], updates the parameters of the model a,c, and M, in each iteration in such a way as to
minimize the change in the quadratic term Mk between iterates while otherwise fitting the
sample values:

min
ak ,ck ,Mk

‖Mk−Mk−1‖2
F (6)

s.t. mk(yi) = L (yi), ∀i ∈ 1,2, . . . ,q,

with n+1 < q < 1+n+n(n+1)/2 and Mk initialized as the zero matrix. When the number
of parameters q = n+1 then the model is considered as linear with Mk set as zero. Every
time a new query is done, the sample which is the least important geometrically is removed
from Y , thus keeping the dimension of Y fixed.
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3 Improving Efficiency and Computational Scalability

Because of the high number of pixels in the input images, the generation of adversarial exam-
ples involves solving a high dimensional problem, which makes the use of any DFO method
impractical; for instance, the application of the BOBYQA method requires the solution of (6)
which scales in memory allocation at least quadratically with the input dimension, and thus is
computationally too expensive. Consequently, the implementation of DFO based adversarial
algorithms relies on strategies to reduce the dimensionality of the problem, this improves
the computational scalability along with the efficiency, as demonstrated experimentally.
Instead of solving (1) for ηηη ∈ Rn directly, the DFO based algorithms consider variations
of the domain sub-sampling and/or hierarchical liftings techniques. Domain sub-sampling
iteratively sweeps over batches of b� n variables, while hierarchical lifting clusters and
perturbs variables simultaneously, as described in following sections.

3.1 Domain Sub-Sampling

The simplest version of domain sub-sampling consists of partitioning the input dimension
into smaller disjoint domains and optimizing the loss function in each of them sequentially.
This is, in an n dimensional problem, one considers k = dn/be sets of integers, {Ω j}k

j=1, of
size b� n which are disjoint and which cover all of [n]. Then (1) is solved sequentially on the
dimensions identified by the sets Ω j. This is possible since the optimization domain is box
like, i.e. ηηη ∈ [l,u]n, and each dimension’s bound is independent from the others. Formally,
rather than solving (1) for ηηη ∈Rn directly, for each of j = 1, . . . ,k one sequentially solves for
the ηηη j ∈ Rn variables which are only non-zero for entries in Ω j. The resulting sub-domain
perturbations ηηη j are then summed to generate the full perturbation ηηη = ∑

k
j=1 ηηη j, see Figure

2 as an example. That is, the optimization problem (1) is adapted to repeatedly looping over
j = 1, . . . ,k:

min
ηηη jjj

L

(
X+ ∑

h 6= j
ηηη
`,ηηη j

)
(7)

s.t.

∥∥∥∥∥ k

∑
h=1

ηηη
h

∥∥∥∥∥
∞

≤ ε∞;[
X+

k

∑
h=1

ηηη
h

]
r

≥ l ∀r ∈Ω
j;[

X+
k

∑
h=1

ηηη
h

]
r

≤ u ∀r ∈Ω
j,

where the sets {Ω j}k
j=1 are usually computed again once j is equal to k, and the sub-domain

perturbations ηηη j are initialized as null.
We identified three possible ways of selecting the sub-domains {Ω j}k

j=1;
– In Random Sampling one considers at each iteration a different random sub-samplings of

the domain, i.e. k = 1. The ZOO algorithm used this kind of sampling [9].
– In Ordered Sampling one generates a random disjoint partitioning of the domain, i.e.

k = dn/be and Ω j ∩Ωl = /0 for any j and l. A new partitioning is generated when each
variable has been optimized over once. This sampling is implemented in the Parsimonious
algorithm.
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Fig. 2: Example of how the perturbation ηηη evolves through the iterations when an image
in R4×4 is attacked. In (a) the perturbation is ηηη = ηηη0 and a sub-domain of b = 4 pixels (in
red) is selected. Once the optimal perturbation ηηη1 in the selected sub-domain is found, the
perturbation is updated in (b) and a new sub-domain of dimension b is selected. The same is
repeated in (c).

Algorithm 1 GENERATE SAMPLING MATRIX(X̂,n`,b,j)

1: ΩΩΩ ← 0 ∈ Rn`×b

2: v← argsort Var(X̂) # Var defines the variance in intensity around a pixel.
3: for i = 1, . . . ,b do
4: ΩΩΩ(v[i+ j×b], [i]) = 1.
5: end for
6: Return ΩΩΩ .

