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ABSTRACT

The properties of randomly initialised feed-forward neural networks are known to be influenced
by the variance of the weight matrices and biases, as well as the choice of the nonlinear activation
function. This phenomenon was first studied from a geometric perspective in [[19] and from an
information-theoretical perspective in [21]]. Specifically, [21] introduced a lower bound of the mutual
information between an input and its hidden layers’ outputs when the activation functions are odd.
Here, the same lower bound is analyzed using more advanced techniques from random matrix theory
to model the eigen-distribution of the random matrices determining the bound when no bias is
considered.
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1 Introduction

Starting with the work in [6], the research on initialising a feed-forward neural network (henceforth abridged to neural
network) focused on analysing the properties of random neural networks. Random neural networks are random nonlinear
functions from which neural networks are sampled and subsequently trained to map a training set of inputs to known
outputs. Specifically, the following recursive relation is considered

h® — W(f)(b(h(f*l)) + p® (1)

where h(®) = x is the input, and ng) ~ N(0,02 /ng_1) and bl(-e) ~N(0,0%)forl <i<mngandl < j < mng_q, with
ny being the width of layer ¢, and ¢(-) the activation function.

The way the choice of (0., 0, ¢(+)) affects the properties of a neural network sampled from (I)) has been studied from
a diverse set of perspectives [19, [14] [12} |1, [23]]. Especially notabily is the work in [19] which pioneered that, for a
given nonlinear activation function ¢(-), it is possible to select the parameters (o.,, 05) such that the sampled neural
networks preserve geometric information about the inputs and this choice of parameters typically leads to a superior
initial training. This analysis relied on geometric considerations of how the distribution of intermediate hidden layers
converges to their limiting distribution.

The work in [21] conducted an alternative investigation on the flow of information through the layers of random neural
networks with odd activation functions from an information-theoretical perspective; specifically, they studied the decay
of the mutual information between an input and its hidden layers’ output, building on the results of [1}[20]. Following
the methodology in [[7} 20} 17, [7}15]], the contributions in [21]] considered a noise term n® ~ N (0, J?LI) added before
the activation function

h® — W(f)d)(h(@*l)) +b® 4 n®, )
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and introduced the following lower bound on the mutual information I(x; h(e)) between the Gaussian input X ~
N (0, 521), as also modelled in [4], and the hidden layer h*)

A
I(x;h) > 19(x; hY) = By log Aol : (3)
’Ahm £ LI
where | - | denotes the matrix determinant, W* = {W® b(V1¢_ and
X 21 > -, (€)
Varx,{n(’)}l[:JW:[ {h( ] |:Erh(e) Aahm : “4)

The lower bound in (3) was then approximated via the mean-field theory as a function of (o, 04, #(-)), suggesting
that in some cases the initialisations are optimal from both a training and a mutual information perspective. However,
although the mean-field approximation was qualitatively accurate, there was a consistent error in the approximation due
to the strong assumptions that it entailed.

Here, an alternative approximation of the lower bound 79 (x; h(f)) in (3) is proposed by taking into consideration the
eigen-spectrum of Ay« and Ay — 01 EI hmEgjhu). In general, considering a function F'(A) that can be written

as a power series on an n-dimensional random matrix A with eigen-distribution pa, the limiting normalised trace for
n — oo of the function F'(A) can be evaluated as an expectation on pa;

lim ltrF( = lim fZF o [FOV)]. (5)

n—oo n n—oo n

This property is applied to the log-determinant case. As a matter of fact, log|A| = tr(log(A)) and if the eigen-
distribution p, (A) of matrix A is known, then

hm log (JA|) /n = hm log (H/\ ) /n = hm Zlog )/n= /log () dpa(z). (6)

Ihm 3. one is able to compute their log-

Therefore, by learning the eigen-spectrum of A, ) and Ay — U%E
determinants whose difference defines the mutual information lower bound (3).

1.1 Outline and main contributions

The manuscript focuses on calculating the lower bound of the mutual information between an input and its representation
as a hidden layer vector at layer /; that is the lower bound in (3). Section2|considers approximating the eigen-spectra of
Ay and Aj) — LT Sh(O 3 no with the Marchenko-Pastur distribution and show that the resulting lower bounds of

(@) are equal to those preveously derived by the authors in [21] where instead a mean-field approximation was used and
the spectra distribution was treated as a point distribution; see Proposition[I]and (I3)). Section[3|improves upon the
calculation of the spectra of A,y and Ay — £ Ez h® 3.1 by making use of the Stieltjes Transform. In particular,

subsection [3.1|computes the spectra of A ) as “given by Theorem [3.1}; see Figure I]for plots of the spectra with the
demonstrated improvements. Section|3.2|computes the spectra of A, — 01 E;rh( o 20 as given by Theorem

and Figure 2] shows calculations of the spectra which illustrate the improved fit to empirical observations. Section [3.4
then makes use of these estimates of the spectra to compute the associated lower bound of the mutual information in
(3); see Figure 3] Figures [ shows separate contributions of the mutual information bound from each of A and

Ay — 01 E;rh(m 3 as functions of the weight variance o, and for different layer depths. Figure[S|shows that the

mutual information bound converges towards a single point in o,, as depth increases. These results give an alternative
perspective on the geometric focused edge-of-chaos theory in [11].

2 Marchenko-Pastur Approximation

The Marchenko-Pastur law determines via an analytic expression the eigen-spectrum of a specific type of random
sample-covariance matrices when the dimensions of the sampled space and the number of samples go to infinity. The
tractability of this expression makes the approximation of the eigen-spectra of A,y and Ay ) — U%ELL( oy 2 With
the Marchenko-Pastur law a valid baseline for understanding the impact of using the eigen-spectra when computing
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the mutual information lower bound. In Figures[T]and [2]it is shown how the eigen-spectra of the empirical covariance
matrices compares to the Marchenko-Pastur distribution alongside the approximations introduced in Section 3}

Specifically, consider an n x m matrix X with entries X;; that are i.i.d. real random variables such that E[X,;] = 0 and
E[X},] = 02, and denote by M the n x n matrix

1
M= —XX" e R"*" (7
m

with 0 < Ay < ... < )\, being the eigenvalues of M. Defining the random spectral distribution by

1 n
== s, ©)
n
Jj=1

with 1 being the indicator function, the Marchenko-Pastur law is defined in Theorem

Theorem 2.1 (Marchenko-Pastur Law [9]). For M and iy as defined above, when n — oo and m — oo such that
n/m — v € (0,1], py — p in expectation and almost surely, where (i is the deterministic measure satisfying

dp ﬁ\/(ag(u —z)(x —o0%a_) ifa- <z <ag
dr |0 otherwise

9

withay = (1 £ ,/7)%

The log-determinant of a matrix whose eigenvalues are distributed according to the Marchenko-Pastur distribution [2] is
defined as

Consequently, the log-determinant of a matrix, whose eigenvalues are distributed according to the Marchenko-Pastur
distribution, is determined uniquely by the variance of the eigenvalues, Var,[\] = o2, and the shape of the matrices
. Further, for the Marchenko-Pastur distribution the variance of the eigenvalues is the same as their expectation, i.e.
E.[\] = o2. Relative to the mutual information lower bound estimation, the shape  is equal to 1[1_1 and it was shown in
AT (/)’

T2 0 3 .n@ are the variables q(z) and ¢

[21] that the expected eigenvalues of the matrices Ay, ) and Ay ) —
defined by the following relations

{ ) = 0120 f(b \/q(f—l)z)Dz—I— oy +o2 (11

q(l) = U + Ub + Un

and

¢0 = ¢ — 5240 (fpl 1) ( q(g)z> Dz>2

o0 — ()

with p™) =1, (12)
q(z) —(qc

n /qu)

see [I1L5]] for other interpretations of ¢(*). Therefore it is possible to compute explicitly the log-determinant of Ay and

Apw — 2 Ez h(o) 2gn o under the Marchenko-Pastur distribution assumption.
Proposition 1. Assuming that the eigen-distributions of the matrices Ay ) and Aj) — U%E;rh(g)

Marchenko-Pastur distribution with means ¢*© and qu) respectively, the mutual information is lower bounded by

)
0Oy s I 4
I(x;h") > 2log <q§@) (13)

X n@ follow the

Proof. By considering equation (I0) with v = 1, Vara , [A] = Ea ,[\] = ¢, and
A = qg ), it follows that (3] can be expressed as follows

I

'Following the practise in information theory 0log(0) = 0. This singularity is due to having no noise included in the distribution.

VCLT 1 T )\ ZE 1 T
Ao =52 L 0 Z o (Al A =52 0 Zan® [

1 1 1
I(X;y) Z iEW:z [log (|Ah(e) m — ]Ew:e [2 log (‘Ah(e) U Zlh(ﬁ) Ezh(@)

x
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(0)

_nr wy_nr_n 0wy, n_"n -
5 log (q ) 3 5 log (qc ) + 5 5 log qy) (15)
O

This shows that the lower bound defined under the mean-field approximation in [21] is equivalent to the one arising
when assuming that the eigen-distributions of A, and Ay — 22T /3,0 are defined by the Marchenko-Pastur

a2
distribution.

3 Spectra calculations using the Stieltjes Transform

The Stieltjes transform allows to study the eigen-distribution resulting from the interaction of random matrices; therefore
it is possible to rely on this transform to model accurately the eigen-spectrum of the matrices A ), as it was done in
[13L13], and Ap ey — ;TEI;LM)EMW , as it is introduced in this work.

More in detail, when considering a random matrix X the Stieltjes transform is defined by the limiting eigen-distribution
px as follows

px(t o my,
GX:/RZ_(idtz T #€C\R (16)
k=0

where mj, = | M px (A\)dA. If the Stieltjes transform is known, it is also possible to retrieve the underlying distribution
px by considering the Sokhotski-Plemelj formula

px(t) = L lim Im (Gx(t —iv)) . (17)

T v—0+

The Stieltjes transform is especially useful when considering matrices that are free, a generalisation of independence in
the matrix space; for more details consider [10].

Following [[16]], to identify how free matrices interact the moment generating function My is introduced,

Mx(z) = 2Gx(z) — 1 (18)
and then the S-transform and the R-transform are defined as
142 1 1
Sx(z) = —————, Rx(z) =Gy (2) — —. 19
O RO ORI RO R (19

Specifically, if two matrices M and C are free relative to each other, it is possible to compute the Stieltjes transform of
CMC', using the multiplicativity of the S-transform

Semet (2) = Seet (2)Sm(2)- (20)
and [16] retrieves the following implicit expression
Meme (2) = Mum(Scem (Memcer (2))2)- (21

If My and Seer are known, the algorithm to compute the density of the eigenspectrum of CMC ' is described in
Algorithm |1} the property of the Stieltjes transform of behaving as 1/z for |2| — oo is used to initialise the limit.

Furthermore, if M and C are free relative to each other, then it is possible to obtain the Stieltjes transform of M + C via
the additivity of the R-transform which is also based on the Stieltjes transform

As also shown in [16], the following implicit equation holds
Gmic(z) = Gm (2 — Re(Gmc(7))) (23)

and consequently the computation of ppc () is described in Algorithm

These properties of the Stieltjes transform of free matrices are going to be central to the modelling of the spectral
distribution of Ah(z) and Ah(e) -1 EIW)EGEW).

2
Iz
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Algorithm 1: pwaw () [LI]
Ck'lgos.e 2N steps an<.i Jb\,> 1 Choose 2N steps and b > 1;
Initialize zo = A — " and G = 1/z; L N
Initialize zo = A — " and G = 1/z;
fork € {1,...,2N} do
CNZE . for k € {1,...,2N} do
Zp — A—1b s A\ ibN_k'
M, < Root of (ZI)) nearest to z;,G — 1 ; k N ’ .
G (My+1)/2 endG < Root of (23] nearest to G}
end 1
Return 17 (G) Return —Im (G);

Algorithm 2: pa.p(N)

3.1 Eigenspectrum of A, ) witho, =0and o, =0

Given the weights W and b(é), the matrix A is defined as

Agcer = B [(WOS(h®) +n® +5O) WO p(h) +n(® +bO)T] (24)
2

- U—”W“)Ex[gi)(h“))gb( ) ]W(f (b(‘}) + n(f))(b(f) + n(é))T, (25)
n

where the last equality is due to considering only odd activation functions ¢ and therefore the vector ]E[(b(hé)] being
null.

-
The matrix WOW® | whose S-transform is Sww (2) [16, Chapter 15.2], is free relative to

1+z
Ex[6(h)p(h)T], and it is possible to study the Stieltjes transform of their product with Algorlthmmif the expression
T
of the moment generating function Mg, {4 n))snm@)7] is known. Moreover, since WOR, [o(hD)pm)TIWO s
free relative to (b +n(®)(b® + n(®)T it is then possible to study the full spectrum of the matrix Ay c+1) with
Algorithm 2}

Therefore, the crucial point is computing the Stieltjes transform of Ey[¢(h‘“)¢(h®))T]. For the second layer, it is
possible to rely on the work in [13]); this work identified with Theoremmthe Stieltjes transform of -1 ¢(XW)p(WX) T
where the input matrix X = [x1, ..., X,,] is considered with the columns being m i.i.d. vectors x; ~ N(0, 021), and

the expectation Ey[¢(h)¢(h'?)T] corresponds to the limit for 7 — oc. The following work in [3]], extended this
work to compute the spectral distribution of the covariance matrices after the second layer. Specifically, the Stieltjes

transform of LYFDYEIT wigh YD = ¢ (WY“)), can be approximated by implementing the same expression
for the second layer as in [13] considering X = Y*) and 02 = ¢ /2.

Theorem 3.1 ([13| Theorem 1]). Consider an odd activation function ¢ satisfying
dz 22
2 o5 p(k)
e 2 OwOz2)| < 00 26
[ =% ¥ ouan2) 26)

2¢k (0woz2)| < oo and

‘/ v 27r
for k > 1 with ¢%) being the k th derivative of ¢, an input X € R™*™ and W € R™ %" with their respective columns
2
being sampled as follows w ~ N0, ;7=1) and x; ~ N (0,021), and with Y = $(WX) and

p="0 o= 27)
m niy
Then the eigen-distribution of the empirical covariance matrix M = iYY T s asymptotically defined by
1—
Gu(z) ~ *H(W) +— (28)

where the generating function H (z) satisfies the following recursive relatzon
(01 — 02)Ho(2)Hy(2) | Ho(2)Hy(2)02

Hz) =1+ z z— Hy(2)Hy(2)02 29
where Hy,(z) =1+ (H(z) — 1)y, Hy(2) =1+ (H(z) — 1)y,
) 2
/ N P(owozz 2)%e"Tdz, and 6y = (/ (7207: _T(b (Uwawz)dz> . (30)
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Figure 1: Approximation of the eigen-spectrum for the matrices A,y with n = 100 and (o, 04, 0) = (2,0,0.01)
at the second and fourth layers. The histogram (Empirical Results) corresponds to the eigenvalues obtained on 200

different simulations and it is compared to the Marchenko-Pastur distribution with the same mean, to the distributions
obtained with the Stieltjes transform for A« in Theorem 3.1}

In Figure[I] an example is shown of how by relying on the Stieltjes transform in Theorem [31]it is possible to improve
the description of the eigen-distribution of the matrix A ). Specifically, it is shown that for the second layer the
approximation is very accurate, while some error creeps in for deeper layers.

