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ABSTRACT

The properties of randomly initialised feed-forward neural networks are known to be influenced
by the variance of the weight matrices and biases, as well as the choice of the nonlinear activation
function. This phenomenon was first studied from a geometric perspective in [19] and from an
information-theoretical perspective in [21]. Specifically, [21] introduced a lower bound of the mutual
information between an input and its hidden layers’ outputs when the activation functions are odd.
Here, the same lower bound is analyzed using more advanced techniques from random matrix theory
to model the eigen-distribution of the random matrices determining the bound when no bias is
considered.

Keywords Neural Nework Initialization, Mutual Information, Random Matrix Theory

1 Introduction

Starting with the work in [6], the research on initialising a feed-forward neural network (henceforth abridged to neural
network) focused on analysing the properties of random neural networks. Random neural networks are random nonlinear
functions from which neural networks are sampled and subsequently trained to map a training set of inputs to known
outputs. Specifically, the following recursive relation is considered

h(ℓ) = W(ℓ)ϕ(h(ℓ−1)) + b(ℓ) (1)

where h(0) = x is the input, and W(ℓ)
ij ∼ N (0, σ2

w/nℓ−1) and b(ℓ)
i ∼ N (0, σ2

b ) for 1 < i < nℓ and 1 < j < nℓ−1, with
nℓ being the width of layer ℓ, and ϕ(·) the activation function.

The way the choice of (σw, σb, ϕ(·)) affects the properties of a neural network sampled from (1) has been studied from
a diverse set of perspectives [19, 14, 12, 1, 23]. Especially notabily is the work in [19] which pioneered that, for a
given nonlinear activation function ϕ(·), it is possible to select the parameters (σw, σb) such that the sampled neural
networks preserve geometric information about the inputs and this choice of parameters typically leads to a superior
initial training. This analysis relied on geometric considerations of how the distribution of intermediate hidden layers
converges to their limiting distribution.

The work in [21] conducted an alternative investigation on the flow of information through the layers of random neural
networks with odd activation functions from an information-theoretical perspective; specifically, they studied the decay
of the mutual information between an input and its hidden layers’ output, building on the results of [1, 20]. Following
the methodology in [7, 20, 17, 7, 5], the contributions in [21] considered a noise term n(ℓ) ∼ N (0, σ2

nI) added before
the activation function

h(ℓ) = W(ℓ)ϕ(h(ℓ−1)) + b(ℓ) + n(ℓ), (2)
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and introduced the following lower bound on the mutual information I(x;h(ℓ)) between the Gaussian input x ∼
N (0, σ2

xI), as also modelled in [4], and the hidden layer h(ℓ)

I(x;h(ℓ)) ≥ IG(x;h(ℓ)) = EW:ℓ

1
2
log

 |Λh(ℓ) |∣∣∣Λh(ℓ) − 1
σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ)

∣∣∣
 , (3)

where | · | denotes the matrix determinant,W :ℓ = {W(i),b(i)}ℓi=1, and

Varx,{n(l)}ℓl=1|W:ℓ

[
x

h(ℓ)

]
=

[
σ2
xI Σxh(ℓ)

Σ⊤
xh(ℓ) Λh(ℓ)

]
. (4)

The lower bound in (3) was then approximated via the mean-field theory as a function of (σw, σb, ϕ(·)), suggesting
that in some cases the initialisations are optimal from both a training and a mutual information perspective. However,
although the mean-field approximation was qualitatively accurate, there was a consistent error in the approximation due
to the strong assumptions that it entailed.

Here, an alternative approximation of the lower bound IG(x;h(ℓ)) in (3) is proposed by taking into consideration the
eigen-spectrum of Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) . In general, considering a function F (A) that can be written

as a power series on an n-dimensional random matrix A with eigen-distribution ρA, the limiting normalised trace for
n→∞ of the function F (A) can be evaluated as an expectation on ρA;

lim
n→∞

1

n
trF (A) = lim

n→∞

1

n

n∑
i=1

F (λj) = EρA [F (λ)]. (5)

This property is applied to the log-determinant case. As a matter of fact, log|A| = tr(log(A)) and if the eigen-
distribution ρA(λ) of matrix A is known, then

lim
n→∞

log (|A|) /n = lim
n→∞

log

(∏
i

λi

)
/n = lim

n→∞

∑
i

log (λi) /n =

∫
log (x) dρA(x). (6)

Therefore, by learning the eigen-spectrum of Λh(ℓ) and Λh(ℓ) − 1
σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) one is able to compute their log-

determinants whose difference defines the mutual information lower bound (3).