– In Variance Sampling one still generates a a random disjoint partitioning of the domain,
but chooses the sub-samplings sets {Ω j}k

j=1 in order to optimize over the dimensions
that have highest local variance in intensity first. Specifically, the variables are ordered
by the variance in intensity among the 8 neighboring variables (e.g. pixels) in the same
color channel of the input X. The sets {Ω j}k

j=1 are further reinitialized after each loop
through j = 1, . . . ,k.

The sub-sampling of the domain affects the efficiency with which an algorithm success-
fully finds an adversarial example. For instance, in Figure 3 we compare how these different
sub-sampling techniques affect the BOBYQA based algorithm when generating adversarial
example for the MNIST and CIFAR10 dataset. It can be observed that variance sampling
consistently has a higher success rate cumulative distribution function as compared with
random and ordered sampling. This suggest that pixels belonging to high-contrast regions
are more influential than the ones in low-contrast ones, and hence variance sampling is the
preferable ordering.

To simplify the notation in the following section, the optimization variable is considered
to be ηηη j = ΩΩΩ

j
η̃ηη

j where η̃ηη
j ∈Rb and ΩΩΩ

j ∈Rn×b is such that [ΩΩΩ j]pq is one if the qth element
of Ω j is p, zero otherwise. The implementation of variance sampling method at iteration j in
a domain of dimension n` is summarized in Algorithm 1.
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Fig. 3: Cumulative distribution function of successfully perturbed images as a function of
number of queries by the BOBYQA based algorithm attacking DNNs trained on the MNIST
and the CIFAR10 datasets. In each image the effectiveness of different sub-sampling methods
in generating a successful adversarial example is shown for different values of maximum
perturbation energies ε∞. See [39] for details about experimental setup.

3.2 Hierarchical Lifting

Authors of ZOO attack [9] demonstrated that fewer queries are required to find adversarial
example when pixels are considered in clusters, and not independently. This lead to the
hierarchical lifting approach where one optimizes over increasingly higher dimensional
spaces at each step, referred here as level `; Figure 4 shows how effective this approach is
when implementing the BOBYQA based algorithm. These low dimensional spaces are lifted
to the image space via a linear lifting, where at each level ` a linear lifting D` : Rn` → Rn

is considered and a perturbation η̂ηη` ∈ Rn` is found to be added to the full perturbation ηηη ,
according to

ηηη =
`

∑
j=0

ηηη j =
`

∑
j=0

D j
η̂ηη j. (8)

Here ηηη0 is initialized as 0 and the perturbations ηηη j of the previous layers are considered as
fixed. An example of how this works is illustrated in Figure 5.

All the methods considered in this work rely on ideas which can be interpreted through
this approach. The algorithms that we consider in this work rely on two kinds of linear lifting
D` differentiated by the way each scalar in η̂ηη is associated to a set of pixels in the original
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Fig. 4: Impact of hierarchical lifting approach on Loss function (2) as a function of the number
of queries to Inception-v3 net trained on ImageNet dataset to find the adversarial example
for a single image with the BOBYQA based method. The green vertical lines correspond to
changes of hierarchical level, which entail an increase in the dimension of the optimization
space.

−ε0

ε0

0

(a)

η = η0

(b)
η = η0 + η1

(c)
η = η0 + η1 + η2
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lected grid

Findη2
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Fig. 5: Example of how the perturbation ηηη is generated in a hierarchical lifting method with
n1 = 4 and n2 = 16 on an image in R12×12. In (a) the perturbation is ηηη = ηηη0 and the boxes
generated via the grid of dimension n1 are highlighted in red. Once the optimal perturbation
ηηη1 is found, the perturbation is updated in (b) and the image is further divided with a grid
with n2 blocks. The final solution obtained after optimization is shown in (c).

image domain Rn; namely the random and the block liftings. The former relates a random set
of pixels of the original image to each hyper-variable; this forces the perturbation to be of
high-frequency nature, as illustrated in Figure 6(a), which several articles indicate as being
the most effective [16, 17, 34]. The GenAttack and Frank-Wolfe algorithms use a variation
of this kind of lifting. The latter instead is based on interpolation operations; a sorting matrix
S` : Rn` → Rn is applied such that every index of η̂ηη` is uniquely associated to a node of
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Fig. 6: Examples for (a) random and (b) block liftings. In the random case each pixel in the
perturbation is associated to just one element of η̂ηη`. Block lifting uses a piece-wise constant
interpolation L over a coarse grid Sη̂ηη` and each block is associated uniquely to one of the
variables in η̂ηη`. In both cases, the lifting D is such that each element Di j is either 1 or 0.

a coarse grid masked over the original image. Afterwards, an interpolation L` : Rn → Rn

is implemented over the values in the coarse grid, i.e. ηηη` = L`S`
η̂ηη` = D`

η̂ηη`. Both Square
and Parsimonious algorithms implement hierarchical lifting with the piece-wise constant
interpolation, here referred to as block lifting. At the lower levels the interpolation lifting
generates low frequency perturbations, as illustrated in Figure 6(b).