3.2 Eigenspectrum of A, ) — =

2
Oz

Ezhu) Y ne Withoy, =0and oy, =0

Given the weights W and b(é), the matrix Ay« — 0—1221“2) 3 _no is defined as follows

1
Ao = =5 =00 Zano = E(WOSRO) + 00+ bO)Wo(0) + 0+ b))

€T

B %Em WO Hh)x T E, [xo(h®) TWO '] (1)

=w (Ex[ab(h“))czb(h“)f] - LB ONTIE, [x<z><h“))T]) wi'

x
+ (O 4+ n@)BO 4T, (32)
where the last equality is due to considering only odd activation functions ¢ and therefore the vector E[qﬁ(h(@ )] being
null.
The two matrices Ey[p(h?)p(h®)T] and E,[p(hD)xT|E,[x¢(h?)T] are not free relative to each other
and the additivity property of the R-transform cannot be implemented; therefore the ]Ex[qb(h(z))qb(h(z))T] —
E.[o(h)xT]E, [x¢(h))T] matrix has to be considered as one. The changes to the eigen-spectrum due to the

remaining operations in (32)) follow the same logic as for the ones in (23). Thus the only unknown is the Stieltjes trans-
form of Ey[p(hD)p(h)T] — Eo[o(h'D)x T By [x(h) T] which is the m — oo case for the expression introduced
in Theorem[3.2]

Theorem 3.2. Consider the odd activation function ¢ for which the following holds

dz  _:2 ‘ / dz  _:2

e 2 Ow0z2)| <00 and — e T ¢ OwOz2)| < 00 (33)
e ouos) v R
for k > 1 with %) being the k-th derivative of ¢, for each layer the matrices W ¢ Rrexne-1 gp input matrix
2
X € R™0*"™ with their respective columns being sampled as follows wgé) ~ N(0, n‘z:“ll) and x; ~ N'(0,02I). Then
define H%z = Y p=1 Wl(v’,iz Y}:;{p with Yz('ig = ¢(H§’£p_1)) and with YV = X, ¢ = 2, and ¢ = 2. Under the
assumption that each column in Y'Y is distributed according to Yfﬁ) ~ N(0,¢O1), the matrix
M= 1E, [¢(W(e>y<e>)¢(W(e>y<e>)q _ 1
m

252
meoz

Ex [o(WOYO)XT| Ex [o(WO¥)xT (34)

2In this subsection the superscript ©) is omitted for clarity.
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Figure 2: Approximation of the eigen-spectrum for the matrices Ay ) — Ezzw)xxh(@ with n = 100 and

(0w, 0p,0,) = (2,0,0.01) at the second and fourth layers. The histogram (Etﬁpirical Results) corresponds to the
eigenvalues obtained on 100 different simulations and it is compared to the Marchenko-Pastur distribution with the
same mean, to the distributions obtained with the Stieltjes transform for Aj ) — U—EEIW) 3 he in Theorem

has an eigen-distribution whose Stieltjes transform is asymptotically defined by

1—
Gu(z) ~ 7‘” + %H(z) (35)
where
2
Hon () (017 - o202 (L)) Hualrt ) (687 - o2 (T 08"))
H(z) = -
Pz Pz
2
Hoo(e) () (0 — oot (11, 07))
+ ~ t1 (36)
oo = Hanle) () (087 - o2 (T 08"))
with

2
) 1 _z2 ¢ Vg .2
Hi):/ T tlowv a2 e T dz, 95):</ ¢ O Waa)dz ) (37)

¢ (V= s
ol = / (\/T)e_z’a‘dz, (38)
vy

Hyo(2) = 1+ kop(H(z) — 1), H, = 1+ p(H(2) — 1), a € {b,c}, k. = 1+

20’2 ai Gée)g Gy) 70§ afu Gée)4

= and
(037 -02020877)2

2 2 4
010020208 10202 00" 60—t 05"

(01" —a202,0$0%) (68" o202 0§"7)
The proof is included in Appendix [A] which relies on Appendices[B]and|[C}

In Figureﬁl, the empirical eigen-distribution of the matrices Ay« — O%Elh( o 2,0 at the second and fourth layers is
compared with the approximation that is retrieved by considering the Stieltjes transform in Theorem [3.2] As for A,
the second layer’s eigen-distribution is visually approximated very accurately, while there remains a visually observable
difference for deeper layers, although of a smaller entity than for A ).

kp =1+

3.3 Noise Application

The expectation on which A, and Ay — U%EIW)EM(@) are computed also considers the random vector n.

Therefore, as for the input x it is necessary to consider an input matrix N = [ny, ..., n,,] with m — oo and m/n — oo,
and therefore the following cases are considered

2
.
Ay = ZEW OB B0 ) () TIW " 4 NNT (39)
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and

1 1 T
Ao = 58]0 Zone = WO (Edfoi©)oh) ] = —E,[6(b)x"E, [xcza(h“)m) w

UI
+NN'. (40)

Crucially, for computational purposes, the noise at the previous layers is assumed to not affect the distribution
significantly to be modelled since only small noises are considered.

The Stieltjes transform of the perturbation is
1

)
z—0g

GNNT (z) = 41

and thus by considering the implicit equation (23)), the Stieltjes transform of the perturbed matrix is
Gainnt (2) = Galz —02). (42)

This corresponds to a shift to the right of the distribution of the matrices that are used for the computation of the mutual
information. Thanks to this shift the matrices Ay ) and Ay ) — L ZIM o 2 ne are guaranteed of not being singular,

and thus allow the computation of the mutual information.

3.4 Estimation of the mutual information

Relying on the determination of the Stieltjes transform of the matrices Ay ) and Aj ) — U%EI,N) 3 _n in Sections

[3.T]and [3.2] with 03, = 0, and on the distribution shift caused by the noise application determined in Section B3 itis
now possible to numerically compute the lower bound of the mutual information thanks to the property reported in (6)
when no bias is considered.

In Figure |3| the empirical mutual information lower bound for different layers of a neural network is compared to
the approximation attained with different approaches when o, varies, o, = 0, 0, = 0.1, and the input is considered
with o, = 1. The empirical lower bouncET is generated by considering 200 initialisations of neural networks with
100-dimensional matrices and with 100, 000 samples. It is possible to notice that the analysis conducted by considering
the Stieltjes transform is exact on the second layer, but as soon as the layers increase the bound is over-estimated;
however, this approach yields to more accurate approximations of the lower bound introduced in [21]]. In Figure {4
the behaviour of the different approximations of the terms log(|A ) |)/n and log(|Ay e — G—EEIM@) Y. nol)/n for
the second and fifth layers are compared in the same settings, and it is possible to infer how the error observed in
Figure [3|is primarily due to the inaccurate estimation of the log-determinant of A ) ; thus giving a direction for future
improvements.

Similarly to [21], the approximation with the Stieltjes transform of the mutual information lower bound allows to rely on
an analytical expression to study the behaviour of the bound at deep layers; thus avoiding running expensive simulations.
Therefore, it is possible to obtain results such as those reported in Figure[5] where the bound approximation for very deep
layers supports that selecting o, = 1 when o, = 0 and ¢(-) = tanh(-) is optimal from a mutual information perspective.
This conclusion follows from how the bound decreases the slowest for this kind of initialisation parameters, consistently
with [21]]. Furthermore, as it was observed in [21]], the same choice of parameters (0., op, #(+)) = (1,0, tanh(-)) is
on the edge of chaos [15]], thus suggesting that initialisations that are optimal from a training perspective also yield
maximal information propagation.

4 Final Considerations

This work explored how the approximation of the lower bound of the mutual information for a neural network at
initialisation without bias can be approached from a random matrix perspective; which was shown to consist in
modelling the eigen-distribution of the matrices A« and Ay — é21h<2) DTNV

In Section [2]a simple approximation of the eigen-spectra with the Marchenko-Pastur distribution was introduced and it
was shown that the results with this approximation correspond to those relative to the mean-field approximation in [21]].
In Sectionthe eigen-distribution of Ay and Ay — ELL(Z) 3. n© was approximated relying on the Stieltjes

L
2
Tz

*The log determinant of the sampled matrices log(|A,,¢)|)/n and log(|A,,e) — J%Ezh(@) 3 o ])/n was computed considering

the following identity log |A| = log |L|[LT| = 2log [L| = 2log ( " L) =257 log(Ls).
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1.2
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Figure 3: Comparison of the empirical mutual information lower bound between the input and the second (a), third
(b), fourth (c), and fifth (d) hidden layer with its approximation with the mean-field approximation and the Stieltjes
transform.

Ay in [13113] was considered, and in Section|3.2|an approximation for A ) — U%ELLM) 3 . n was introduced. This
approach resulted in an improved estimation of the mutual information in Section[3.4] despite some limitations were
identified in the computation of the log-determinant of A . The Stieltjes transform based method also identified the
same behaviour as in [21]] for which there is a choice of parameters that optimises the decay of the mutual information

lower bound and at the same time is optimal from a training perspective according to the edge of chaos theory [12].

transform and its properties for free matrices. eciﬁcally, in Section [3.T] the modelling of the eigen-distribution of

In conclusion, this work showed that it is possible to rely on techniques of random matrix theory to improve on the
estimation of the mutual information lower bound introduced in [21]. By expanding this work in the direction that it
was proposed within the text, it might be possible to model exactly how the mutual information lower bound decreases
through the layers, and this might be beneficial to the understanding of how to train neural networks optimally.
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A Proof of Theorem 3.2

The proof of Theorem [3.2]relies on the use of the method of moments detailed in Section This method allows to
identify an implicit relation that the Stieltjes transform has to satisfy and that allows to compute the transform efficiently.
Therefore, this method is first used to prove the recursive relation at the second layer in Section and followingly it
is expanded to the subsequent layers in Section[A.3] Appendix [B]and|[C|are in support of these proofs.

A.1 The Method of Moments

The method of moments was used in [[13]] and [3]] to find an implicit recursive relation for the Stieltjes transform of
matrix Ay 2, G A, 2 (z)ﬂin the limit of ny — oo. Given a general random matrix M, this method aims at evaluating

the identity

oo
m
Gul) = >_ s 43)
k=0

by determining exactly the moments, my, of the eigen-distribution py; of M. When considering the matrices relevant
to the computation of the mutual information lower bound, the final expression of my, allows to identify the leading
contribution and therefore to show that there is a unique measure yielding the identified transform; but the expression is
too computationally complex to be computed in practice. However, by computing the moments my, it is possible to
identify an implicit relation that the Stieltjes transform has to satisfy and that allows to compute the transform efficiently.
Therefore, computing the moments will indirectly allow to identify the Stieltjes transform.

In this work similarly to [13]] and [3]], the method of moments is applied to matrices M € R™*"1 that are the outer

product of two matrices M = %YY—r where the elements of Y € R™ *™ that share an index are not independent, i.e.

Y LY, butY;; L Y;,andY;; LY, ;fori# pandj # g. Specifically, in this context the method of moments

aims to identify G(z) by considering the limiting moments my = lim,,_, oo mgen) where

o1 1
= B = | P MM M o
il,...,ike[n]

1

= n mkE Z Yil#lYiszizquiauz"'YikMkYiluk (45)
1 i1,...,0k €[N]
W1 yees ik €[m]
1
= namk Z E[YiluthMlYiz/thist"'YikukYilﬂk] (46)
Uikl
M1, ik €[m]

and these finite dimensional moments m,(cn) are computed by associating each sequence of indices

{(é1,p1)s- .., (i1, 1)} to a pattern which is going to be represented with a graph. These graphs are such that
despite having different indices, all the addends in (@6)) sharing the same pattern have the same expected value because
of the independence of the weights. Therefore, the addends can be grouped according to their pattern, and, once the
contribution of each patterlﬂ is established, it is necessary to only quantify the pattern’s frequency in the outer sum of

@o).

The patterns that arise in {6)) are identifiable as graphs by associating the indices, 7¢ and ¢, to the vertex indices of a
graph whose edges are defined by Y;, .. The work in [13] and [3] proves that {#6) is dominated by the terms in the
sum whose index pattern is associated to a connected outer-planar graphs in which all blocks are simple even cycles,
and these graphs are defined as admissible graphs; for details consider Definition[A.T] For example, all the admissible
patterns for k = 3 are shown in Figure[6} all the admissible graphs would consist in permutations of the indices.

Definition A.1 ([13]). For any positive integer k, a 2k-cycle, is an admissible graph. Start by labelling the vertices in
the 2k-cycle as 1, ..., 2k in a clockwise fashion. Consider any pair of vertices vi and vs of the same parity, one may

*In the upcoming work the subscript on the Stieltjes transform identifying the corresponding matrix on which the transform is
computed is going to be dropped unless the context requires it.

5Note that with the expression n — oo we assume that all of the layer dimension of the nets are proportional to each other and
therefore ny, — oo for any .

SFrom now on, the contribution of a pattern or a graph will correspond to the expected value of any term in #6) whose indices
define the same pattern or graph.
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Figure 6: Admissible patterns according to Deﬁnitionwhen considering k=3. Any admissible graph with &k = 3
consist of a permutation of the indices in the illustrated patterns. This Figures reproduces parts of [13| Figure S1].

obtain an admissible graph from another admissible graph by identifying v, and vy if there exist two vertex-disjoint
paths between v1 and vo. The merged vertex is assigned the same parity as that on v and vs.

The above definition of admissible graphs, allows to compute the moments mgc”) for finite n-dimensional matrices M

by first considering simple cycles and then aggregating their contributions. At leading order, the contribution of a graph
is multiplicative in the contributions of its constituent cycles.

When considering the limiting moment my = lim,,_, mi"), the explicit formulation of the moments allow to explicitly
determine the Stieltjes transform of the matrices relevant to the mutual information lower bound estimation, however,
this formulation is too complex to be used in practice. Nevertheless, thanks to the explicit formulation of the Stiletjes
transform, it is possible to retrieve an implicit formulation of the Stieltjes transform that can be computed in practice.
To find this implicit formulation, two properties of the limiting moments my, are considered: the fact that there exists a
generating function based on my, that is related to the limiting Stieltjes transform G, and the fact that the multiplicativity

of the constituent cycles used to compute m,(cn) is preserved.

A.2 Stieltjes Transform of the Matrix Ey[¢(h")p(h)T] — E, [¢(h))xT|E, [x¢(h)))T] with o, = 0 and
op, =0

To rely on the moment of methods as in Section it is necessary to study the expectation on the input as an empirical
expectation with m — oo samples. By considering an input matrix X, the Stieltjes transform of E, [¢(h(1))¢(h(1))T] —
E.[o(hM)xT|E, [x¢(h™M) ] is determined by studying the eigen-distribution of

1

——E {¢(w(1>X)XT} E [QS(W(”X)XT ! 47)

_ ¥ (1)
M = —Ex [(;s(w DX)p (W X)T} - a7

when m — oo. The definition of M already considers the expectation over X and this is necessary because of the nature
of the matrix product E;hw Yoh.

13
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Considering the admissible graphs of Definition [A-T] shown to be the leading order contribution also in this setting
in Appendix [B:4] we determine an implicit relation for the Stieltjes transform of M, defined in Theorem[A.T] When

m/n — oo Theorem|[A.1]holds for the matrix Ex[¢(h?)(h(?)T] — E, [p(h®)xTE, [xp(h))T].
Theorem A.1. Consider the odd activation function ¢

dz _:2 / dz  _:2 4
2 < d 5 k) < 48
\/ﬂe ¢ (0w0o22) oo an ‘ \/ﬂe ¢\ (000 2) oo (48)

for k > 1 with $\¥) being the k-th derivative of ¢ and the matrices W € R™*™0 and X € R™*™ with their respective
2

columns being sampled as follows w; ~ N(0,2+1) and x; ~ N'(0,021). Then, defining 1) = ™2 and ¢ = no, the

matrix M = %IEX [YYT] — ﬁlﬁlx [YXT} Ex [XYT] with Y = ¢(WX) has an eigen-distribution whose Stieltjes

transform is asymptotically defined by

1—
G (=) = — L %H(z) (49)
where
- 14 B0 = 22R)  Hucl)Hy()(02 = o2ohh)
Pz pz
Hye(2) Hy (0 — 020%63) 0
pz — Hyc(2)Hy (02 — 0307,03)
with
1 22
0, = / ——(owop2)’e” T dz, (51)
V2r
OO, 2 2
0y = ( w2 me_zq[)/(owazz)dz> , (52)
V2m
/ 2
0y = / #(02Tw2) ("I;“’Z)e*%dz (53)
z1 V 4T

2 2 n2 2 2 pn2 4 4 p4
Hya(2) = 1+ ¥ra(H(z) = 1), H, = 1+ @(H(z) — 1), a € {b,c}, and r, = 1 + Uoioilitoiaits aio,0],

(01—0207,03)(02—0202,03)
20'32: O',i) 9§92 7021 oﬁ, 0%

(62 —0202,05)7

Ke =1+

In the following subsections, the proof of Theorem[A.T]determines the moments of M defined according to the following
expectation

1 1
ﬁEw[tr(Mk)] = —Ew > MM, M, (54)
il,‘..,ike[n]
1 L1 L "
=——Bw | > M{, MM (55)
il,...,ike[n]
Hlseeny i €[m]
where
Mitlliz = Ex l¢(z Wi1,lxlu1)¢(z Wiz,lxlul)
1 1
1 n,m
T mo2 Z Ex ¢(Zwi17lxlu1)xpm Ex [(b(zwiz,lxlq)qu (56)
T p,g=1 l !

In Subsection[A.2.T] the contribution of single cycle patterns are determined and in Subsection[A.2.2]they are aggregated
to identify the contribution to the moments of an admissible graph. This allows to define a generating function and to
determine the contribution of two graphs that are connected via a vertex. These observations are then used in Subsection

[A“23]to prove Theorem [AT]

An interesting consequence on the Theorem [A:T|being applied at the first layer is reported in Corollary [A-T.T|whose
proof is included in Appendix [B.3]

14
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Corollary A.1.1. ForM = %IEX {YYT} — E, [YXT] Ex {X YT} and Y = ¢ (WX) as defined in Theorem.

the eigen-distribution of the matrix WM w' asymptotically follows the Marchenko-Pastur distribution with mean
02 (01 — 02) and shape v = - when ) = 0 and p = 1.