1.1 Outline and main contributions

The manuscript focuses on calculating the lower bound of the mutual information between an input and its representation
as a hidden layer vector at layer ℓ; that is the lower bound in (3). Section 2 considers approximating the eigen-spectra of
Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) with the Marchenko-Pastur distribution and show that the resulting lower bounds of

(3) are equal to those preveously derived by the authors in [21] where instead a mean-field approximation was used and
the spectra distribution was treated as a point distribution; see Proposition 1 and (15). Section 3 improves upon the
calculation of the spectra of Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) by making use of the Stieltjes Transform. In particular,

subsection 3.1 computes the spectra of Λh(ℓ) as given by Theorem 3.1; see Figure 1 for plots of the spectra with the
demonstrated improvements. Section 3.2 computes the spectra of Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) as given by Theorem 3.2

and Figure 2 shows calculations of the spectra which illustrate the improved fit to empirical observations. Section 3.4
then makes use of these estimates of the spectra to compute the associated lower bound of the mutual information in
(3); see Figure 3. Figures 4 shows separate contributions of the mutual information bound from each of Λh(ℓ) and
Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) as functions of the weight variance σw and for different layer depths. Figure 5 shows that the

mutual information bound converges towards a single point in σw as depth increases. These results give an alternative
perspective on the geometric focused edge-of-chaos theory in [11].

2 Marchenko-Pastur Approximation

The Marchenko-Pastur law determines via an analytic expression the eigen-spectrum of a specific type of random
sample-covariance matrices when the dimensions of the sampled space and the number of samples go to infinity. The
tractability of this expression makes the approximation of the eigen-spectra of Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) with

the Marchenko-Pastur law a valid baseline for understanding the impact of using the eigen-spectra when computing

2
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the mutual information lower bound. In Figures 1 and 2 it is shown how the eigen-spectra of the empirical covariance
matrices compares to the Marchenko-Pastur distribution alongside the approximations introduced in Section 3.

Specifically, consider an n×m matrix X with entries Xij that are i.i.d. real random variables such that E[Xij ] = 0 and
E[X2

ij ] = σ2, and denote by M the n× n matrix

M =
1

m
XX⊤ ∈ Rn×n (7)

with 0 ≤ λ1 ≤ . . . ≤ λn being the eigenvalues of M. Defining the random spectral distribution by

µM(x) :=
1

n

n∑
j=1

1x>λj , (8)

with 1 being the indicator function, the Marchenko-Pastur law is defined in Theorem 2.1.
Theorem 2.1 (Marchenko-Pastur Law [9]). For M and µM as defined above, when n → ∞ and m → ∞ such that
n/m→ γ ∈ (0, 1], µM → µ in expectation and almost surely, where µ is the deterministic measure satisfying

dµ

dx
=

{
1

2πσ2γx

√
(σ2a+ − x)(x− σ2a−) if a− ≤ x ≤ a+

0 otherwise
(9)

with a± = (1±√γ)2.

The log-determinant of a matrix whose eigenvalues are distributed according to the Marchenko-Pastur distribution [2] is
defined as

Eµ
[
log(|X|)

n

]
= (1− 1

γ
) log(1− γ)− 1 + log(σ2). (10)

Consequently, the log-determinant of a matrix, whose eigenvalues are distributed according to the Marchenko-Pastur
distribution, is determined uniquely by the variance of the eigenvalues, Varµ[λ] = σ2, and the shape of the matrices
γ. Further, for the Marchenko-Pastur distribution the variance of the eigenvalues is the same as their expectation, i.e.
Eµ[λ] = σ2. Relative to the mutual information lower bound estimation, the shape γ is equal to 11, and it was shown in
[21] that the expected eigenvalues of the matrices Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) are the variables q(ℓ) and q(ℓ)c ,

defined by the following relations {
q(ℓ) = σ2

w

∫
ϕ(
√
q(ℓ−1)z)Dz + σ2

b + σ2
n

q(1) = σ2
wσ

2
x + σ2

b + σ2
n

(11)

and 
q
(ℓ)
c = q(ℓ) − σ2

wq
(ℓ)
(∫

ρ(ℓ−1)ϕ′
(√

q(ℓ)z
)
Dz
)2

ρ(ℓ) = 1

n
√
q(ℓ)