Since n` may still be very high, for each level ` domain sub-sampling is also applied
considering η̂ηη` = ∑

k
j=0 η̃ηη

j
` . In the piece-wise constant case with variance sampling, the

blocks are ordered according to the variance of mean intensity among neighboring blocks, in
contrast to the variance within each block as suggested in [9]. Consequently, at each level the
adversarial example is found by solving the following iterative problem

min
η̃ηη

j
`

L
(

X+ η̄ηη ,D`
ΩΩΩ

k
η̃ηη

j
`

)
(9)

s.t.
∥∥∥η̄ηη +D`

ΩΩΩ
k
η̃ηη

j
`

∥∥∥
∞

≤ ε∞[
X+ η̄ηη +D`

ΩΩΩ
k
η̃ηη

j
`

]
r
≥ l ∀r ∈ {1, ...,n}[

X+ η̄ηη +D`
ΩΩΩ

k
η̃ηη

j
`

]
r
≤ u ∀r ∈ {1, ...,n},
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Algorithm 2 GENERATE LIFTING(n`,n)

1: D← 0 ∈ Rn×n`

2: for i = 1, . . . ,n` do
3: Generate set of pixels S that are in the block associated to the i-th element of the n` dimensional

super-grid.
4: for j ∈ S do
5: D(i, j) = 1.
6: end for
7: end for
8: Return D.

where η̄ηη = ∑
`−1
i=0 ηηη i +D`

∑m 6= j η̂ηη
m
` . Algorithm 2 gives an implementation of the block lifting

matrix when in the grid has dimension n`.

4 Comparison of Derivative Free Methods

In this section, we compare algorithms based on a selection of state-of-the-art DFO methods.
In particular we consider BOBYQA based algorithm [39], GenAttack algorithm [2], Parsimo-
nious algorithm [28], Square algorithm [3] and Frank-Wolfe algorithm [7] in the following
two frameworks:

– Section 4.3 considers the canonical setup for black-box adversarial attacks on which
the considered algorithms have been tuned in their respective articles. Specifically, we
consider attacks on networks trained adversarially or not on CIFAR10 and ImageNet,
two popular datasets in the literature, and with no further defense implemented.

– Section 4.4 considers a setup that simulates structural defenses on which the different
algorithms were not tuned. We limit the perturbation to a fixed number of pixels with
high variance in intensity considering attacks on a network non-adversarially trained on
the CIFAR10 dataset.

The performance of all algorithms is measured in terms of the distribution of queries
needed to successfully find adversaries to identical networks given a fixed `∞ perturbation
constraint and the same input images.

4.1 Parameter Setup for Algorithms

The experiments use publicly available implementations for the GenAttack [2], Parsimonious
[28], Square [3], and Frank-Wolfe [7] algorithms1 using the same hyper-parameter setting
and hierarchical lifting approach as suggested by the respective authors.

For the BOBYQA based algorithm [39], from Figure 3 we observed that the loss function
is influenced the most by the pixels in high-contrast areas. Hence, we first apply the variance
sub-sampling method followed by block lifting as described in Section 3.22. Here, we

1 GenAttack: https://github.com/nesl/adversarial_genattack
Parsimonious algorithm: https://github.com/snu-mllab/parsimonious-blackbox-attack
Square algorithm: https://github.com/max-andr/square-attack
Frank-Wolfe algorithm https://github.com/uclaml/Frank-Wolfe-AdvML

2 The choice for this kind of lifting was driven by preliminary experiments in which we considered also a
grid method with linear interpolation and a random lifting method as well. It is possible to run the analysis
thanks to the code in 3

https://github.com/nesl/adversarial_genattack
https://github.com/snu-mllab/parsimonious-blackbox-attack
https://github.com/max-andr/square-attack
https://github.com/uclaml/Frank-Wolfe-AdvML
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Algorithm 3 BOBYQA Based Algorithm
1: Input: Image X ∈ Rn, target label t, maximum perturbation ε∞, Neural Net F , initial hierarchical level

grid dimensions m, maximum number of queries nmax, batch sampling size b, and maximum number κ of
queries that we are allowed to do for each batch.