02777,2

A.2.1 2k-cycle Contributions

Similarly the heterogeneous input proof, the contribution of cycles of length 2k is first computed to then study
the contribution of any admissible graph. We thus start by considering cycles of length 2k, i.e. in Equation (33)

i1 Fig F . Figand ) F po F o F p
EJY = Ew [MY M2 M ] (57)

1112 1213 k21

:/w{(/¢(Zwi1,lxl#1)¢(zWi2~,lxl#1)DX

0_2 Z /¢ Zwu,lxlul Xpulpx/gb ZVV72 leq quDX>

T p,q=1

(/ (b(z Wik,lxl,ﬂk)(b(z WilJXl,/Jk)DX
l l
1 n,m
—— 3 / ¢ Wiy 1X1y,) Xpp, DX / ¢ Zwmxlq quDX>}DW (58)
* pg=1 l

It is possible to reformulate the right addend thanks to the following identity

/ A WaiXp, + WapXs )X, DX = / 020/ (D WarXp,)WesDX (59)
148 X [
= UiWaﬁ / ¢ (0400p2) Dz = UchalgGg (60)

where Dz is the standard normal measure.
This leads to the following expression

2 n,m
Eéz) = /W { (/ ¢(Zwi1,lxlul)¢(zWiz’lxl/h)'DX Z WleW12P93> (61)
l l

pq 1
2 n,m
/¢(Z W’ikJXlaNk)(b(ZWithlka)DX_ — Z Wz;cpwnpes DWDX (62)
1 1

p,q=1
/W,X H

( ZWL6 1 X e )@ ZW%HJXW& ZWW,W,HW@%) DWDX.  (63)
£=1

p=1

In the case of £ = 1, the integral can be split in two due to its linearity, and this leads to

Lemma A.2. ForM = %EX [YYT} — ﬁEx [YXT} Ex [X YT} and Y = ¢ (WX) as defined in Theorem when
k = 1 then contribution of an admissible cycle is

1
B — o, (1 Lo (n)) _ 020202 (64)
with
1 22
0, = /\/jqﬁ(awawz)Qe_sz, (65)
03 = / "(02042) e‘édz. (66)
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Proof. See proof in Section [B.T] O

However, when considering £ > 1, we have to consider also mixed products. More complex considerations allow to
determine the contribution of a general 2k-cycle.

Lemma A.3. ForM = LEy [YYT} - ﬁﬂix [YXT} Ex [X YT} andY = ¢ (W X) as defined in Theorem when

k > 1 then contribution of an admissible cycle is

1
Eéz) =ny " (0, — Uiafﬁg)k (1 +0 ()) (67)

n
with
OwO 2 2
9 — wYx 7% / w0 ) , 68
) </ Jon e” 2 ¢ (0wos2)z (63)
1 Z2
0- :/— "(ogowz)e” T dz 69
3 \/ﬂ¢ (020w2) (69)
Proof. See proof in Section [B.2] O

A.2.2 Agglomeration of the Contributions

To compute the moments of the distribution, we follow the exact same process as in the heterogeneous case for A
where we identify all of the possible patterns, identify their cardinality (each pattern can be achieved by selecting
different vertices), and their Expected contribution thanks to the previous subsection.

To count the different patterns, after naming /; and I,, the identifications in Definition [A.T]of respectively odd and even
parity, the following variable is considered similarly to [[13}3]):

Definition A.2. C(k,I;,1,,b,b", c") is the number of admissible pattern with 2k edges, I; i-identifications, I,, =
b* + ¢t p-identifications where ct* are the identifications that do not define any two dimensional cycle, and with exactly
b cycles of size 2, similarly to [13]3]].

Therefore, it is possible to compute the k-th moment of the eigen-distribution

Proposition 2. For M = i]EX [YYT} — UQ—%WQEJC {YXT} Ex [X YT} and Y = ¢ (WX) as defined in Theorem the
k-th moment of the eigen-distribution, for k > 1, is

m{" = my (1 +0 (i)) (70)

my = lim m{" (71)

with

zb: Ck, I, 1., b, b, c)

0, — 2 292 b,
o (k:—Ii)(k;—IM)( 1= 0ubs)

I, I,=1 b=0 br=0

k—1I, k—1I,
_ " T & e
0y — 0202 02)FbRY IV plrgp T (72)
k—1I; k—1,
=o' m, (73)
910303,954-0502 0592—0‘40i9§ 20202 9302—0‘;1021“9;1

where we define kK, = 1 + 7 2 , ke = 1+ 1(0:’7020_2 L and based on these finally
- w”3

(01—030%,03)(02—0207,03)

k Ii I 1 b L L - C!
Hk = ZIi,I“:I Zb:t) ot Zbu:oc(k7lia Iua b) b'[ ’CI )(91 - Ugoieg)b(GQ - 0.20.12”9%)/6 b"{gumgugoh(ﬁlu'
Proof. See proof in Section [B.3] O

This allows to compute the Stieltjes transform by introducing the generating function .
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Corollary A.3.1. ForM = %IEX {YYT} - 1 5E, [YXT] Ex {X YT} and Y = ¢ (WX) as defined in Theorem

o2m?

the Stieltjes transform of the eigen-distribution of M asymptotically satisfies the following equation

-y
z

G () =~ + £H() (74)

where H (z) is the generating function defined as H(z) =1+ >~ Zﬁ{’;k =1+ é > pep k.

Proof. To start with we notice that using the definition of the Stieltjes transform (@3]

Gulz) =Y T =Y o (1 +0 <n>> (75)

k=0 k=0

) (1 +0 (i)) (76)

By relying on equations (@3] and (71)-(73)

1 my 1 ® > Hk
G(z) = . Z prs g N Z Rk )
k=1 k=1
1—p o — l—p ¢
— (1 = ZH(z). 78
z +z< +;z’%@k> z +z (2) (78)
O

Moreover, from Proposition [2]it follows that the total contribution to the moment of a graph which is defined by the
junction of two graphs, is equal to the contribution of each defining block with a penalty term that depends on the
identification joining the two graphs.

Corollary A.3.2. Consider M = %EX [YYT} — ﬁEx [YXT} Ex {X YT} and Y = ¢ (WX) as defined in Theorem
and consider a graph G with 2(p + q) edges that is defined, via etiher an i or u identification, by two graphs G4
and Gy with 2p and 2q edges. Then the asymptotic contribution, mqu, of the graph G'3 to the moment my, , is equal
to the product of the contributions of the block cycle graphs that define G3 with a correction term. This is, they are
Jjoined with an i-identification

Gs _ 1™ G,
Mptg = My n mp (79)
1
and if they are joined with a i-identification
; niK
mfz, = mG1 A mGe (80)

=m
P+q 2 m 2

where if either one of the block cycles connected to the identification are of dimension 2, then o = b or otherwise o = ¢,
o 01 aiaingro’io’i}GgGQfaiai 0;1 o 2020,39%0270'30?“ 9;1
and ky = 1+ G i o —oTatad) > e = 1+ TG, o220

A.2.3 Proof of the Implicit Relation in Theorem [A.T]

Proof. As shown in Corollary[A.3.2] a graph G, that is defined by a graph G; and G, contributes to the total moment
according to the following identity.

Gy _ G G,
Mytp =My n my, (81)
1
when considering an ¢-identification or
Gz _ G Nika G2
Mofp 4y my, (82)

when considering a p-identification where av = b if either of the adjacent blocks to the identifications is a 2 dimensional
cycle, or o = c otherwise.

If a vertex v is fixed, it is possible to use the moment generating function to define the contributions of all the possible
patterns that include the chosen vertex. For each of these patterns, the vertex is going to be in a cycle of dimension

2¢, with a contribution m?z_cydc, and to each of the remaining vertices either nothing or a further graph is connected
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with a correction depending on the identification. By considering the limiting variables Fop = lim,, o Eé?), the total
contribution, Cyy, to the different moments for graphs in which the vertex v is included in a 2¢ cycle is defined by

m2€ cycle G| Kol |G | ¢
Cyp = 1 1 2 83
’ (z) (+z ) &
m ¢
_ 1 =1 ¢ |Gal Kana ™
e (H;zlw LS 54

12
— 1 =1, ¢ m KaN1 1
= it Eomi™ ™ m <1 + n—lw(H(z) - 1)> (1 + o(H(z) — 1)) (85)
1 _
= gt By (L4 p(H(2) - 1) (1+ kat(H(2) — 1)) (86)
1 _
— 7n1m€Z€E2gn[i 'm‘HLHY, (87)

where G, is any possible graph, |G| is its dimension, and the following definition of the generating function was used
Go

I ¢ MGal
H(z)—l:;Z IR R (88)
G

@

the following variables were introduced
H,(z) =14+ ¢(H(2) — 1) and Hya(z) =1+ ko(H(z) — 1), (89)

and x, was considered to be dependent uniquely on the cycle that contains vertex v is part of. If £ > 1, then o = b only
if the block of GG, to which the cycle is attached is of dimension 2. However, the cardinality of the connection to these
kinds of graphs is of a lower order than to any other kind, thus, for any cycle with £ > 1 it is going to be assumed that
a=c.

Therefore, by summing the contribution C5, over all the possible fixed vertices v and over all the possible cycle
dimensions /, the moment generating function is retrieved.

w(H(Z)fl):Z%:iZCze (90)
k

i=1 ¢=1
> Eoynt~t
= %Hwa(z)%(zy 91)
=1
0, — 020263 = (0 —c25203)
=T )+ S BB o Gy )
=2
0 292 & 1—29 _020.2926
_ 1 ; Ow 3H ( )Hcp(z)'f'z(p ( 2 ~ z%w 3) ch(z)éHw(Z)Z. (93)
=2
Therefore the recursive formula is
H H 6, — 0202632 =\ [ Hy. 0y — 01 — 02020
H(x) =1+ vb(2) Hy (2) (01 = 050,,03) | 3 ( ve(2)Hy (02 — 01 — 0oy, 3)) 04)
vz qo=2 vz
o Hu @ H(2) (00 = a20303)  Hoyol2)Hy (2) (02 = 20%65)
902 pz
Hy. (02— 0 do
+ Z( wel 2 3)) (95)
qo=1
14 Hwb(Z)Hw(Z)(Hl - 050’3,9%) _ Hye(2)Hy(2)(02 — 0303,63)
Pz pz
+ ! 1 (96)
1 (ch(z)Hcp(92—93))
pz
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- Hyp(2)Hy(2)(01 — 0302.03)  Hye(2)Hy(2)(02 — 0203,63)
a Pz pz
vz
-1 7
+ 0z — Hyc(z)Hy(02 — 0202,63) N
Hyp(2)Hy (2)(01 — 0303,03)  Hye(2)Hy(2)(02 — 0303,63)

=1+

pz pz
Hyc(2)Hy (02 — 0202,03)
0z — Hyc(z)Hy(02 — 0202,63)

(98)

A3 Stieltjes Transform of the Matrix Ey[¢(h'?)¢(h))T] — E,[¢(h)xT|E, [x¢(h?)T] with o, = 0 and

o, =0
In this section, the matrix Ey[p(h?)p(h'D)T] — E, [¢(hD)xT|E, [x¢(h'?) ] is studied at deeper layers following a
similar argument to the one for Ex[¢(h™)¢(h™M)T] — Ex[¢(h™M)xT]E,[x(h™M)) T]. Therefore we study the following

matrix
1

M= —Ex {dj(w(e)y(a)¢(W<4>Y<e>)T}

1

- B {(;S(W@Y“))XT} E, [qs(W“)Y(‘))XT . (99)

The consequent Stieltjes transform introduced in Theorem however has to rely on the assumption that all the
elements in the hidden layer are independent since it is not amenable to keeping track of the covariance through the
layers, as shown in Lemmal[A.5]

The proof of Theorem [3.2]relies on the proof of Theorem[A.T]to implement the moments method. This subsection will
focus on implementing the method of moments by considering the following expectation

1 1
EEw[tr(Mk)]:EIEW Z M, 5, M, .. M;, i, (100)

i1,...,ix €[]

= I

B WEW Z M1112M1223 : Mz:n (101)
1,00k €[N]
B, pk €[m]

where

M#l *]EX

2122

azwaﬁwzwﬁﬁﬂ

l l

n,m
13
Z W’El)l l(/,b)l PH1

Y o

T p,g=1

(102)

o i,

In Section [A.3.T] the contribution of simple cycles is computed and it is shown how it is necessary to include the

assumption of the elements in the hidden layer being independent, i.e. Y:(é) ~ N(0, q(Z)I), to retrieve a tractable
analytical formulation. Once this assumption is considered, then in Section two updated Lemmas from Section
[A.2.2] are presented and their expression allows to state that the proof of Theorem [3.2)is the same as for Theorem[A.T]
The results in Section[A.3.2]are not proven explicitly since their proofs trivially consist in renaming some variable in
the proofs for Theorem|[A.1].

A.3.1 2k-cycle Contributions

The contribution of cycles of length 2k is first computed to then study the contribution of any admissible graph. We
then consider cycles of length 2k, i.e. in Equation (T01) ¢y # i2 # ... # i and py # po # ... # g

B = Ew [M M2 MU ] (103)

1112 1213 " (2750
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4 4 I 14
/ {</¢ ZW7(1)ZYI(/L)1 ZW£2?Z l(,u.)l
(0) f) ) v (0)
ez 3 [ AW o [ o WO, )

YO YO
</¢Zwlkl lltk ZW lltk
02 Z / &( ZWE?ZY}Z )Xy, DX / &( ZW“) Yi)X quX>}DW (104)

This can be rewritten thanks to the following identity.

X3
/¢ ))X 5, DX /¢ (HY)X e 2% dX (105)
o o (eml) w,
= —02 |p(H))X g, e 22 +ax/7e 202 dX g, (106)
P _ X 8Xﬂp
05w 2 (001)
= o2 /¢ H akeax—ﬂ,,px (107)
-2 _ _ D) (¢(H(1)))
(£—3) (£—3) op
=0z /¢ kep Zwaki H ¢/(Hk[7j+lp)Zwklfj#»lké—j) TDX (108)
j=1 ke j Bp
T (t—3) (t—3) 1) vy (D
Y4 1
=g / ¢'(H,),) ZWW [T{eme? )S Wi )| o@E)wlpx  (109)
j=1 ke
o (11 =) ( )
_ 2 I4 0—j 1) 0—j
- szwakz H Zwklfji»lk@fj) wkzﬁ/ 1_[(ZS ko J+1P DX (110)
ke J=1 \ke—j
©) - H—9)
_ 2 L ¢
= o2, H (H,, 7 )| DX (111)

. ¢ 0 —j 1 0 gyy(t=1) . .
where the new variable QU((II)B =2 meZ (H (Zke ; l(w ﬁllkf—j))> W,(Q)ﬁ =Dk W((l,ze Wt kol ) is intro-

duced and the symmetry of the problem for which H((f; RN HE{? for any «, /3, v, and 4, is used to isolate the terms in

-
Jx (Tjm 0’87 ) DX,
Therefore, by defining

eg‘*):/x(zy H))DX = /¢> (v/q0=Dz)

we can consider

5 () (é
MiIZZ /¢ an lYlp,l szg,l lp,l
i 2 [ AS WO DX [ AW XX an)

/ ZW“ l l,u1 Zwlz lYl(fZ
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nm L
HD ¢ -1
m,/ ngs o Dxmygzi/ [1¢ @) | px (113)
qu 1 j=1
; 2
¢ (©) venl0) .
:/QS(ZW;? l,ul Zwlzl lul 2Zm71;w52p Heig]) (114)
l j=1
and we therefore aim at computing
(€n) - () f)
= [ T (oW wi, v -
wx | g
) 2
o2 Z w ) | []65 DXDW (115)
- ,

k
Z(:) > ZE’“"“’"”) (116)

Ny =0 ny s.t.
[Ing [l =n— nw

N 2
where n,, is the number of terms of the type wﬁfimﬁfilp (Hﬁzlﬂgf )) in one addend of the expan-

sion of the product in Eék ‘), and ng corresponds to a vector whose entries define how many terms
of the type ¢(>, WES)ZYZ(/?&) o>, 221 lYl(ﬁ)s) are sequentially included between two terms of the type

(€) gy7(6) £ (9)
w%?wlsﬂp (Hj:l 93] ) )
(e

To achieve accurate modelling of the contribution of E; k’n) for deeper layers, it is necessary to to keep into consideration

~ (£
the covariance matrix of each hidden layer Y. Therefore, at each layer the matrix W( )2(2) Y is going to be

considered instead of WOY® | For k = 1, the contribution of a two dimensional cycle is determined as follows

Lemma A.4. For the matrix
1
M = —Ex [qs(W(‘) YO)p(w® Y“>)T]

- #Ex [ng(W“)Y“))XT} E, {gb(W“)Y“))XT] 117)

and YO = 10} (H (l_l)) as defined in Theoremwithout the hypothesis of independence for the elements of Y © e
Y:(f;) ~ N(0, q(f)E(Z)), when k = 1 then the contribution of an admissible cycle is

4
B = [ s (1+0(i>> 22 T 0 (118)

=1

where
~ 1 tr(x®) 22
Gen) :/ ol e dx 119
o) = /(;5’(\/ q(e)z)e_%dz. (120)
Proof. See proof in Section [C.1} O

For k > 1, this modelling leads to the following result for an addend w in the expansion of (I16) with n, and n,,
Lemma A.5. For the matrix

_ 1 ) y(0) ) ()
M = —Ex [s(WO Y)Wy O)T]
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7 L]E [QS(W“)Y(‘))XT} E, {(b(W(e)y(e))XT} (121)

252 %
m2oz

and YO = 10} (H (L]_l)) as defined in Theoremwithout the hypothesis of independence for the elements of YO, ie.
Y:(;;) ~ N(0,¢92D), when k > 1 then the contribution of a single term in the expanded sum of (TT6) is

0.2 0.2 (HZ (g(l))2 e é([ n) k—nq
(n,k,nw,n¢,p) wor =173 2 ' (n)
E - [|-
J(E) 6 ()
£=1
k
where u,(cn) = tr(%l& and
2
) Ja® [tr(=0)
o) — /7‘1 e~ T ¢ (Vg =L 5az | 123
22
) = /d(\/ﬁz)e*sz. (124)
Proof. See proof in Section [C.2} O
The dependence of EU"""*™**) on the moments of £(¥) is such that it is not possible to aggregate explicitly all of

the contributions in (TT6). For this reason, it is necessary to introduce a new assumption that ¥ = I. With this new
assumption, it is then possible to compute explicitly the contribution of cycles with k& > 1.