√
q(ℓ) − q(ℓ)c

with ρ(1) = 1, (12)

see [15] for other interpretations of q(ℓ). Therefore it is possible to compute explicitly the log-determinant of Λh(ℓ) and
Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) under the Marchenko-Pastur distribution assumption.

Proposition 1. Assuming that the eigen-distributions of the matrices Λh(ℓ) and Λh(ℓ) − 1
σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) follow the

Marchenko-Pastur distribution with means q(ℓ) and q(ℓ)c respectively, the mutual information is lower bounded by

I(x;h(ℓ)) ≥ n

2
log

(
q(ℓ)

q
(ℓ)
c

)
(13)

Proof. By considering equation (10) with γ = 1, VarΛ
h(ℓ)

[λ] = EΛ
h(ℓ)

[λ] = q(ℓ), and

VarΛ
h(ℓ)

− 1
σ2x

Σ⊤
xh(ℓ)

Σ
xh(ℓ)

[λ] = EΛ
h(ℓ)

− 1
σ2x

Σ⊤
xh(ℓ)

Σ
xh(ℓ)

[λ] = q
(ℓ)
c , it follows that (3) can be expressed as follows

I(x; y) ≥ 1

2
EW:ℓ [log (|Λh(ℓ) |)]− EW:ℓ

[
1

2
log

(∣∣∣∣Λh(ℓ) − 1

σ2
x

Σ⊤
xh(ℓ)Σxh(ℓ)

∣∣∣∣)] (14)

1Following the practise in information theory 0 log(0) = 0. This singularity is due to having no noise included in the distribution.
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=
n

2
log
(
q(ℓ)
)
− n

2
− n

2
log
(
q(ℓ)c

)
+
n

2
=
n

2
log

(
q(ℓ)

q
(ℓ)
c

)
(15)

This shows that the lower bound defined under the mean-field approximation in [21] is equivalent to the one arising
when assuming that the eigen-distributions of Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) are defined by the Marchenko-Pastur

distribution.

3 Spectra calculations using the Stieltjes Transform

The Stieltjes transform allows to study the eigen-distribution resulting from the interaction of random matrices; therefore
it is possible to rely on this transform to model accurately the eigen-spectrum of the matrices Λh(ℓ) , as it was done in
[13, 3], and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) , as it is introduced in this work.

More in detail, when considering a random matrix X the Stieltjes transform is defined by the limiting eigen-distribution
ρX as follows

GX =

∫
R

ρX(t)

z − t dt =
∞∑
k=0

mk
zk+1

z ∈ C \ R (16)

where mk =
∫
λkρX(λ)dλ. If the Stieltjes transform is known, it is also possible to retrieve the underlying distribution

ρX by considering the Sokhotski-Plemelj formula

ρX(t) =
1

π
lim
ν→0+

Im (GX(t− iν)) . (17)

The Stieltjes transform is especially useful when considering matrices that are free, a generalisation of independence in
the matrix space; for more details consider [10].

Following [16], to identify how free matrices interact the moment generating function MX is introduced,

MX(z) = zGX(z)− 1 (18)

and then the S-transform and the R-transform are defined as

SX(z) =
1 + z

zM−1
X (z)

, RX(z) = G−1
X (z)− 1

z
. (19)

Specifically, if two matrices M and C are free relative to each other, it is possible to compute the Stieltjes transform of
CMC⊤, using the multiplicativity of the S-transform

SCMC⊤(z) = SCC⊤(z)SM(z). (20)

and [16] retrieves the following implicit expression

MCMC⊤(ẑ) =MM(SCC⊤(MCMC⊤(ẑ))ẑ). (21)

If MM and SCC⊤ are known, the algorithm to compute the density of the eigenspectrum of CMC⊤ is described in
Algorithm 1; the property of the Stieltjes transform of behaving as 1/z for |z| → ∞ is used to initialise the limit.