2: Initialize ηηη ← 0 ∈ Rn, neval = 0, `= 1, n` = 12.
3: while argmaxF(X+ηηη) 6= t and neval < nmax do
4: # Compute the number of sub samplings necessary to cover the whole domain
5: numsub = n/(n` ∗b)
6: # Generate the lifting matrix
7: D` = GENERATE LIFTING(n`,n)
8: # Minimize on all the sampled sub-domains
9: for j = 1, . . . ,numsub do

10: # Compute the matrix which selects b dimensions of the m-dimensional domain.
11: ΩΩΩ

j
` = GENERATE SAMPLING MATRIX(X+ηηη ,n`,b, j)

12: # Define the pixel-wise bounds for a perturbation over X+ηηη .
13: a = min{l−ηηη ,0}, b = max{u−ηηη ,0}
14: # Find η̂ηη

j
` by implementing the BOBYQA optimization to the problem (9).

15: η̂ηη
j
`=BOBYQA(F,X,ηηη ,a,b,D`,ΩΩΩ

j
` , t) # Algorithm 4

16: # Update the noise
17: ηηη+= D`ΩΩΩ

j
`η̂ηη

j
` .

18: neval += κ .
19: end for
20: `+= 1, n`∗= 4.
21: end while
22: if argmaxF(X+ηηη) = t then
23: The perturbation is successful.
24: else if neval > nmax then
25: The perturbation was not successful with nmax iterations.
26: end if

Algorithm 4 BOBYQA(F , X, ηηη , a, b, ΩΩΩ
j
` , D`, t, κ)

1: Consider the restricted loss function L (X+ηηη ,D`
ΩΩΩ

j
`(·)) : Rb→ R

2: Build an initial model m0 as in (3) of the loss function based on b+1 samples; the samples consist of the
initial perturbation X+ηηη and the b perturbations obtained by considering changes along the canonical
directions of x in X+ηηη +D`

ΩΩΩ
j
`x.

3: Find minimizer x of mo such that D`
ΩΩΩ

j
`x ∈ [a,b].

4: for j = 1, . . . ,κ−b do
5: Add x to the set of samples and get rid of the least informative one according to [33].
6: Build the new model m j according to (6).
7: Find minimizer x of m j such that D`

ΩΩΩ
j
`x ∈ [a,b].

8: end for
9: Return x.

consider an initial domain of dimension n1 = 2× 2× 3, and double the refinement of the
grid at each layer, i.e. n`+1 = 4n`. Moreover, we observe for (6), the choice of a linear
model to approximate the loss function works best, and we consequently consider the linear
approximation in this paper; i.e., M= 0 and q= n+1 at all iterations, see [39]. The BOBYQA
based algorithm is summarized in Algorithm 3 and a Python implementation of the proposed
algorithm based on BOBYQA package from [6] is available on Github3.

3 https://github.com/giughi/An-Empirical-Study-of-DFO-Algorithms-for-Targeted-
Black-Box-Attacks-in-DNNs

https://github.com/giughi/An-Empirical-Study-of-DFO-Algorithms-for-Targeted-Black-Box-Attacks-in-DNNs
https://github.com/giughi/An-Empirical-Study-of-DFO-Algorithms-for-Targeted-Black-Box-Attacks-in-DNNs
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4.2 Dataset and Neural Network Specifications

We performed experiments using the popular ResNet50 architecture [21] with two training
scenarios; one with the unperturbed images, and one with the defense4 proposed in [13]. The
number of experiments and the choice of the targets for each individual dataset is described
below.

CIFAR10 The CIFAR10 data-set contains images from 10 classes and of dimension 32x32x3.
To generate a comprehensive distribution for the queries at each energy budget, ten correctly
classified images are consider per each class, and each of them is targeted to all of the 9
remaining classes; this way we generate a total of 900 attacks per maximum perturbation
energy per adversarial method.

ImageNet This data-set contains millions of images with a dimension of 299x299x3 divided
among 1000 classes. Because of the high dimensionality and number of classes, random
images are attacked considering a random target class. We conducted 200 and 160 tests
for networks trained both with and without adversarial training per maximum perturbation
energy.