Lemma A.6. For the matrix

_ 1 O y(0) ) y(0)
M=~ [s(WOr)o(wOrO)T]
1

252
m2o2

E, [qS(W(Z)Y(K))XT} E, [¢(W(Z)Y(£))XT} (125)

and YO = ¢ (H(Zfl)) as defined in Theorem i.e. Yfﬁ) ~ N(0,¢0), when k > 1 then contribution of an
admissible cycle is

k

¢ 2
1
Eop =nh ™" [ 65 — 6252 (H 9§“> (1 +0 (n>> (126)
=1

where
2
Va2
0y) = / T e=7 ¢/ (Vq02)dz | 127
ol = /(;5/(\/(](@)2:)6_%612. (128)
Proof. See proof in Section[C.3] O

When considering £() = I then Lemmais updated as follows

Lemma A.7. For the matrix
1
M = By [o(WOYO)o(wOyO)T]

! g [¢(W(Z)Y“) )XT} E, [qb(W“)Y“) )XT} (129)

2,2 %
m2o2

22



Mutual Information of Neural Network Initializations: a Random Matrix Theory Study =~ A PREPRINT

and YO = 10} (H (£_1)> as defined in Theoremwithout the hypothesis of independence for the elements of YO, ie.
Y:(If) ~ N(0, q(e)l), when k = 1 then the contribution of an admissible cycle is

‘n ¢ 1 1
B = g (1+O(n)) —aﬁaffll:[l(eg)f (130)
where
1 22
L") :/— Va®z2)2e T dz 131
1 /—2ﬁ¢( qWz) (131)

o) = /¢’(\/q<f>z)e*§dz. (132)

A.3.2 Aggregation of the Contributions and Implicit Relation in Theorem

Once the hypothesis of independence of the elements in the hidden layers is considered, the propositions for the
aggregation of the contributions are achieved in the same exact way as for the first layer of A;,1) — = E;rh/(l) DIJNNEIN

o7
leading to the following two Lemmas.
Lemma A.8. For the matrix
1
M= —Ex {qs(W(f) Y(O) (W) Y<e>)T]
1
- —E [¢(W“>Y<‘> )XT} E, [QS(W“)Y(Z) )XT} (133)

and Y = 10) (H (é_l)) as defined in Theorem the Stieltjes transform of the eigen-distribution of M asymptotically
satisfies the following equation
-9

G (=) = — +§H(z) (134)

where H(z) is the generating function defined as H(z) =1+ ;- % =1+ i Doy ZE

Lemma A.9. Consider the matrix

M— %Ex {QS(W(E) ) (WO Y(a)T]

- %Ex [¢(W(Z)Y(Z))XT} E, {qb(W“)Y(f))Xq (135)

2
m2o2

and Y©) = 10) (H(£71)> as defined in Theorem and consider a graph Gz with 2(p + q) edges that is defined, via

either an i or y identification, by two graphs Gy and G4 with 2p and 2q edges. Then the asymptotic contribution, mqu,

of the graph G'3 to the moment w4 is equal to the product of the contributions of the block cycle graphs that define
G3 with a correction term. This is, they are joined with an i-identification

Gy _ G G,
Myt = Mp n my, (136)
1
and if they are joined with a p-identification
Gs _ .G Mhka _aq,
Mytq =My m my, (137)

where if either one of the block cycles connected to the identification are of dimension 2, then o = b or otherwise o = ¢
o 910i019§+030i9§927030i9§ o 20’30’30%9270i0'3)9§
and kp = 1 + =G T 0 —oTot ) 0 e = L+ TG ooz oy

By using Lemmas[A.8]and [A.9]it is then possible to proof Theorem [3.2]by using the same exact process as for Theorem
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B Proofs Relevant to Theorem [A.1]

B.1 LemmalA.2

The expectation of any 2k cycle can be expressed in a different format thanks to Lemma [B.T} From such a formulation
it is then possible to identify the expected contribution for k£ = 1. First thought the following result is proven

Lemma B.1. For Y = ¢ (WX) as defined in Theorem when k = 1 then the following identity holds

/WX ¢(Z Wil,le,M)qﬁ(Z W, X1, )DWDX
> 1 7

- /\/%gﬁ(awawz)?e*%dz (1+0(1/n)) = 6, (1 + O(1/n)) (138)
with 1 ,
0, :/\/—Q?QS(awowz)%*%dz. (139)

Proof. Let’s start by considering the general case with i # o # ... # iy and p1 # po # ... # pui when computing

E [Yzlltl lem "'Yukil] : (140)
After expanding the expectation, we consider auxiliary integrals over z, by adding delta functions enforcing Z = W X
with
s if (i) € 2
7, = " o 141
a {O otherwise. (141)
where Z denotes the set of unique pairs (z, i) in equation (T40):
/ b thlxl#1 Zszsz ZWHZXW)DWDX (142)
= [ TL 8tees = 30 WarXis)olen (o)1 D-DWDR (143)
(a,8)€Z
where
H dZagp. (144)
(a,B)eZ

Now we consider the Fourier expression of the Dirac ¢

1 .
§(z) = —/emdx\ (145)
27
and therefore introduced the matrix A € R™*™ whose entries are
Nip  if (i,p) € 2
A, = ’ 146
" {0 otherwise. (146)
with I\
DX = H “LaB (147)
(a,8)EZ
to obtain
[o (S0 Woo X3 We iy, D WDX (148)
I 6(zas - Zwakxw (Zirjia )0 (Zinpir )o@ (Zir 1, D2 DWDX (149)

ZapEZ

IT e=r (—maﬁ (Z Wi Xis — zaﬁ>> D(Ziy s )O(Ziguy )P (Ziy i Y)DZDWDXDA  (150)

Zap€EZ
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:/exp —i > Dap (Zwakxkﬁza5> D2y 11y ) (Zigysy ) oo D2y 1 )DZDWDXDA  (151)
k

Zap€EZ
(WX—2Z)ap
:/exp —i Y Aap(WX = Z)ag | ¢(2i00)$(Zigp)---(2iy , )DZDWDXDA (152)
a,B=1
_ / e tr(ATOVX=D) g bz . bz, 0 ) DZDWDXDA (153)

where tr() corresponds to the trace function.

Now we first integrate over X the factors of (I33) that depend on it

m,n n
—it’r’(ATWX) DX = / dXCb _LXZ — 7 AW, . X
/6 H 277(0_% exrp 20_% b U Z ab YY accb

b,c=1 a=1
m,n n 2 n
- dXCb 1 . 9 0'2 2
= 1] exp | —— [ Xeo +i02(> /\abWac)> — 220 AaWae) (154)
b,c—l/ \% 271—0% 20’12' ( a=1 2 a=1
- q 2
“r 02 & dXep 1 -
= ——Z() Ay Wae)? < ——— [ X + 02> Ny Wae 155
6101 exp 2 ({LZ:1 sWac) | Tno? ezp | =557 | Xe H%(; sWac) (155)
=1
g [ 573 S 2_ 03« - 2
= [T exn |5 Q_ AaaWae)®| = exp | =55 37 (O AatWae) (156)
b,c=1 L a=1 i b,c=1 a=1
2 52
— eap {UJATWII%] = 7 FOVIAATW (157)

where in equation we used the property the complex integral of z = x + iy over the closed cycle (—o0, 00, iu +
00, iji — 00) of the analytical function \/ﬁe‘(””’)z/ (20®) is null and therefore

/°° 1l eiweet g, /OO 1 @y,

oo V2mo? —oo V2102
Now we integrate over W
o2
/Q,thr(wTAATw)DW
n AW, : W o2 TAAT
:/ H 7”6_ 205) e—%tr(w AA W) (158)
L= V2mog,/n
n RN Wi W
T e I 159)
L= V2mog,/n
n . ntrw " o2
:/ H _dWy; e—%lguwe—%tr(WTAATW) (160)
Pt 2ra2 /n
n AW, ; ntrwlw_ o2, TAAT
:/ H 7” G_W_Tt’,(w W) (16])
Pt 2o /n
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n 2
d"w; =i (W) Wit W] AN T
-/ | eyl R (g foan) (162
j=1
n 2
drw; —( szrw] Wit Fw AN Tw;
:/ H (2ro2 /n)n/2° ( " J ) (169
Jj=1
n dnw] —%w;— ( I+02AAT>
= H (164)
2 n 2
j:l/ 2102 /n)"/
T / dw; detT (14 ZEANT o] (GproianT ), (165)
e 2102 /n)"/2 Jet— I+ % wAAT)l/Q
B n / d™w e*%W;(%IJrngAT)W] (166)
i det(I+ % wAAT)l/2 (27T<72/n)"/2 det=1(1+ %% AAT)1/2
LT nyas? T :
B ﬁ / d"w; e 2 (”5)“ AN )WJ (167)
= 0202 2 n/2 1/2
=1 det(T4 2 AAT)l/2 (2mof, /n) det ((I + @AAT)A)
1w T nyys2 T w,
T L / dw; e ® T (FreoianT)w (168)
- 1 o2 n/2 1/2
joi det(I+ 27 ANT)12 - (27) det( 2 /n(l+ e AAT)- )
" 1 / d —4] (FroianT ),
= H (169)
o202 n/2 1/2
oy det(T+ ZaANTYY2 ) (2m)2 <(UL2I+U§AAT)_1)
=1
1
_ (170)

det(I + %278 ANT )n/2

where we consider w; as the jth column of W and we used the property that for a general non-singular matrix
det(A™1) = det~*(A).
This implies that by considering F'(z) = [[(, g)ez ¢(2a8)

/ ¢ ZWMXW ZWMXW ZWMXWDWDX (171)
1 —itr(ATZ)

= e F(2)DzDA (172)

det(I+ ~ 780 T AAT /2

2
- / exp (—2 log det(I + J””—‘”AAT) - itrATZ> F(2)D2DA (173)

n
Now we will consider the integration over the A\, variables. Since the eigenvalues of AA T are non-negative, as a
matter of fact for any pair (A, v) the following holds A\ = VT?TTVAV = ”ﬁtﬁlf > 0, the maximizer of the argument in the

exponential is A = 0, by the saddle point approximation we can consider only an expansion around A = 0. We can

then use the same analysis done in [13]] and decompose the log determinant via logdet|1 + X[ = > ._, %tr(Xg).

Then it follows that

/ o Zwmxl#1 Zszsz ZWMXM)DWDX (174)
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n o202 T T
= /exp <2logdet(l+ —LYAAY) —itrA Z) F(2)DzDX (175)
n
S TETh g (AAT) -2 sy Hfﬁtr( % AAT >7mAT
_ / . - 2)D2DA (176)
3
2.2 LY, S 'r( TEoh ANT >7mATz
:/e_ ihir(anT), F ez ( ) F(2)DzDA (177)
We now consider the following change of variable
< OwO
Aij = \j{)\ij (178)
] s
DA = (179)
ez 21000/ /1
therefore
/ ¢ Wi Xyn)é Zwmxml ¢(> Wi, X, )DWDX (180)
! 1
3
202 S r( 727 AAT )—itrATZ
- /6—7'2 r(AAT) T ez ( ) F(2)D2DA (181)
o N _pEtt ATV A _
_ /e—%tT(AAT ¢ 3 ez Tt ((AAT))in A2 0 DA, (182)
_n (—n&tt r((AAT)E
We will study the contribution of the exponential e 2 Lezz ¢ (( AT) ) by considering its Taylor expansion
et =3 ga” /v
/ ¢ Zwmxm Zwmxm ¢(>_ Wi,1Xy,,)DWDX (183)

l

_ 5+1 a4\
:/ Z(_Z§>2 1 ((AAT) )> e‘%”(AAT)_mﬂﬁwATZF(Z)DZDA

V!

(184)
v=0

0= (AATY)Y
_ny AA 52y vE s
/ Z ( = (( ) >) ¢~ Trapez (3V0 7 2 herms) pyDLDA (185)

V!

CO 4 (AATYE)) i i
:/ Z ( Z§>2 ' (( ) )) H 6—%)\iﬁ—i W@kalgz,ﬂ; F(Z)DZDA (186)
v=0 v Aap€EZ

When k = 1, following [[11] the zeroth order expansion of the Taylor series

& (5 e = (A1)

v=0

is the leading contribution to [y, y #(3°; Wi, 1Xi . )03, Wiy i X, )DWDX.

The zeroth order contribution is determined as follows.

\/ﬁ r T —itr— A _
/ (2 BrAAD I ETEAL R (2) ) daiy i
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:/</ vn 63A2iaﬁw>‘z¢(2)2dzd)\) (187)
2O 20w

_ vn *263202 V2m 2 A M "
([ f7¢<z> (/ " b ) -

Vn I == / 2 —5hz
— 202 0% d — 20‘u)“1’d 189
oo, V)% z= %%% —=——90(2)% z (189)
1 52 52
= / mqﬁ(owaxi)%_?awamdé = / Eqﬁ(awUIé)Qe_Tdé =0, (190)
For higher order terms of the exponential Taylor series we first notice that
nam (DS na G
—— —ir{ (AA ) =|—-= 2%
3¢t ((AAT) 22 ¢
§22 £22

For each of the expansion terms, the same steps in (I87)-(I89) lead to the following 2£v-th non-central moment of a
Gaussian to be considered

v/2 26v+1
/ VI N2 o= 3 Ot 5255 g = 1 & QEVM@(_QSJ. 1 _i) (191)
Vom n LS 2 72" o202

where the solution of the non-central moment is given in [22] with

2§y1 2 (B (B i) =22
272 0203)_25 (D) (=3 +1)..(—3+i—-1) <0202>'

This leads to the computation of the following integral
—22 ' 2/ 2 2
/Za (0202> ¢*(0202 2)Dz (193)
28v. 1.

which is finite since ®(—=~; 5; — 02 > ) is an entire function of {v and z, and when solving it by parts we compute
the following integrals that are finite by hypothesis

/¢<k> 0202 2)D (194)

d(— (192)

i=1

.. . 2
for any derivative k. However, because of the non-central moment, we also gain a factor (%)&/ and therefore these
terms have a contribution that is O( %) relative to the zeroth-order one.

Therefore it follows that

/VV X ¢(Z Wi1,le,u1 )¢(Z Wi1,le,M1 )DWDX
’ l l

1 , 2
= | —d(opowz)e 2dz(14+0O(1/n)) =0, (14+0O(1/n 195
[ Femiteumnz e ds (14 0/m) = 1 (1+0(1/m) (199
O
B.1.1 Proof of Lemmal[A.2]
Proof. In the case where k = 1,
EM :/ (> Wi, 1Xi,,)¢ ZWu X1 ,0,) ZWM,WHP%DWDX (196)
W, 1 p=1
=0,(1+0(1/n)) — 020263 (197)
where the first term follows from Lemm@ and 03 = [ ¢/ (o, awz)e’édz O
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1 I, e
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Figure 7: Example of how in the Schur complement the contrlbutlon to the momentum is defined on as many independent
blocks of products, 11, as the number of factors in the form o WZEPW% o p0§.

B.2 Lemma

When considering k£ > 1 we need to consider all the mixed products in (63). As a matter of fact each term in the
expansion of the product in Eyj, consists of successions of products of the kind ¢(} , Wi&le ue )P Wi X 1)

alternated with products of the kind o263 >-7_ | W, , W, Each element of the kind 0202W,,,W;, ., divides the

P TVl w¢p z§+1p
sequence of products into independent blocks HJ. As we see in Figure with three factors of the kind o263 Wi o Wi
we generate three independent blocks II; that are independent among themselves.