Furthermore, if M and C are free relative to each other, then it is possible to obtain the Stieltjes transform of M + C via
the additivity of the R-transform which is also based on the Stieltjes transform

RM+C(z) = RM(z) +RC(z). (22)

As also shown in [16], the following implicit equation holds

GM+C(z̄) = GM (z̄ −RC(GM+C(z̄))) (23)

and consequently the computation of ρM+C(x) is described in Algorithm 2.

These properties of the Stieltjes transform of free matrices are going to be central to the modelling of the spectral
distribution of Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) .

4
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Algorithm 1: ρWAW(λ) [11]
Choose 2N steps and b > 1;
Initialize z0 = λ− ibN and G = 1/z;
for k ∈ {1, ..., 2N} do

zk ← λ− ibN−k ;
Mk ← Root of (21) nearest to zkG− 1 ;
G← (Mk + 1)/zk

end
Return 1

π Im (G)

Algorithm 2: ρA+B(λ)

Choose 2N steps and b > 1;
Initialize z0 = λ− ibN and G = 1/z;
for k ∈ {1, ..., 2N} do

zk ← λ− ibN−k ;
G← Root of (23) nearest to G;

end
Return 1

π Im (G);

3.1 Eigenspectrum of Λh(ℓ) with σb = 0 and σn = 0

Given the weights W(ℓ) and b(ℓ), the matrix Λh(ℓ) is defined as

Λh(ℓ+1) = Ex[(W(ℓ)ϕ(h(ℓ)) + n(ℓ) + b(ℓ))(W(ℓ)ϕ(h(ℓ)) + n(ℓ) + b(ℓ))⊤] (24)

=
σ2
w

n
W (ℓ)Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤]W (ℓ)⊤ + (b(ℓ) + n(ℓ))(b(ℓ) + n(ℓ))⊤, (25)

where the last equality is due to considering only odd activation functions ϕ and therefore the vector E[ϕ(hℓ)] being
null.

The matrix W(ℓ)W(ℓ)⊤, whose S-transform is SWW⊤(z) = 1
σ2
w(1+z) [16, Chapter 15.2], is free relative to

Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤], and it is possible to study the Stieltjes transform of their product with Algorithm 1 if the expression

of the moment generating function MEx[ϕ(h(ℓ))ϕ(h(ℓ))⊤] is known. Moreover, since W(ℓ)Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤]W(ℓ)⊤ is

free relative to (b(ℓ) + n(ℓ))(b(ℓ) + n(ℓ))⊤, it is then possible to study the full spectrum of the matrix Λh(ℓ+1) with
Algorithm 2.

Therefore, the crucial point is computing the Stieltjes transform of Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤]. For the second layer, it is
possible to rely on the work in [13]; this work identified with Theorem 3.1 the Stieltjes transform of 1

mϕ(XW)ϕ(WX)⊤2,
where the input matrix X = [x1, . . . , xm] is considered with the columns being m i.i.d. vectors xi ∼ N (0, σ2

xI), and
the expectation Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤] corresponds to the limit for m → ∞. The following work in [3], extended this
work to compute the spectral distribution of the covariance matrices after the second layer. Specifically, the Stieltjes
transform of 1

mY(ℓ+1)Y(ℓ+1)⊤ with Y(ℓ+1) = ϕ
(

WY(ℓ)
)

, can be approximated by implementing the same expression

for the second layer as in [13] considering X = Y(ℓ) and σ2
x = q(ℓ)/σ2

w.
Theorem 3.1 ([13, Theorem 1]). Consider an odd activation function ϕ satisfying∣∣∣∣∫ dz√

2π
e−

z2

2 ϕk(σwσxz)

∣∣∣∣ <∞ and
∣∣∣∣∫ dz√

2π
e−

z2

2 ϕ(k)(σwσxz)

∣∣∣∣ <∞ (26)

for k > 1 with ϕ(k) being the k-th derivative of ϕ, an input X ∈ Rn0×m and W ∈ Rn1×no with their respective columns
being sampled as follows w(ℓ)

i ∼ N (0, σ2
w

nℓ−1
I) and xi ∼ N (0, σ2

xI), and with Y = ϕ(WX) and

ψ =
n0
m
, φ =

n0
n1
. (27)