4.3 Results for Standard and MadryLab Trained DNNs

In Figures 7 and 8 we present the cumulative fraction of images successfully misclassified
(abridged by CDF for cumulative distribution function) as a function of the number of queries
to the DNN for different maximum perturbation energies ε∞. The pixels are normalized to be
in the interval (−1/2,1/2), hence, ε∞ = 0.1 would imply that any pixel is allowed to change
10% of the total intensity range from its initial value. The CDFs are illustrated so that we can
easily see which method has been able to misclassify the largest fraction of images in the
given test-set for a fixed number of queries to the DNN.

For the CIFAR10 data-set in Figure 7, we observe that algorithms that search the pertur-
bation directly in the vertices of the perturbation domain require the least amount of network
queries. In the case of non-adversarially trained networks, the Square algorithm is able to
misclassify using the least number of queries; this is demonstrated by its associated solid
green CDF being consistently above that of the other methods. Specifically, when ε∞ = 0.05,
at 1,000 queries Square algorithms has a CDF of 0.97 compared to 0.94 and 0.88 of the
Parsimonious and BOBYQA methods respectively, and for ε∞ = 0.005 at 3,000 queries
Square achieves a CDF of 0.20 which is 50% times higher than Parsimonious and BOBYQA.
When the net is instead trained adversarially, dashed lines, Square algorithm looses a lot of
its effectiveness becoming comparable to the BOBYQA based method, while Parismonious
algorithm achieves almost always the highest fraction of successfully perturbed images for
any given maximum number of queries. For example, when ε∞ = 0.05 at 3,000 queries the
CDF of Parisomonious is 0.29 compared to 0.25 and 0.23 of Square and BOBYQA.

In the ImageNet dataset, see Figure 8(a), we observe that an adversarial method can
be especially susceptible to particular defenses. Specifically, when the network is trained
without a defense, the Square algorithm has a success rate CDF that is consistently higher
than the other methods, but the success rate CDF for the Square algorithm is decreased by the
MadryLab defense so that it is substantially less effective than Parsimonious and BOBYQA

4 These networks are available already trained at https://github.com/MadryLab/robustness

https://github.com/MadryLab/robustness
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Fig. 7: Cumulative fraction of test set images successfully misclassified with adversarial
examples generated by GenAttack, Parsimonious, Square, Frank-Wolfe, and our BOBYQA
based approaches for different maximum perturbation energies ε∞ and DNNs trained on the
CIFAR10 dataset. In all results the solid and dashed lines denoted by ‘Non-Adv’ and ‘Adv’
corresponds to attacks on networks trained without or with the MadryLab defense strategy
[13] respectively.

algorithms. On the other hand, the Parsimonious method achieves similar results to Square
algorithm in the non-adversarial case. On average for the different maximum perturbation
energies Parsimonious is 0.045 less efficient than Square, but when the defense is introduced
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Fig. 8: Cumulative fraction of test set images successfully misclassified with adversarial
examples generated by GenAttack, Parsimonious, Square, Frank-Wolfe, and our BOBYQA
based approaches for different maximum perturbation energies ε∞ and DNNs trained on the
ImageNet dataset. In all results the solid and dashed lines denoted by ‘Non-Adv’ and ‘Adv’
corresponds to attacks on networks trained without or with the MadryLab defense strategy
[13] respectively.

it finds the adversarial examples with the least number of queries. In Figure 8(a) Parisomious
has a CDF of 0.33 at 15,000 queries while BOBYQA 0.24 and Square 0.07. The rate with
which the CDFs decrease as the maximum perturbation energy ε∞ decreases it also differs
by algorithm. The CDF for Square decreases moderately faster than for Parsimonious such
that Square has a consistently higher CDF than Parsimonious for ε = 0.1 in Figure 8(a)
but consistently lower in Figure 8(d). Moreover, the success rate for BOBYQA decreases
the slowest with ε∞ such that in Figure 8 its CDF is similar to or grater than Parsimonious.
Specifically, in Figure 8(d) at 15,000 the final CDF of BOBYQA algorithm queries is 1.42
times higher than the one of the Square algorithm.