Lemma B.2. For M = LEy [YYT} - " [YXT] Ex [X YT} and Y = ¢ (WX) as defined in Theorem

when k > 1 each independent block I1., with | terms ¢(3", Wi, 1 X1, ) (3", Wie, 11 X1e ). generates the following
contribution

te+1P

n o2 a2626!
with
OwO : 2
0y = ( vz _Tq/) (Uonz)d,E) , (199)
Jox
03 = / ¢ (040w21) D2y (200)
2z

Proof. We focus on the integration of one independent block H;l), where [ identifies the numbers of factors
A0 Wi 1 X014 ) (> Wi, 11X, ) between two of the 0,03 W, kind, i.e.

l
Egzg) —— /W . 7203Wip [ [ <¢<Zwi§,lxl,ﬂ5)¢(zwiw,lxl,ug)) 0205Wi, g p DWDX.  (201)
) £=1 l l

We are going to compute this expectation following the structure of the proof in [13]]. We will introduce a dummy
variable z with a delta Dirac function within each ¢ element, and then introduce a Fourier representation for all the
arguments in the ¢ functions. We introduce for each factor II; the set Zy;; C Z which contains only the combinations
(i¢, p1,,) that are included in the ¢(>, W, 1 X;,,,, ) arguments. Thus we consider auxiliary integrals over z, by adding
delta functions enforcing Z = WX with

Zip i (i,p) € 21,
Z, = " o J 202
. {O otherwise. (202)
and consequently
!
Byt == / 0:0:Wip [ | <¢(Z Wig,lxw)as(zWiw,le,ug)) 0205Wi,,,q p DWDX (203)
e=1 !
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/ T 0Gzas =D WarXip) § 0263 M,H (Ziepe )(Zicne)) Wiryq ¢ DWDXDz  (204)
k

ﬁ)EZn
l
o T _
=— / e MrA WX=D) G 202W, L T (0(2icne)0(Zic 1 pe)) Wirss e DWDXDAD2 (205)
¢=1
where
Dz= [[ dzap (206)
(aaﬁ)EZHJ‘

and in the second equality we used the property that

1 .
§(z) = — / e\ (207)
2
and therefore introduced the matrix A € R™*™ whose entries are
A; = H ’ 7 208
a {O otherwise. (208)
and therefore i\
DA = LB 2
H 2 (209)
(a,B)Ean

We integrate over X

dX 1 -
71tr(A WX) DX— cb . X2 o Ao W X
IE H/m”p[ 03X ~ 1 2 AunWacKe

b,c=1 a=1

2
H / X exp b (X b+2’02(2n:)\ W )) — U—g(zn:/\ sWae)? (211)
b,c=1 \% 2770‘% 20% ’ 2 a=1

a=1

(210)

an n

=eap | =5 > QO AaWae)? (212)

H exp [_ Z)\abwac

b,c=1 b,c=1 a=1
oz
- {_UZATWH%] = e T IrWIAATW), (213)
We also integrate over W, first considering the case where p # ¢
/ o202¢ Itr(AATWWT)W“pW“Hq DW (214)
w
n AW _ ntr(WIw) -2 - -
_ 252 _aW4 22— ZEtr(WTAAT W)y )
_0/93/ 200 e 2 Wi pWig (215)
N 11_[1 \/2mo2 /n i
. d"w; > (LWTW-+L§WTAATW') i i
_ 2p2 o ews =13552 "j Wi 2 W 37 oo (11) o (F141)
B o*x93/ H (2mo /n)n/? e T wp W' (216)

J:1

—Z; 1(2 2 wJ w;+ IWTAATW )

n dw J#p
— 4202 J j#
o2 | JH@mQ/n)n/? ©

J#p
J#q

n v o2
) d Wy W(“) ;’12” w;wpffw;AATwp
(2702 /n)n/2 7P
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/ 2 d:;Vp) Wy e Zog e Yo e AT @17)
oL /)"

=0
=0. (218)

While now we will consider the case where ¢ = p

oz
/W67TAtr(AATWWT)Ugegwilpwilﬂqu
n AW, 7ntr(WTW) -
_ 292 _ aWi T ok (WTAATW)
=020 205, e W, W, ., (219)
3/ Zyl V2mo2 /n R
- d"w; -2 (Lw;wj+a—“2”w;AAij) i i
= Uazce?%/ H (2702 /Ti nj2 | € e ’ W;gl)wglﬂ) (220)
n d"w Z;L 1(202 wTW,—i-a;ijAAij)
202
:Umé)g/ H pyRTYE e J#p
j:1 (270 /n (2702, /n)n/?
J#p
an Wy i a1 7%w;wp7ﬁw;AATwp
[ e @
n _ o202 .
=202 ] d'w;  det”'(I+ =R AAT)Y2 e*ﬁw.ﬁréﬂf\”wi)
x 3j:1 (2702 /)2 get— I+ ¢ z wAAT)l/Q
J#p
:det(l+@AAT)l/2
n — 020w Ty\1/2 _lyT( P T \w
/ d'w,  det~H(I[+ ZZe AAT) Wiyl 7 (zgreoianT ), 022)
(2ma2 /n)™/? det=1(1 + MAAT)l/Q Yo W
202 . .
o [wiwiien] (223)

" det(I+ R AAT)/2

Consequently, each non-zero contribution to the momentum is going to be defined by addends in (63) whose elements
in the form o,05W; D have the same pedex p.

We notice that the covariance matrix of the vector w; is

-1 00
(T;I n agAAT> - % Z(—Qfmﬁ)’f (224)
w k=0
therefore assuming that n is large enough
C (i1) o (lig1) | _ n 2 T - _ 0-721} S 0'12110'72; T\k
ov {wj W, } = l<021+a$AA ) ] = l” Z(_TAA ) . (225)
w 119141 k=0

119141
. . . P
Since A is defined on Zy,, the non-zero terms in [(AAT)k] i) correspond to products H =1 ()\ij 11 Nij g M) ’. The

- = = . R
sequence of exponents [ = (lq,...,[;) can be determined by considering diagrams as the one reported in Flgure
with [ = 5. For each power £, the sequence of edges that are non-zero correspond to the paths that connect 7, to 7; in

exactly k steps; the exponent /; correspond to the number of times that the path goes through the interval (¢;,4;11).

Therefore, k = [ is the only case where all of the variables >\i_7 i Y

i;411; have exponent of exactly one and this allows
to write the covariance in the following way.

2 o0
Cov [wi W] = l"wz it “"AAT) (226)
n
0 119141
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E—0 1 12 L3 [z 5 6

- - - -y - - - - = = =

Figure 8: Diagram of sequences of paths that allow to connect 7; to 4,41, with [ = 5, for different number of steps k.
The blue line corresponds to the unique path connecting 7 to 7; with & = [ steps; the dashed magenta lines corresponds
to the [ paths connecting i to i; with k = [ + 2 steps; and the dotted red lines corresponds to the [? paths connecting i
to ¢; with k = [ + 4 steps.

l0'2 0'20' l ! 0'20' lj
([ “w w —+v w w-x
7( 1) n H n >\7:U’J 7+1#g+§ : § : H( n /\lJ“J 7+1l‘9‘> (227)
J=1 Tst. =1
—
17 a=v+
1;€Ng

L.O.
Let’s now consider the integral on DADz of the first addend in and denote it with El(;) . By considering

F(z) = ngzl (¢(Zisus>¢(zis+1us)) i

) L-O.
B
2 2 2
202 1%w Ow9% 1 —itrATZ
— [ oz05(-1)"*2 Aijg Mgy e F(2)DADz (228)
[ o1 =i | s
o2 o202 n T2oB AATY —itrAT
:*/ (1) T =25 i Ny | €7 BRI DT B ()DAD: - (229)
j=1
02 o202 w0
_ ( l)l wx 3/ H Aaﬁ
" o,B)€Zn; \/’ﬁ

252 _1)§+1
T2%w 4. T n 1
e_ T tr(AA )—52522( :

tr (@AAT> ATz
F(2)DADz (230)

—1)¢ .
where in the last equation we used the Taylor expansion logdet|[I+X| = >_._, ( : tr(X®). However, differently
from the study of the covariance matrix A ), thanks to the W integral, we already have a factor containing all of the
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variables A\, exactly once. Therefore, we can consider only the first order expansion, ie. £ = 1. Further we are also
going to consider the following change of variable,

S\CMB = Jquam)\aﬁ (231)
therefore
E(n) L.o. ~ 1 lo.’l%)o-geg UU’OJJA — 3 tT’(AAT) itT’ATZF DAD 232
e ~ —(—1) — ( 51)_613 NG o8 | e (2) z (232)
(o Hj
_ _(_1)10310'?;9%/ H Xﬂ
" (a,B)€Zn; v
X2 -
- “of yitaflal do
( ’ﬁ>€znj< ’ )F(Z) H 27r0-wi-:17 H dZOéB (233)
(a.8)€2n, CN
0'2 aﬁzaﬁ dj\
= —(~1)! 2% Toru (70 B dzg 234
(1) — AL </\f ¢(26)2mw%2ﬁ> (234)
o I,
- 21
020202 [ [ Nap -1 (Sapton )P s dha
= (-1 3( f (ontaist) 2%%¢<zaﬁ)2m ?—dzag (235)
21
2 202 2 . _
= (1) TuTef / A o 30+ 250) 0 ) dz (236)
n vV QW\/ﬁanw V2T
2 242 22 . 21
= (1) e (/ #e) i < ” >dz) (237)
n V21 /oo, Oz0
2 292 N l 42 21
— _( 1)1@ (1) </ i#;(; 20252 2Z 5 dZ) . (238)
n n 7 V271 0202
Now we introduce the following change of variable
5=~ (239)
0z0w
and then
n) L-O. 020203 ZP(0g002) _22 2
By =t ( / A N e de> (240)
4
2 202 / ~ 2 21
B (awaz / #70u7) ("“W)ezd5> (241)
nl+t V4 V2T
o2 02020,

The integral on DADz for the remaining addends in lead to the computation of higher moments of the gaussian
variable A, which are finite. However 1 / n is elevated to the same power as A and therefore the contribution of the

remaining addends in (227) is E (2) T O(1/n).

It then follows that

" ny L-O. ny L-O. 1
Ef1<3> Efﬂ?) +E§1s3> (O (n)) (243)
02,020305
=~ (1ro( o)) (244)
O
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B.2.1 Proof of LemmalA.3]

Proof. Now we can use Lemma [B.2] for the computation of Esj,. Let’s assume k£ > 1, and compute the contribution
of each term w in the expansion of (63). Specifically each term has an associated number n,, of independent blocks

I1;, and we denote with ng) and ngf) the number of factors of the type ¢(3 2, Wi, 1 X, )0 (D2 Wi, 1 X1, ) and

0203Wi., Wi, ,p respectively within each block II¢, note that k = Zf(ngf) + ngf)), and n&) = 1 for each block.
Further, we also fix the index p in the factors 05 0§W¢EPWQ +1p> and then

(&)
- ng
k,nyw,ng,
ESJ #7) = / H U$93Wifp H (b(z WiE+1{7leuu'E+1f)¢(Z Wis+1f.+17lxl,ﬂs+z)
WXeq =1 l 1
02.03Wi,.p) DWDX (245)
Ny Ny 2 2929"55) 1
—0,,0
=]]E (n©) :HW(HO()) (246)
. I ¢ - 1“1’”4, n
§=1 ¢ §=1 n

_ 2 292\ Mw Sre nld
(=) () (eeR) @
2 9292\ Nw k—ny
(2 (5 (o)
n n n

The expected contribution for the 2k cycle is defined by considering the contribution E;’ k= né_kf)’g (1 +0 (%)) of
the addend w whose n,, = 0 and of the addends for which n,, # 0

k n
n I k Moaw s M h 5]
EG =B+ ) (n ) S plmenen) (249)
Np=1 w p=1
1 ok 1
=nikok (1 +0 (n>) +npF Y (n ) (—o20203)" 05" (1 +0 <n>> (250)
Nyw=1 w
: 1
=ny " (02 — aiagag)k (1 +0 (n)> (251)
O

B.3 Proof of Proposition 2]

For each possible pattern we have to consider how many graphs, # and #2 we can build by varying respectively the I;
i-identifications, and the I, u-identifications. Since, we have to assign for each of the k — I; i-identification a value
among the n; available without reinsertion

k—1I
_ ni _ nie 12 i
#1 = (k B L) = (k — Ii) 2n(k — 1)) (1 +0(n1)) (252)
and equivalently
k—1I, )
2= (k: TL ) = (kmeji ) (2m(k = 1,)) 7 2(1 + o). (253)

Thanks to the formulation for the contribution of 2k-cycles in Lemmas and we are now able to determine the
contribution of any admissible graph G.
Proposition 3. For M = LEy [YYT} oM [YXT} Ex [X YT} and Y = ¢ (WX) as defined in Theorem an

2 2
arm

admissible graph G with 2k edges, b blocks of size 1, ¢ blocks of dimensions k = {ki,...,k.}, and b" of the I,
identifications define a one dimensional cycle, while the remaining c of the 1, identifications define larger cycles, is

such that the contribution of the graph, E(Gn), grows as

Eé") = ng_z"' i (02 — Uiaiﬂg)zi i (91 — 0252 9%)bi+b“

7w
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xr-w T xT w
(02 — 0202,603)? (01 — 020203)(02 — 020263)

~ (1 e (i)) (254)

Proof. When considering the contribution of a generic composite graph we have to keep into consideration what kind of
identification defines it. Specifically, if an identification is of the i-type, then this allows to consider the two connected
sub-graphs separately. However, if it is a p-type contribution, then there is a correction term that has to be kept into
consideration.

w pH
[1 202020205 — otol Hﬂ ¢ {1 01020202 + 02020205 — ool 03

To give an intuition on why the correction term arises, and to introduce the cases that we have to investigate, we are
going to consider a graph G generated by two cycles. When they are connected by an i-identification, the factors
o203W; «pWic,,q always appear as a pair in each constituent cycle of the graph. However, if they are connected with a
p-identification, this is not the case; the factors U§9§Wi5 »Wic, 14 can be split by the identification in the two different
cycles. We will show that if none of the four edges connected to the identification vertex are of the 0,03 W,, ), kind,
then the cycles can be considered separately, while if not, they have to be considered as one. Considering separately
two cycles implies that it is possible to choose the column p of the matrices w independently, thus leading to a ng fold
increase in the estimation.

Now we are going to consider the expected contribution of a general graph G, which is defined by the following integral

k n
B = / 11 <¢(Z Wi X1 )0 WiepiXiue) = 07 Zwigpwif+1p9§> DWDX.  (255)
£=1 l l

p=1

We are going to compute the contribution Egb) by considering each term, w, in the resulting sum that results from
the expansion of (253). However, to simplify the computations, we are first going to consider the contribution of
the different kinds of blocks of dependent variable IT; that determine the addend w. As in Lemma[B.2] if there are
no identifications between two successive terms o203 W;.,W;,,,, then a block is isolated to the factors of the type
A0 Wi 1 X0 ) 0>, Wi, 1 X, ) between two of the type 0,05W;,, and their contribution is the same as in

Lemma We refer to the contribution of these terms as OEg;).

Differently from the cycle case, if there are some identifications the blocks might be defined by more than two 0,.05W;,,
factors. We consider the following three kind of identifications:

* in the block II; there are only two factors of the type ,03W;,, and there are some identifications on the
vertices in between the two blocks, see Figure [9a]

» there are multiple factors o2 0§Wi£ »W defining the block II;, but none is such that p¢ is an identification,

iet1q
see Figure[Oblas an example;

* there is at least one factor oi@%WQPW% +1¢ such that p¢ is an identification, see Figure [9¢|as an example.

This corresponds to the term o2 0§WZ-£]DWZ-5 +1¢ being split into two different cycles.

We are now going to identify all of their contributions.

First Kind: Let’s consider the integration over the block Hgl’p) with [ factors ¢ (D, Wi, 1Xq 10 )02 Wie 11X 1)
and p specifying the column considered of Wﬂ Then

l
IEgg?,m = - / o0sWip [ | <¢<Z Wi i X1 )60> Wie,, i X >> 0205Wi,,,, DWDX. (256)
=1 1 l

and we define n;,4 as the number of identifications within the block; this corresponds to the number of complete cycles
between the two factors 0,05 W;,, and 0,03 W;, +1p- By integrating over X and W as done in Lemma to retrieve
(223), we confirm that the two factors W;, ;, and W, ,, must be relative to the same column and thus

2
E(") :_/ 202(_q lawC« [ io ("LH»l):I :
ity il WA det(1+ Z278 AAT )n/2

n

e HATLR(DAD:  (257)

"If the two factors were relative to different columns p and g the contribution would be null
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I

® (2 Wz‘zl%.\ﬂzz Wigi Xiu,)
0’193W11p ) 'u2
o @ i ®

il Z.3
¢(Zz Wthlm) ¢(Zz Wilel/n) ¢(Zl Wi3leu3)

©r @ @ 43

¢>(Zz Wialeul) ¢(Zl Wi5leu1) ¢(Zl Wi4leu3)

o @ iy

®
® P2 Wisi Xpy) ) P2 Wigt Xipy)
2z

(a) First kind of identification
ITy
11y

11
¢(Zz Willem) ¢(Zl Wilelm)

O’xegwilp G'x93Wi2q

©“ @

@
A Wi Xip, )f \6Q2 Wisi Xy, )

¢(Zl WieleM) ¢(Zl Wilelm)

(c¢) Third kind of identification
(b) Second kind of identification

Figure 9: Illustration of some examples of how the 0263 W;., W

tions.

factors might be arranged around some identifica-

iep YWigr1q
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Let’s now denote the set of indices that are respectively on the shortest path between the two factors 0,03W;, , and
0:03W;, ., or in the ith cycle in II; as D and &;. Then, by referring to all of the possible combinations of the different
¢, as m(€;), the covariance is

-1 o2 & o2 o2
cov[ +} 1+a2AAT> =2 (— = EAAT (258)
n n
i0%141 k=0 109141
2 2 2
_ & Uwaac Tk
_HZ{( " AA)], (259)
k=l 20%+1
o2 owax 02 w0z
— (_1)\©|7w H Aag + Z \©\+\¢\ H —Z s
" (aB)eD f cen(C;) " (ap)edUC \/ﬁ
= l o OwOy g OwOyx g
+> (-1) +u7w I1 (\/ﬁm> Z 11 (\/EAQB) : (260)
v=1 (v,6)eD ﬁl) st. (,p)eu;¢;uD
Il Ulli=v
l}ei\To

where |€| and |D| correspond to the cardinality of the two set, hence twice the number of factors
A Wi 1 X0, ) (> Wi, ,1X1,,. ) identified in the sets.

Because of the same argument as in Lemma[B.2} the terms of the covariance where the variables A3 have exponential

at maximum equal to one are the leading contribution of El(;?,p) up to a term O (1/n). Among these terms we now show

J
that the leading contribution in the covariance is given by the term just relying on 2; each time a cycle is considered, the
contribution incurs a cost of 1/n. By approximating the covariance with the contribution of the shortest path between
the two factors of the 0,03W; kind, we find the following contribution

U+1P
2
—/o—geg(—n\@\‘iﬂ H Tuwd e~ AR () DAD
(@Bieo det(I+ 227 AT )n/2
o o2 i onz 1 log d °2%% AATY —itrAT
= —/ageg(—n\ i e~ % logdet(I+ =5 Je A ZP()DADz (261)
n f
(aB)eD
— (1 )|®|J 09 / lf—)Il O’w(TI
" (aB)eD v

0242 CEHL (0242 ¢
—ZeZwir(AAT)—2 Y., %tr(%AAT> —itrATZ
&

F(2)DADz (262)

The leading order of the contribution IE( (1) » 18 defined with a relative error C’)(%) by considering the different cycles

separately. Moreover, as for Lemma [B.2| there is a relative error of O(1/n) by considering only the zeroth order
(—nstt tr(“u%"a AAT ¢

L 52
approximation of the exponent ¢ =% ¢

the remaining cycles. Therefore

when considering the direct arch D and first order for

o 0292 OwO.
~ eyt [T 2 ) k)
" (ap)eD vn
o202 , n —1)¢*t /o252 ¢
erp | — Z ( “82 28— z/\a52a5> - EZ ( 2 tr ( xnwAAT> DDz
apedUindE; £§>2
\QIU o262 12| OwOx
(-1 % II 225 Fe)
(aB)ED
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0_3260_12“ ) . n Nind ( \@ [+1 Uxo.w
erp{ — Z 5 o8 — AapZap -5 ‘ N H \f Aag ¢ DA\Dz
apedUindE; i=1 (ap)ee;
1
(+0(3)) o
n
2| _ o2k 2 i
= (eI 2a I P vtz Zonen (2N e
" (apyen V"

Nind 0202 o ) (—nyle;l o
— S usce. (M,\aﬁflkaﬁzaﬁ>+” 2/¢, |1 apyee; T2 Aag
TTCII ¢(zap))e ~oPci\ 2 il (ePIee: "R DAD>

i=1 aBec;
1
. <1 +0 <>) (264)
n
19| o202 .
bt (] oy S ()
n
(ap)eD

=(—63/n)!®I

pa 00 o202
n(—1)%! A(Zap) ——Aaglexp { — TZWAZ L iNBZa D)\Dz
B \/ﬁ B 9 ap BcaB

i=1 aBecC; afEeC;

—(—0s/m)l€il
1
. <1 + O ()) (265)
n
_ D +370 |y
(7 o(2)
n n n

_ 202 0 [D| nina 1
< (2)" o 1v0(2)

where the identities in (Z63) are taken from the study of the 2k cycles in (234)-(244)), and Eélﬁ) | is the contribution of a

cycle of dimension 2|&;|. Note that the last step is justified since if |€;| = 1 we would have retrieved 6; rather than
1-|ei|gl<il
n 5 .

If instead we considered one of the expansion terms of the covariance also including one of the sets &€;, then the relative
variables A,z would already appear in line (261)), and the contribution in the log-determinant would not be relevant.
Consequently the n term resulting from the expansion of the exponential of the log-determinant would not appear and
we would have a relative contribution of O(1/n).

Therefore the contribution if the first case is

l
1
VB o i T35 0363 (92> (1 Lo <)> (268)
II; n n n

and crucially it shows that the contribution of a cycle with no factors of the type 0,03W;,, can be considered
independently from the block.

Second Kind: Since the block of dependent variables might contain multiple weights in the form of 0,03 W;,,, we
have to first identify the arches within the block, i.e. sequences of successive i¢ that are all within the block. With this
purpose, we consider the set of indices that define the beginning and the end of each arch

A = {(ig,ie+1) | Hpstiorst Uiy ((erjo1s ) U (igjs 1)) C 51 (269)

This allows to determine the contribution of Hg-l’p) where [ is the number of factors
A Wi 1 X0, ) (>, Wi, ,1X1,e) in II; and p is a vector containing the indices of the columns of W
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that are considered in each cycle that II; intersects, and therefore has dimension |2|. We rewrite the expected
contribution in terms of the arches which define IT;

B, = / I[[ (-o2ewi,.
' WX (iaias)e

H( ZW%;XW& (ZW,»HIJXW)> Wi 1iq. | DWDX. (270)
=1 l

where p,, and g, are the dependent on the cycle in which W;_,, is. By integrating over X and W we implement similar
steps as in Lemma [B.2] were taken to to determine (223), we find that

) ) 1 T
B :(—0—292)@”/}2 [[  wiewlieth '™ LF(z)DADz.  (271)
II , x o o
e ’ oiiien ! det(I+ % wAAT)n/z

The weight vectors w,, are distributed according to a Gaussian, therefore we can rely on Isserlis’ theorem [8]]. If

(X1,...,X,) is a zero-mean multivariate normal random vector, then
E[X1 X5 X,] = Z H E[X:X,] = Z H Cov (X;, X;) (272)
pEP? {ij}ep pEP? {i,j}ep
where the sum is over all the pairings of {1, ...,n}. For example, when we consider four variables then we get that
E [X1X2X3X4] =Cov (Xl, XQ) Cov (Xg, X4)
+ Cov (X1, X3) Cov (X2, X4) + Cov (X1, X4) Cov (X2, X3) . (273)

We are going to consider the term in the expansion where the covariances are only between elements in the same
cycle, i.e. p, is the same within the same cycle. The other terms have a lower order contribution to the moments
because they imply two separate cycles being relative to the same sample p,,, and this implies that total contribution
incurs in a cost of at least 1/ny.

Therefore, let’s compute the contribution by defining the set of all the indices in a cycle as ¢;, then

(n) 2921 |2 (i) wo(ia+1) 1 trATZ
B, = (—0303) /E T wiw: e F(z)DADz  (274)
e iy det(I+ T2 AAT )n/2
MNint 1
= (—0263 |Ql|/ <H Cov (W Wé’l)) (1+(9 (n))
1 trATZ
e F(2)DA\Dz (275)

det(1+ 228 AAT)n/2

— (—o2) |m|/ <nﬂ Cou (wi;;%i)) (HO <,1l)>

2 _E+1 2 2 13
_amzawtr(AAT)_g 2522( 1)5 tT‘(%AAT> —itrATZ

e F(2)DADz (276)

The leading order of the contribution ; IEI('I?Z)"’) is defined with a relative error (’)(%) by considering the different cycles

separately. Moreover, as for Lemma there is a relative error of O(1/n) by considering only the zeroth order
(-nEHLL < ool AAT

£22 £

approximation of the exponent e’ . Therefore

n f i i 1
e / <H Cov (wpv;w,,i)> (1 +0 (n»
1

2_2
_ymine o (T2 N2 bidapza 1
. > <Eaﬁ€ (Ao tiAagz 13)) (z)D)\DZ(l-‘rO()) 277)
n
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= (—aieg)m\ ﬁ/ (Cov (W;,‘;W;;i))
i=1

B o202 5 1
o Sasce, (5 /\iﬁ“’\“ﬂz“")F(z)DADz(lJrO<)) 278)
n
MNint 2
g,
= o) ] / Zo | T Aasolzas)
=1 afel;
o202 5 L 1
e~ Lapee, (T AL H affZaﬁ)p)\pz<1+(’)(>) 279)
n

292 2 l
I (92> (1 Lo (1>> (280)
n n n

Note that if there is a complete cycle without factors of the type o,03W;,, ,, within II;, then we can rely on the first
case to separate its contribution obtaining a further term ng.

Third Kind: This case is uniquely due to p-identifications. In this case, if we have an identification at ¢ with
(g, 1g+1) € A then we have to keep the same sample p,, in both the cycles in which 2 is defined. Therefore

2p2 2 l
(n) 020505 o [ 62 1
,HEH;LP) = (fT)l |(n) (1+(9 (n Lp—p1 (281)
where

(282)

1 _[1 ifp=plwithp € [ng]
P=PL =00 otherwise.

and 1 is a vector whose entries are all 1.

Combination of the Contributions Let’s now consider how the contribution of each identification affects the
contribution of one term w of the expansion of (253). For simplicity let’s start by considering the case where there are

no 2-dimensional cycles in the graph G, and denote with p = (p1, ..., p.) the column index of W for each of the ¢
cycle, then
Ngroups ( ) 1
n, _ n
00 =TT (w20 tn) (140 (1)
j=1 j

Ngroups . 202 2 lj
nﬁifd (_ UxGS Ow )|Ql] \ @ 1 1
L) n n P=Pa(j) Po=Pp

j=1 {cycles connected
(e,B)€ by third kind
identifications}

- (1 Lo (i)) (284)

where the functions type(-) : [Ngroups] — {0, 1,11, 111} and a(-) : [Ngroups) — [10] assign to each block IT; the
typology of identification in it and the index of the column of W considered, and 2/; identifies the set of arches within
a cycle for each block II;. This suggests that when considering the contribution of a term w of a graph with no
2-dimensional cycles we need to keep track of the third kind of identifications since they are the only case requiring two
adjacent cycles to have the same index p,,.

When considering also cycles of dimension 2, we have to distinguish between 3 cases if they are connected with a
p-identification: if the two edges within the 2-dimensional cycle are of the (D, Wi 1 X . )0 (D2 Wi,y 1 Xi 4, ) type,
if they are of the 0203W,;,, W type, or if they are alternate. In the first case, their contribution can be seen as a

. . v, . .
simple cycle and therefore we gain a factor 6 /n rather than (%) in equation In the second case we consider the

igp YWigq1q

292 2
2 cycle as a simple block II; of dimension one with contribution (—%), but since this is a third case identification
we need to ensure that the index p is the same between the two adjacent cycles. Finally, in the third case, we are also
considering a third case identification where the intra-dependent variables of the block are the 0,03 W, edges in the
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2-dimensional cycle and in the adjacent one, and all of the ¢(> >, Wi, 1Xi 1. )0(D -, Wie,, 1Xi . ) edges in-between

.. . . 29252 l . .. .
them. This implies that we gain a factor (— %% (%2)" (1 4+ O (1)) with the constraining that the index of the
weight is the same as in the adjacent cycle. Note that in this case we do not have any 6; contribution although there is a
2-dimensional cycle.

From the above statements, it follows that there is no need to keep track of all the independent blocks II; to compute

EU(J"’p); it is sufficient to identify the terms aﬁ@%WinQ 1> the third kind identifications, and the structure of 2-
dimensional cycles. To keep track of all of these cases we will consider the following notation for each graph. We
define b* as the number p-identifications where at least one of the two joined cycles is of dimension 2, and ¢* as the
remaining p-identifications, i.e. I, = ¢/ +b*. We then introduce the variables b%;, € {0,...,b"} and ¢t € {0,...,ck}
which determine how many of the b* and ¢/ identifications have at least two edges of the 7,03 W, kind connected

to the identification and therefore are of the third kind. Finally, we introduce the variables b,lﬂ/ 2 e {o,... ,b‘u‘}} and
1/2
cw €40,...,cH

w

which indicate if the remaining two edges are of the 0,,05W;,,, type.

b, b b2 G

w?

; 1/2
ct,ct, c cw/ generates the

w? Y w?

Therefore, an addend w of a graph with 2k edges defined by b*, b,
following contribution

)

E(k,p,b’,bi bbb/ 2 et et et et el/?)
5 =

w? w T w w T w

(91)k—bi—2b“—2c“—(nw—b5—biu/2—cf;—cfu/2) (_0202 92)(nwb;b;/2cgc;/2)
_ (7L ¥ w’3

n n

Edges of the ¢¢ type Edges of the ww type

Edges not adjacent to p-identification and in cycle larger than 2

bl —bL/? 2 9 poy bh—bl/? 2 9 pay 2647 b —bl, 2 22\ b-bh
(02 —os050;5 —oi0:05 2} —oio.,05
n n n n n

Mixed Case Edges of the ww type Edges of the ¢¢ type

Edges adjacent to p-identification with a cycle of dimension 2

1

mo_ /2 (2“—(,'1/2 2(:1/2 2 C“—C“
' 972 Chy—Cu _050393 w —Cu _0301209% W —aﬁai@% ( )
n n n n

Mixed Case Edges of the ww type Edges of the ¢¢ type

Edges adjacent to p-identification and in cycles larger than 2

01 b=t —0202 02 b 1
(2 z%w 1. _ 1 _ . 2
) (=) I e | (0 (3) @

{cycles connected
(e, B)€ by third kind
identifications }

Adjacent to i-identification
and with a cycle of dimension 2

For each of the addends w, there are n(1)+1“+li ways to choose the indices p for each of the 1 + I, + I; cycles. However,

for all the identifications of third kind there is a constraint on adjacent cycles having the same index p, therefore there are
actually 1+ I,, + I; — b". — ¢/!, non zero terms w sharing the same structure (k, -, b7, b, b, bl bl ® ¢t ¢y ek ekt el ?)

. N A ?w? yw? ) w ) w
and therefore having the same contribution.

Now let’s consider the contribution of the full graph by considering all of the combinations on how the structure
(k,p, bt be b bl a2 cicl et et ci/?) may change. Let’s start by considering the edges located in any of the

>k _ Ii)l’); - 72“‘%’pair of 7e(ijg’es éhzﬁ’are not adjacent to a p-identification and are in cycles bigger than 2, there
are (kfb’?2lbu,26“) ways for [ terms 0205W; ,W;, 4 to be located. Similarly, there are (é’w) ways to have b,
iecpWici1q
(f)’ﬁ ) and (55 ) ways to choose only one pair in the identification to be of the 205W; ., W, ., , type for the case with
2-dimensional cycles or higher dimensions. Finally if a u-identification is such that all the four edges are of the
T203W; W be/? and cif?

and ¢, ~ cases.

2-dimensional cycles whose edges are of the 0203 W kind. Considering the I,, identifications, there are

. b ot .
ieq1q kind, there are (bllu/z) and (czl,/Q) choices in the
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Combining all of the contributions above, it is possible to compute the contribution of a graph G with 2k edges and
with I, and I; identifications, of which b* and b* generate a 2-dimensional cycle.

B S ESSYS (T (O () () () ()

cﬁ, 1/2 b” 1/2 bz

E.(k‘,p,b bi bH,bH

w? w?

k—bi—2bM —2c* ot cly b, i —2b“720“ 0, k—b' —2bH —2¢cH 1 0202 02 !
-y RNy ( ﬂﬁ =)

/2 bl 172 b
Chy /2 by pl/? bl

bl/z,c bt et ,cl/z 1+I +1;—bly —ct
1Cay w ) w (286)

Bk 1/2 cl/2

o\ (0:\ T [ a2a203\ 0.\ [ o2 fueg
A\ n n 1/2 n
AN AR A LAY aga;ieg b/?
b n n b}i,/Q n n
i b*—bl, 2 2 p2N bl v
() () e o)
b, n n

w_1/2
Let’s now group all the factors that are independent from each other and consider their sum and consider (92 ) o =

n
(%) ()5 ana (4)" 7 = (8" ()

o VLt k—b*—2bt —2cH k— bz — OpH — Qe 072 k—b"—2bF —2cH —1 agaieg l
g = "o Z l n n

B\ (0:0:\" T [ 020203\
bt n? 2

pl/2

(V) () T (ks

— \ bi, n n

L bW

(e (83\T T 020263\

— \ cho n n?
ct — ct/
N ANAS R P T
—\e?) \n n

b (

bl bH — pl/2
bl 02\ —020263\"" 1
Z 172 22 “Y2%w73 1+0(= (288)
e b n n n
v (B SABN T (6 ez
-0 n n n n
, Z AN o A R AN
- cﬁ n2 n? n n
b b — b b b
B\ 00\ 020202\ (0, 020262\ 1
(o) (52) (=2%) (5-22) | (e(R))  ew
= \buw n n n n n
O (P . A N TR . A
-0 n n n n
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{% ﬁﬁ%<% a%waywm% ﬁ%%<% ﬁ%%ﬂ“

n n n? n? n n

n2
1
. (1 +0 (n>> (290)

2 22 k*bi72b“’726“' 2 22 bi
_ n1+Iu+Ii (02 _ awo-we?)) (01 _ OmngS)
— %0

Wﬂ L

n
ct
020262\ > 20202 020y — otot 0% 1
2 z% w3 1+ »Lw3222752w3_~_(/)7
n (02 — 0202,03) n
2 1
n

2 2
n
' {(9 B Jganiﬂ% <9n B U%(fﬁ%) <1 N 01020203 + 02020305 — orol 03 o (1>)]b“

(6, — 0202,03)(602 — 020203 n

(o)

2 92 g2~ k—b'—b" 2 2 g2y b b
n1+1;‘+1i (02 _ Uxau)93) <91 _ Uxaw03>

n n n n

1+ 202020200 — atol 03 Lo 1 ot
(62 — 0202,03)> n
[ L 01020203 + 0202030, — otonbs (1)}*’“

(01— 0202,03)(02 — 0202,603)

(+o(2)

_ I+ Iu+Ii—k 2 22\ ki 5 9 oy bi4bH
=ng " (9270I0w03) ’ (Hlfaacowﬂg)

cH bH
{1 N 202020205 — otol 931] {1 01020202 + 020203205 — oiot Hg]

— %0

(62 — 0307,63)° (61 — 0307,03)(02 — 0307,65)

1
: (1 +0 (n>> (293)
=m0 (02— o20203) > (00— o2oled)

{ e ago—geg] [ | 01020263 + 0202636, agageg] v
(02 — 0202,03)* (01 — 0202,03)(02 — 020%,63)

~(1 e (i)) (204)

where in the last inequality we used the two equalities k = > k; + b° + b* and 1 + I, + I; = c + b’ + b, O

B.3.1 Proof of Proposition ]

Proof.
1 k. Li+I,+1
mgﬁn) - nym* Z Z Z C(k"[i’]livb7 b”aCM)EQ(k,Ii,Iu,b,bu,cu)#l#Z (295)
I;,I,=1 b=0 br=0
1 k. Li+I,+1
1+1;+1,—b—(k—b
B nlmk Z Z Z C(k7l’i7]ﬂ,b7 bH,C’U')nO [ ( ).