The Frank-Wolfe algorithm is able to achieve results comparable to the ones of the
methods above while considering the small-dimensional problem of CIFAR10 with a very
low maximum perturbation energy. However, when considering the ImageNet case and the
adversarially trained DNNs, the Frank-Wolfe algorithm has a substantially lower success rate
CDF; e.g. in the ImageNet case with non-adversarial training, Square algorithm achieves a
CDF 1.66 times higher than the Frank-Wofle algorithm when ε∞ = 0.05.
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Finally, GenAttack has a higher success rate CDF than the Frank-Wolfe algorithm in the
ImageNet case for ε∞ = 0.1, see Figure 8(a), but, besides this case, it constantly achieves the
lowest success rate.

4.4 Results with Fixed Pixel Count Constraints

In addition to network training designed to increase robustness, such as MadryLab considered
previously, there are a multitude of other defenses and real world constraints [19]. The relative
success rate, or other characteristics, of adversarial algorithms can be expected to differ in
these diverse settings. To demonstrate this, we consider one such setting where the maximum
number of pixels allowed to be perturbed is limited. This is motivated by the defenses where
network inputs are thresholded in a wavelet domain to exclude high frequency perturbations
[18], as well as by real world constraints such as attacks designed to appear structured such
as localized perturbations designed to look like graffiti [14, 30]. We allow the algorithms
to perturb only the fixed selection of the 1,000 pixels of the targeted image that have the
highest variance in intensity in their channel neighborhood. Because of the previous results it
is possible to identify three methods that work consistently better than the others, and thus
only these will be considered, namely: the Parsimonious, the Square, and the BOBYQA
based algorithms. To allow the perturbations to be limited to the selected pixels, we consider
the Square algorithm with squares of pixel dimension, the Parsimonious algorithm on the
finest grid, and the BOBYQA algorithm without the hierarchical lifting, i.e. D1 = I where I
is the identity matrix.

The results reported in Figure 9 suggest that when the domain is dimensionally limited,
the most efficient algorithm changes according to the allowed maximum perturbation energy.
When the maximum perturbation energy decreases and the linear model is more accurate,
the BOBYQA method manages to achieve a higher SR than both Square and Parsimonious
algorithms, unlike in the previous experiments. Moreover, the Parsimonious algorithm has
almost identical behavior to Square algorithm for high energy bounds, but becomes more
efficient when the maximum energy is ε∞ = 0.05. We also considered experiments on
ImageNet, but limiting the number of pixels that could be perturbed did not allow for any
successful misclassification with less than 15,000 queries.

5 Discussion and Conclusion

We have compared for the first time how the the existing GenAttack [2], Parsimonious [28],
Square [3], and Frank-Wolfe [7] algorithms, and the newly introduced BOBYQA based
method, behave when the available `∞ energy for a perturbation varies, and an adversarial
training or a structural defense is considered.

The results suggest that those methods limiting the search for an adversarial example to
the vertices of the `∞ perturbation domain generally work better. Whilst Square algorithm is
especially effective on the non-adversarially trained networks, the Parsimonious algorithm
manages to outperform any other approach when the networks are adversarially trained with
the MadryLab implementation. Furthermore, the Parsimonious algorithm performs better
than Square when considering the structural defense that limits the attacks on some pixels,
suggesting that an algorithm based on combinatorial search is robust in its hyper-parameters
to the setting where it is applied.
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Fig. 9: Cumulative fraction of test set images successfully misclassified with adversarial
examples generated by Parsimonious, Square, and our BOBYQA based approaches for
different maximum perturbation energies ε∞ against a ResNet50 trained non-adversarially on
the CIFAR10 dataset when only the 1000 pixels with the highest variance in intensity in their
neighborhood are allowed to be modified.

The BOBYQA based algorithm was introduced in this paper to explore how model-based
approaches compare to the state-of-the-art algorithms, and was found to achieve similar
results to the Parsimonious and Square algorithms. In almost in all the experiments the
BOBYQA based algorithm achieves a success rate CDF comparable to the ones of the
Parsimonious and the Square algorithms; it achieves the state-of-the-art success rate at
saturation for low maximum perturbation energy constraint both in the ImageNet case and in
the pixel constrained problem. Moreover, new dimensionality reduction techniques that are
being considered in DFO, see for example [5], might improve the results observed here and
lead to a state-of-the-art algorithm for the generation of adversarial examples.

In conclusion, we find that both the structure of the algorithm and the attack setting
have the potential to impact the algorithm performance. These observations highlight the
importance of comparing any new algorithm to the state-of-the-art in a variety of different
settings, such as is done here. Similarly, the effectiveness of an adversarial defense for DNNs
should always be tested using as wide a range of algorithms as possible.
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