I;,1,=1 b=0 br=0

. 1
4%—ﬁﬁﬁﬁﬂ&—ﬁﬁﬁﬂﬁdfwﬂhm“h@+o())
no

() e () e
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(o) 0(2)

b
> Clk, L I, b, b ) (01 — o2on,03)"

nk nyt ng” w m
_ _b
(6 2 292 k—b'"1 0 0 l€b Iil"
( 2 030w 3) k—1 71111 m[“ b e

k—1I4 k—1
' e e m 1
(k—lz-) (k—@) om/h - I)(k - I,
. (1 Lo <1>) (297)
no
L41,

b
kIIbb
Z C)(el_g 93)'

Lilel =0 te—o 2T L)(k—1,)
(02 — 020203) PRy Kl @Ilw g
k—1I,

() (=5) (o)

where we used the coefficients ¢ = ng/n1, ©» = ng/m. Therefore

my = lim m{" (299)
k. Li+I,+1 p
—k k‘ I, 1,,b,b" )
o 3 Yy S ey
I;,I,=1 b=0 u:o 1)( 71#)
e k—1I e k—IM
w B

(02 — 020, 03)16 b,@Z f-qu b Tl (k — [i> (k - Iﬂ) (300)
wd =0 (2). -

B.4 Side Theorems

Convergence to the empirical spectral measure As for the case with the correlated input, the explicit Stieltjes
transform in Corollary is too computationally intensive to be used to compute the transform. However, it allows
to check that the Carleman’s condition [18| Theorem 4.3] for the spectral measure defining the moments to be unique
[18]. This is done, by ensuring that m; < C*.

Lemma B.3. For M = LTy [YYT} E, [YXT] Ex [X YT} and Y = ¢ (WX) as defined in Theorem|A. 1| there

exists a variable C such that

2m2

my, < CF. 30D
Proof. Following a similar logic as in [3]], there is a constant C' such that C(k, I;, L, b, bk, M) < 043} Vk)/32/2 and
consequently
ko Li+tI.+1 b
_ C k?'[i;-[ ’b,b.u"cllf
= Y > (k. 1, 1y ) (61 — 026262)% (65 — 0202 62)"~
LL=1 b=0 bi—o 2T (k—1I;)(k—1,)
e k—1I e k—1I,
b =0 L L 302
Kp Ke ety (k;ﬂ) <k[u> (302)
ko Li+tI.,+1 b _ k32
3CT v
o 2 2 p2\b 2 2 n2\k—b
S 2 Z Z 27-(-4\/771_ k'5/2 (91 - Ux0w93) (92 — O-ZEO—'LUGS)
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w el ()T (o) (303)
ko LI+l b =
: ok
1-k 2_2 p2\k 22 p2\k
S %) Z Z WW max(l,ﬁl — Ulﬂw@?’) maX(1,02 - O'IUWH?,)
LiI,=1 b=0 br=0
I Tu
max(1, kp)" max(1, ke) <£> ' <1/J> 2" (304)
e e

L 3CT vk3/2
=Y ona kO
k o I 'l/) 1,
3 max(1, k) (7) () (I + L, + 1)(I; + I, +2)/2 (305)
Ii0,=1 € €
L 3CT vk3/2
=Y ona 7 kO

max(1,6; — 020202)" max(1, 0y — 0202 62)F max(1, ky)*e?*

max(1,6; — 020202)" max(1, 0y — 0202 62)F max(1, k)"

max(1, o) (g)k (f) ' (2k +1)(2k + 2) /2 (306)

<ck (307)

and therefore the Carleman’s condition is satisfied and there is a unique distribution . defined by the considered Stieltjes
transform. O

Contribution of non-admissible graphs The computation of the moments relies on the set of admissible graphs, as
defined in Definition [A.T] The contributions of the addends in (46) with non-admissible graphs is not significant to the
moments of the eigen-distribution as in the corrleated input case. This is because the argument in [13| Supplementary
Material 1.2.1] and [3 Section 3.1.4] showing that the leading order contribution for non-admissible graphs is
O(n&™ ") rather than O(n&™") as for the admissible graphs, relies on the fact that non-admissible graphs require a
further identification and this does not change in this case. This statement relies on the assumption that the activation
function is such that | J ¢"’(0wo$z)Dz’ < oo since otherwise the contribution of a graph that consists in going
through the same 2-dimensional cycle k-times could blow up. Therefore, non-admissible graphs generate a negligible
contribution for n — oo.

B.5 Proof Corollary[A.1.1]

Proof. Becuase of 3 = 0202 03 at the first layer and of considering 1) = 0 and ¢ = 1, then we find that the recursive
relation for H is

N Hyy(2)Hy(2) (01 — 0Zowb3)

H(z)=1 (308)
pz
H(z)(6,—0
14+ () (61 2) (309)
z
and therefore
H 1
—_—= 310
z z — (91 — 92) ( )
By expliciting the related Stieltjes transform we find that
H 1
Glz)=—=—7—"-. 311
which implies that the covariance matrix %EX {YYT] — ﬁ]EX [YXT} Ex {X YT} is the identity matrix scaled by
(61 — 02). Therefore, the distribution of the post-activation layer is going to be defined by WW. O
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C Proofs Relevant to Theorem 3.2]

In this section, it is going to be necessary computing expectations over the variable

£—2
(0) (—3) (1)
065 - Zwaké H Z Wkl—jJrlkZ—j) wk25
j=1 \kej

Specifically the following Lemma is going to be used.

Lemma C.1. Consider a succession of independent matrices {W(l) le such that W € Rmxmi-1 gng define the
following variable

-2
0 _ ) (€=3) (1)
Qna,@ - Z Wake H Z sz,j+1kg,j) szg-
ke J=1 \ke—j
Then N
Jw
/ WHWEDWE = 1,y ()= (312)

where 1.y is the indicator function, i.e. 11y (a) = lifa =yand 1y (a) =0 if a # 7.

Proof. Consider a # -y, then

/ 20! )20 D) = / Z w2 VW) el D Dw O pag- D (313)
k1,ka=1
0w pw (=) gy (E=1) P (e=1) _
Z /Waklw DW”/%W ;DY = 0. (314)
k1,k2=1
=0

While, if @ = 7y

2 2
/ ) Dan® / Z (wfj,ﬂlwg’l o W) DWODWED pw 31s)

2 2 2
= Y </ij,3 DW@/W;‘;? DW“—U.../WELB DW(1)> (316)

k1,k2,...,ke—1=1

n 2\ ¢ 2\ ¢ 20
3> (‘7“’) — pt-l ("“}) = Jw (317)
n n n

ki,k2,...;ke—1=1

where we used in (313) the i.i.d. nature of the terms in 20,4 for whom the following statement holds: if two variables
X1 and X, are independent then E[(X; + X2)?] = E[X?] + E[X3] since Cov[X; X5] = 0. O

C.1 LemmalAd

To prove Lemma [A.4]it is first necessary to study the expected contribution of 2 cycles to the moment of the covariance
matrix.

C.1.1 Supporting Lemmas

Lemma C.2. ForM = %YY TandY = ¢ (W)}') as defined in Theorem without the hypothesis of independence
for the elements of Y9, i.e. Y:(zf) ~N(0,¢92®),, then

B (Y, Yigpy Yy, (318)
< (4 S (347)))'
B / Zo V!
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I] ¢ =% ez daszes | P(2)D2DEDA (319)

where Z is the set of combinations {(i1, 1), (i2, 1), - - -, (i1, k) } on which the function F(z) = [],5)cz #(2a5).
the variables

2y if (i,p) € Z - 2w N, if (i,p) € Z
Z. = H A = Vn 2
he {0 otherwise. and s 0 otherwise. (520)
and the measures i
Dz= [[ deasg and Dr= [[] -—2—= (321)
= Nt 20,0/ /1

are defined.

Proof. Now we consider auxiliary integrals over z, by adding delta functions enforcing Z = WX/2 X with

zi if (i,p) € Z

Zi, =3 " ’ 322
a {O otherwise. (322)

where Z denotes the set of unique pairs (, 1) in equation (140):
E [Yi1M2Yi2H1 "'Yltkil] (323)
:/ [T 6Czas = D WarS 1 X05)6 (210 )6 Zigyiy )6 (20, 1, ) DDWDEDX (324)

(a,8)eZ k
where
Dz= [] dzas- (325)
(a,8)eZ

Now we consider the Fourier expression of the Dirac ¢

1 .
o(x) = — [ eP®dx 326
@0 =5 [ e (326)
and therefore introduced the matrix A € R™*™ whose entries are
A if (i,u) € Z
Aip = {O otherwise. (327)
with i\
Da= [ = (328)
(a,B)eZ
to obtain
E [Yi1#2Yi2#1 "'Y,U‘kil} (329)
= [ T 8Cep — 3 WakBH2X00)0(211) (Ziag ) 21, ) DDWDEDX (330)
ZaBEZ k
= / H ETP (Z)\aﬂ (Z Wakzi{kaﬁ - Zo,ﬁ>> .
Zap€EZ k
- O(Ziypa )0 (Zigpur )02y ) D2DWDEDXDA (331)

:/exp —1 Z Aag (ZWME}C{CQXW—ZQB)

Z(xﬁEZ k

(WE1/2X—7)..5
- P(Ziy 1y ) O (Zigpr ) O(Ziy i ) DZDWDEDXDA (332)
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/earp —i Z Ao (WEY2X — 7).

a,B=1
(2, 1) (Ziar )02, ) DXDWDEDXDA (333)
- / e (AT OVEYEXL)) g VB (Zi )20, ) DZDWDEDXDA (334)

where ¢r() corresponds to the trace function.

Now we first integrate over X the factors of (334) that depend on it

—LtT(ATWEI/ZX)Dx_ / dXCb _Lx2 o = AW El/QX
/ H \/mexp 20_% cb ZZ abYYacHce cb

b,c=1 a=1

2
dXep 1 e L 02
= —— 'S AW, B2y — == Aap W, 21/2)2 335
H / Tﬂd%exp 20_% ( b+10'z(; b cc ) 9 (; b cc ) ( )

b,c=1
= H ETp [_ Z)\abwaczl/
b,c=1
2
dXcp 1 e 1
-— | X, Aap W S 1/2 336
N I ( T B o
=1
m,n 2 m,n n
= I exp l— ZAabWaczl/ =exp | = Z O AasWae B, (337)
b,c=1 b,c=1 a=1
exp{ifHAT‘Vzlﬂﬂi]ei?”“f”TWTAATWEU2) (338)

where in equation (336) we used the property the complex integral of z = x + iy over the closed cycle (—o0, 0o, iy +
00, iji — 00) of the analytical function ﬁe_(‘”_iy)z/ (20*) is null and therefore

o0 1 . 2 2 o 1 2 2
—(z—ip)?/(202) 7. _ —(®)*/(20%) 1, —
[mﬂﬁf m‘[msz =t

Now we integrate over W

2
_ %z 1/2T T T 1/2
/6 2’”t’l"(2 W AA WX )DW

2
i

o2 1/2TwT A A Tywsel/2
H "%u e_TtT(E W' AA ' WX ) (339)

=1 \/27r031/n

nZLJ 1 WiiWij o2 n
—_— e 9y /2TwT T 1/2
| | > 2 e 202 e 3 tr(X W' AA WX ) (340)
Ty,

i,5=1

ntrww o2 1/251/2T wT T
- —Zap(n/?m WTAATW)
H e 202 2 (342)

n 0,2
d"w; DDy (LQWTWJ+TIEJijAATWj>
| I J e J 202 " J (343)

/ H 6_%e_%itr(El/zTWTAATWEUZ) (341)
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n T owTw %2 wTAA W
:/ H% <"‘f’% AR R -7) (344)
Uz

n anj _ JT U’E 1+02 E“AA

j=1 v
1 / d'w;  det™ (14 ZZe ANV ] (Gt AT, (346)

ol (2mo2 /n)"/? det—1(1+ < 2 wE AAT)l/2

_lwT 2y e2s T

) rn[ . / d’an . W, (02 I+0.3;;AA )WJ (347)

jor det(+ 223 AAT)2 (27075 /n)™2 det=1(1 4 2% 33, AAT )1/
1 1 / d A (g remanaT)e (348)
_ o RAYYD 172

=1 det(T+ X, AAT)/2 ) (2m0f /n) det ((I + @EjjAAT)_l)

1wl [ B14+028,;AAT \w,

_12[ 1 d"w; e > (w e ) ' (349)
— | deﬁ(l—i— @E“AAT)IQ (27T)n/ 1/2

Jj=1 n 27 det (02/n(1+ g wz AAT) )
1 1 / dw;, e (Ggreimana ) (350)
= o302 n/2 1/2

=1 det t(I4 e AAT)/2 (2m) det ((U%I + U%EjjAAT)—1)

=1
n 1
H (351)

L det(I+ Zi%u 3 ANT)L/?

where we con51der w; as the jth column of W and we used the property that for a general non-singular matrix
det(A™1) = det~(A).

This implies that by considering F'(z) =[], g)ez ¢(2a8)

E [YthleMl "'Yukil] (352)
1 .
= / H e AL pDDEDA (353)
det(I + Z%u3  ANT)L/2
1 2 2
- / exp fzilogdet(IJr 27wy AAT) —itrATZ | F(z)DzDEDA (354)

J

Now we will consider the integration over the A, variables. Since ¥;; > 0 and the eigenvalues of AAT are non-
T AT 2

negative, as a matter of fact for any pair (), v) the following holds A\ = % = % > 0, the maximizer of the

argument in the exponential is A = 0, and since the argument is going to be summed over the n — oo eigenvalues

X, by the saddle point approximation we can consider only an expansion around A = 0. We can then use the same

. . . . _ (DS, e
analysis done in [13]] and decompose the log determinant via logdet|I + X| = 3., ~——tr(X®).

Then it follows that

E[Yi, 1 Yiopr Y uin] (355)
~ 1 oo, T AT
= [ exp —Z§1ogdet(l+ 2%, AAT) — itrATZ | F(z)DzDEDA (356)
j=1
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-3, #Zﬂtr(AAT)*% Fo12e>2 (_1)5“ tr ((”3:72” EjjAAT>S> —itrATZ
= /e ' ' N F(2)DzDXDA (357)

_pyEt1 - ¢
-1 Dese %tr(ﬁﬂtr(( — AAT> >7it7’ATZ

— / e~ TERetrStr(AAT) F(2)D2DEDA (358)

We now consider the following change of variable

3 OwOg
_ dX\
DA= [[] —— (360)
(o)ez 2oL 0w/ /1
therefore

E [YimzYizm ~-~Yuki1] (361)

2 2 3

2.2 -1y ﬁtriﬁtr( ZaTw AAT )—mATz

— / e~ TERrE(ANT) P TS ( ) F(2)DzDEDA (362)

_ _q)E+l . ) —
_ / ¢~ P (AAT) =4 Dy S 0B (AAT)) —itr A2 p oy SR (363)

, oo R Oy s ((ART)S
We will study the contribution of the exponential e 2 Leza e 1T ”(( ) )

e =3 yat /v

by considering its Taylor expansion

E [Y’illtz Y’i2N1 "'Yukil} (364)
o0 (-1 AAT)E))
) (-4 Sesp Szt (AAT)))
- Zo V!
e AAT) it AT L p VD, DEDA (365)
e+l a4
oo (—%Zgzz( L trsttr ((AAT) ))
:/ ZO v!
- wER2 VX sz A
o Drapez (B 5 Aes aﬁ)F(z)DzDZDA (366)
_1)&+1 oy "
(& (3 e Szt (AAT)Y))
_/ Z v!
v=0
[[ e et 2 tesmes | p(2)D2DEDA (367)
Aap€EZ
O

Lemma C.3. ForM = %YY—r andY = ¢ (ij) as defined in Theoremwithout the hypothesis of independence
for the elements on(e), ie. Y:(f;) ~ N(0, q(Z)E(@),, then for k = 1

- 1
E[Yi, 00 Yisns - Yii,] = /95’”@2 (1 +0 ()) (368)

n
with

~ 1 52
g — / Tﬁ¢(\/@awowé)26‘7d2 (369)

50



Mutual Information of Neural Network Initializations: a Random Matrix Theory Study =~ A PREPRINT

where /ll(cn) = tr(ZF)/n.

Proof. When k = 1, following [11]] the zeroth order expansion of the Taylor series

Z (3 Sz EEtrzetr (AAT)S))

v=0

in the integral of Lemma is the leading contribution to E(n) Defining the trace of the power matrices as u(”) ,1.e.

/2,(@”) = tr(XF) /n, the zeroth order is determined as follows.

!L[.L( R —
/( \/ﬁ e 1 t’r(AAT) ztrGwUIAZF(z)) dZiluld)\il;“’DE

27Tax Ow

"ﬂin) 2 n oy _
- / ( / - I ’\ng(z)dedA) DY (370)
MO L 0w

L2
/ \/ﬁ _2'(n)02 -2 V 2w
= —e H1 we
2moL0y ~(n)
Ny

(n) ) 2
R S e
/ e miyCewee ) odX\ | dz | DX (371)
V2T

¢(2)?

2
_+ 2
=/ 3 VR o2e w0 V2T oy (372)
TO2Ow n~(n)
1
1 ,#
:/—¢(2)26 211" o302 1, D3 (373)
A/ 27T[L(1")amc7w
2 7 ~
o(\ i\ o woe3)2e” T\ iMoo, dEDE (374)

_ / 1
A/ 27r/1§n)oxaw
~(n) - (n)
[ OO Z T dzDE /91 DX (375)
= [ ey

For higher order terms of the exponential Taylor series we first notice that

v v

1 (1) =T E 1 (—1)s+! evy2e
”2 :7757“2 tr ( (AA =|-z) ———(@tr¥°)A
2 = £ (( ) ) 2 ; §

For each of the expansion terms, the same steps in (370)-(373) lead to the following 2£v-th non-central moment of a
Gaussian to be considered

~(n) nul R i\/ﬁz /2 26v+1 2
n -0+ r
/\/ A e, p— dA( 1 > e N3 Jp 2. L = (376)

—(n ’ 77 n)
njiy" VT 272 2ol

where the solution of the non-central moment is given in [22]] with

T O P - il(_%y)(_%ﬂ)m(_%%ﬂ_l) = (377)
22 o) T (DR oD \opozal)

This leads to the computation of the following integral

/ Z ( 2 2 <n> *(o%0n iy 2)Dz (378)
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which is finite since ®(— i % W) is an entire function of £v and z, and when solving it by parts we compute
the following integrals that are finite by hypothesis
/ oW (0202 i 2)Dz (379)

Ev/2
for any derivative k. However, because of the non-central moment, we also gain a factor (~1<>) and therefore
niiy

these terms have a contribution that is O(%) relative to the zeroth-order one.

Therefore the contribution of a 2-dimensional cycle is

EM = /é@pz (1 +0 (i)) : (380)

C.1.2 Proof of Lemmal[A.4]
Proof. In the case where k = 1 we then find

4
n,l E:VVE 4 j:“,é 4 z:mé wﬁ 4 w
Eé ) = A v d)( Eﬁ?lYl(,;,)Lg)(?b( Eg)l l(;,)bg 2 5527 Z(gp H H§€£)17 D DX (381)

l ‘:

_ 1 n
- / " px® (1 +0 <n>) 65)2 / me;mﬁgpw (382)
W
~n 1 ‘ n
- /eg pxs® (1 +0 (n» — o2 H(eé”)? > ‘%w (383)
— p=1
~ 1 ¢
- /95”’@2)2(@ (1 +0 (n» — o202 TT(05")? (384)

where the first term is due to Lemma[CJ3] with

~ 1 tT(E(Z)) 22
00 — (O 2T g
1 \/ﬂgb( q - z)%e” 7 dz (385)

0 _ / o' (Va@z)e™ 7 dz. (386)

C.2 Lemma

When considering £ > 1 it is necessary to consider all the mixed products. As a matter of fact

each term in the expansion of the product in EQZ’@ consists of successions of products of the kind
0) (¢ ¢ ¢ . . n ¢ )2

o>, W§57 Yl( ;g) o>, ng)ﬂ lYl( ;15) alternated w1th products of the kind o 7| W, Wi, ., [T, 6. Bach

element of the kind o2 Zp 105, 1 H =10 ? divides the sequence of products into independent blocks IT (” D

as it was for the case in Appendix l In this SCCthIl we are also considering the covariance X(©) and the COIltI'lbuthIl of

each addend EJ""™¢P) is considered in the following form

(n,k,nw,nd),p) _ . (é)
ES -/ [1E .S (387)

i

and therefore in the following expression of F (o () > (® should be considered as a random variable.
I e
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Lemma C.4. For the matrix
1
M = —Ex (WY )WY O)T]

_ m210'926 E, [(b(W(l)Y(Z))XT} E, [(b(W(Z)Y(Z))XT} (388)

and Y\ = ¢ (H (271)) as defined in Theorem without considering the elements in H) independent, i.e. Yfﬁ) ~
N(0, q(Z)E(D), when k > 1 each block Hy) generates the following contribution
¢

@) gt
ooz (I[52, 0 ) 0 n
n,L wYx ( j=1"3 2 1 1 1
BN = - T (n Y Sh ) (1 +0 (n)> (389)

k=1

2
:< \/z(é) =% ¢/ (\/g® /trg}qz)d'Z) 7 (390)
V 4T

03 = / ¢’ (\/ qw)zl) Dz (391)

21

with

and ) being the covariance matrix of the hidden layers Y,

Proof. Focusing on the integration of one independent block H;l)

(¢ l j 4 . .
(3, WO YD )o(3, W v, ) between two of the (szlegj))mgsi, kind, i.e.

¢
(n,6) _ (4) () (0) (0 (€) (0)
Engl) - /W v Ox H 93 Qﬂhp (¢(Z Wig ,PYP»H& )¢(Z Wig+17PY:D7lt5 )>
' ) j=1 £=1

p p

, where [ identifies the numbers of factors

H oY) | 2w L DWDY. (392)

lz+1q

By defining as () the covariance of the post—activation layer, we are now able to consider the following equality

(0) «(e 1/2
Z WZE P P,Ns Z Wls ’Pzz(w) Px“& (393)

~ (¢ ~
where W( . W and Y, ~N(0 ( ) and this allows to run analysis similar to Appendlx

The computation of this expectation follows the structure of the proof in [13]. A dummy variable z is introduced with a
delta Dirac function within each ¢ element, and then a Fourier representation for all the arguments of the ¢ functions
is introduced. For each factor II; the set Zr;; C Z is considered containing only the combinations (i¢, 1, ) that are

included in the (3", W Wi, lEZ(f / Y, ., ) arguments. Thus auxiliary integrals over z are considered by adding delta
~ (¢
functions enforcing Z = wy® — ( )2(5) /2Y with

Zip if (i,p) € Zn,
Zi, =" ' I 4
ks {O otherwise. (394)

and consequently

l
n,l j (0 1/2 = (€) /25
w0~ [a (1100 mlpn( O N S A )
p

Jj=1 &=1 p

oo | [1605 ) Wisrq p DW (395)

j=1
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0) 1/2 ~
[T 0(zas - ZW P Yag):
ZQBEZ
2
e . ~
165 | 2., H (Zicne)(Ziene)) Wirsrq ¢ DWDYD2 (396)

2
4

. T o (0) (@)1/2~7 .
:—/e itrAT (W' Y-2),2 Heéj)

x

j=1
W, H (Ziepe )0 (Zigsrpe)) Wiy, DPWDYDADz (397)
where
Dz = H dzag (398)
(v, 8)E2m,
and in the second equality the following property is used
1 ,
5(z) = — [ e*dA 399
@0 =5 [ ¢ (399)
and therefore the matrix A € R™*" whose entries are
A if (i,p) € 2,
A= " ’ ‘ 4
i {0 otherwise. (400)
is considered and therefore O\
pa= ] of (401)
(a,8)€Zn;
To start with, the integration over Y is considered
/e—itr(ATW“)E(‘)l/z?)D? _ d dY e i Z A, W(ﬁ)2(5)1/2
2mqt)
s dY o2 " .y 1/2 - (e
= —ex ——~ | Yo + Z )\a W 2 ) )\a 402
q ( ) 1/2 1/2.,
- T e |-y iz >2] —ean |~ SIS oy
b,c=1 W g=1 w b,c=1 a=1
(0) _ _a® s @OT2[(OT A AT WO s(0)1/2
— eap HzlATW“)E “>1/2II%} = T AREEEE, (404)
Uw

~ (¢ ~ (¢
and this allows to integrate over W( ). Note that W( - WOOT and the elements in 20 are dependent on w,

therefore it is also necessary to integrate over the possible orthonormal transform O. The case where p # ¢ is now
considered

l
. @OweOT Tw(f)
(H o) | eI OWITANW 00 000 pwpo
m1p 1419
wo v
) ) n (Z) 7w,tT(\7V(2)T\7V(£)) q<£) o (E(i)w(f)TAATw( )) () cveal©)
=o; | 1165 ¥ e DI (405)
c ]1;[1 Zyll \/m 1P 1+149
¢ n N . LT~ ©) O -r T~
_ 2 (J) d W _ZJ 1(202w w7+2q Z JJ AA w)
— H H(27T0’%U/TL)”/2 c
j=1 j=1
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n
Z W“ z1+1 m(z l)w(é 1)

a,B=1

2

L ) n T (£) (e) T T
) dar wJ N o wTwJ+q -3 AAT;)

Bq

| S ——
=0

. ng)wgl“) /mgp—l)m(zfl)

While now the case where ¢ = p will be considered

4
2 () Tt (SOWOTAATWE ) g1a(€) o (£)
/ or [ T]65 ] e = Jou) 9w, DWDO
W,0 -
4 ? ((Z) 7 (O T (0 10) - -
He(j) / H e_nmwzvaw >e_ngutT(E(e)W(aTAATW(D)
is1 s 1 27r02
= ij=
(£) gy7(6)
QUZ1pgnll+1pD()
2
¢ n M ST~ (0 T T-
2 ) / d W —ZJ 1(202 W WJ+7EJJW AA W)
=0, 0 ————= | €
117 W aroz
Z wlingu( Dw (el | po
a,f=1
¢ 2 o2
n - n v < q® ~T T
_ 2 (4) d" w] - 7l 1 ( 2""TWJ+ 202 Zjw; AA W)
=0y J 03 Z ( / H 27’1’0’2 /Tl 71/2 € * 2
j=1 a=1 j=1
. w((jl)w(ojlﬂ)) DO
, 2
n nG n n_ T o ) ST A AT =
_ 2 2(¢—1) () d"w; 72]‘:1(2012“ij.7'+?12”2ij]' AN W)
“ I ) [\ ez
Z 0wy ) (Y 0wy )P0
k=1
2
n 0 )
= oty (T80
k=1 j=1
/ ﬁd"i% - ?=1<253,W?%+%2u'TAATwn~(u)~<u+1>
2 n/2
i (2702 /n)n/
/ 02, D0
L
=1/n
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1 n ~
00w () d"w;
= =z - 0 e — J#k
Z n 1:[ 3 / ]_1:[1 (2#01211/71)”/2 ¢

G S AT

k=1 j=1
Gk
d"wy, ~ (i1) ~ (l141) — 20 Wl-ilt— _<¢ )zkk Wi AATW
./Ww wiite (414)
B 2
- Z odon’ H 6y
ﬁ / drw;  det (14 L AAT)2 —ﬁijj—“(zlfjf WIAAT W)
i \J @l /n)? e 4 - )Eﬂ AATY 2"
jk
det(H»%AAT)l/?
ne 1 O TV\1/2 - n o7, a5y _
' drwy,  det M (1+ ‘JZT“AA )Y/ WSO)W;;M){%W;(U% 1+2028 AT i @1s)
(2702 /n)"/? qet—1(1 + L0Zmx AAT)1/2
2(0—1 0\ 2
n Uzaw( )(HJ 10§])) i
- S Cov [ o)yt } . (416)
k=1 TLH;LZI det(l + qT“AAT)l/Q
The covariance matrix of the vector wy, is
O -1 2 X ()%
n kk T Ow 4q kk Tk
S TIHANT) ey AT @17)
2
(o o2, n = n
therefore
. i 95> -1 2 (9)>)
Cov [WiPw(")] = KZIJr WAAT) ] - ["w S (- LR AT (418)
o o n n
w w i0ir41 v=0 100141
2 > ©)>)
=2y [<—qn’“’“AAT)”] 419)
=l 10%14-1

~
<)

l
- lU Hq()zkk i Mg +Z H_V w Z H (q(@zkk)‘ij#j)‘ijﬂlﬂ) . (420

—
I llh=v+1
l;€Ng

Exactly as shown in Lemma the first addend in (@20) determines the contribution El(;;f) up to a relative error of

O(1/n). This implies that by considering F(z) = ng:1 (0(Zigpe )O(Zicsrpe))

2
El(_ﬁzf) - _/efztrAT(WmE“)l/QY Z) H9
I
“Wiyp | | (0(2icne)d(2icsine) Wi, PWDXDAD2 @21)

5:1

N 2
T / n 71) n H T/\ijl‘/j Aiﬁ—l/ij
k=1 i

1 1
- ATz F(z)DADz(l +0 ()) (422)

[T}, det(I + T2 AAT)1/2 n
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n 2 (17¢ . o) 2 0)
oz \ILj=1 05 1T ¢z
= _Z/f(_l) n H n Nijug i1
k=1 j=1
4O =0 T
e~ Xi-13 Llog det(I+———3i TIEAAT) trAT ZF( )D/\'DZ (9 )) (423)
2_2¢ (174 %
1) — 7a0w (Hi:lef" ) Z)E
-0 2 11
k=1 (a,8)€Zm;
- q(e)g:l):i(é) tr(AAT —% Zgzg 7(—1):-%—1 trz(z)gtr<q( ) AAT) —itrATZ ( )’D/\’_Dz
1
(1 +0 ()) (424)
n

—1)&t
25:1 (=1

where in the last equation the Taylor expansion logdet|I + X| =

1
tr(X®) was used. Similar to Lemma

the first order expansion of the log-determinant. { = 1, is the leading order contribution with a relative error of

O(1/n). By introducing the following change of variable,

Aap = V@ Aap

we then retrieve the following expression

¢ N2 (o)l
n 0n00 (Hj:19z(’)j)) Eék)

(n,0) _ l
B = =13 =
Vgl aOtrs AT itrATZ
: / 11 Aag | =T trAA)ZHTA LD (DAD,
(e,B)EZm, \/ﬁ
1

AN 2
n_o; 0.22 (Hﬁ 19(])) ngk)l

k=1 (Q’B)EZHJ'
“(E)Au aBZa ~

Z( ) pis -
(a,8)€2n; 2 q(f)

1

II dzs](1+0(=

n

(a,B)€Zm;
2 1
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21

2 2
~ 1 S5 iZagVn _ Fap™ ~
)\aﬂ 2( n Aapt ) - 2 d)\aﬁ
(&

Jrm/am ) @@ o dAag
\/ﬁ Qb( a/@)Qﬂ_ q(e) afB

k=1
R 21
2, T _1 tr(E) N4 dzvm
/&e‘wﬁ A, QWT e \/7> X | dz
V2 y/i/g var

¢ N 2 (o)
. n_oron (Hj:l ez(sj)) El(ck)
=-(=1) Z N2

k=

—

2 ZZ 2
”O(i»

N 2
n U (4) (o)1
_ 7(71)1 Z 020% (Hj=1 933 ) Xk -1\
a Pt n? n

(= ) (o))

Now the following change of variable is considered

zy/n
tr(zw))\ / q(i)

and then

2 20 ¢ @)? n ~ 21
g0 _ %% (HFl 0y ) 1 Zz(z)z / Z¢(y/qWtr(Z (E))/”Z)e_édg
« " Kk g o
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C.2.1 Proof of LemmalA.3

Proof. Lemma is now going to be used for the computation of Ey;. Assume that k > 1, and consider the
contribution from an addend w of (I00) with ny and n,, factors of the type ¢(3_, wi y® 1632, w  y® )

ie,q T q ke 15+1q ng

and 02 (Hfi 1 Héj )) 209 Y respectively, note that kK = n,, + ne. Then, given an index p

J= ep T e 1P

(ko m,P) - ) | o 0y 0 ¢
gt = 1] | o | T ) 20 szW,q e WL Vi)
Jj=

1 q
é .
09 | ap® | pwpxDD® (437)
3 le41p
j=1
nw non'®
- [Tl 5" o= (438)
&=1
Z (] ~(TL)'!L(E)
N 0 ) 0 ( n ©
y 1 2 1 (O)n > 1
/H - N /" | D= <1 +0 ()) (439)
© Z kk
nltnw Lt n
X 2 Nw Ty (€)
_0_250.2 (Hz 0(])) < 5(n) Zg:] L n
wYzx j=1"3 92 ) 1 Z (Z)n(i) ' 1
- 22 Nz | D29 (1+0( = (440)
n n =1V =1 K
N 2\ "w
0no2 He':l 9:(3j) o5 S 1
-/~ (L. %) <2> IR (1 L0 ()) (441)
n n e=1 ) n

C.3 Lemma

Considering the covariance as 3 = I, then all the moments are equal to one. Therefore,

At (M) oy
plrmwner) _ | — <2) (1+(9(>). (442)
n

n n

Then the expected contribution for the 2k cycle is defined by considering the contribution E ok = nl k@’; (1 +0 (%))
of the addend w whose n,, = 0 and of the addends for which n,, # 0

By, = L, + Z < ) ST g (443)

nw=1 p=1
¢ 2\ "
= [ ni kol 4 ni* Z (m) —020? (He}ﬁ) g <1+0(;>) (444)
Ny =1 ) =1
= [nf™" | 6, — 002 (HW) (1+0<711)> (445)
m
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