Then the eigen-distribution of the empirical covariance matrix M = 1
mYY⊤ is asymptotically defined by

GM(z) ≃ φ

z
H(φz) +

1− φ
z

(28)

where the generating function H(z) satisfies the following recursive relation

H(z) = 1 +
(θ1 − θ2)Hφ(z)Hψ(z)

z
+

Hφ(z)Hψ(z)θ2
z −Hφ(z)Hψ(z)θ2

(29)

where Hψ(z) = 1 + (H(z)− 1)ψ, Hφ(z) = 1 + (H(z)− 1)φ,

θ1 =

∫
1√
2π
ϕ(σwσxz)

2e−
z2

2 dz, and θ2 =

(∫
σwσx√

2π
e−

z2

2 ϕ′(σwσxz)dz

)2

. (30)
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Figure 1: Approximation of the eigen-spectrum for the matrices Λh(ℓ) with n = 100 and (σw, σb, σn) = (2, 0, 0.01)
at the second and fourth layers. The histogram (Empirical Results) corresponds to the eigenvalues obtained on 200
different simulations and it is compared to the Marchenko-Pastur distribution with the same mean, to the distributions
obtained with the Stieltjes transform for Λh(ℓ) in Theorem 3.1.
In Figure 1, an example is shown of how by relying on the Stieltjes transform in Theorem 3.1 it is possible to improve
the description of the eigen-distribution of the matrix Λh(ℓ) . Specifically, it is shown that for the second layer the
approximation is very accurate, while some error creeps in for deeper layers.

3.2 Eigenspectrum of Λh(ℓ) − 1
σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) with σb = 0 and σn = 0

Given the weights W(ℓ) and b(ℓ), the matrix Λh(ℓ) − 1
σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) is defined as follows

Λh(ℓ) − 1

σ2
x

Σ⊤
xh(ℓ)Σxh(ℓ) = Ex[(W(ℓ)ϕ(h(ℓ)) + n(ℓ) + b(ℓ))(W(ℓ)ϕ(h(ℓ)) + n(ℓ) + b(ℓ))⊤]

− 1

σ2
x

Ex[W(ℓ)ϕ(h(ℓ))x⊤]Ex[xϕ(h(ℓ))⊤W(ℓ)⊤] (31)

= W(ℓ)

(
Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤]− 1

σ2
x

Ex[ϕ(h(ℓ))x⊤]Ex[xϕ(h(ℓ))⊤]

)
W(ℓ)⊤

+ (b(ℓ) + n(ℓ))(b(ℓ) + n(ℓ))⊤, (32)

where the last equality is due to considering only odd activation functions ϕ and therefore the vector E[ϕ(h(ℓ))] being
null.

The two matrices Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤] and Ex[ϕ(h(ℓ))x⊤]Ex[xϕ(h(ℓ))⊤] are not free relative to each other
and the additivity property of the R-transform cannot be implemented; therefore the Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤] −
Ex[ϕ(h(ℓ))x⊤]Ex[xϕ(h(ℓ))⊤] matrix has to be considered as one. The changes to the eigen-spectrum due to the
remaining operations in (32) follow the same logic as for the ones in (25). Thus the only unknown is the Stieltjes trans-
form of Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤]− Ex[ϕ(h(ℓ))x⊤]Ex[xϕ(h(ℓ))⊤] which is the m→∞ case for the expression introduced
in Theorem 3.2.
Theorem 3.2. Consider the odd activation function ϕ for which the following holds∣∣∣∣∫ dz√

2π
e−

z2

2 ϕk(σwσxz)

∣∣∣∣ <∞ and
∣∣∣∣∫ dz√

2π
e−

z2

2 ϕ(k)(σwσxz)

∣∣∣∣ <∞ (33)

for k > 1 with ϕ(k) being the k-th derivative of ϕ, for each layer the matrices W(ℓ) ∈ Rnℓ×nℓ−1 , an input matrix
X ∈ Rn0×m with their respective columns being sampled as follows w(ℓ)

i ∼ N (0, σ2
w

nℓ−1
I) and xi ∼ N (0, σ2

xI). Then

define H(ℓ)
i,p =

∑n
kℓ=1 W(ℓ)

i,kℓ
Y(ℓ)
kℓ,p

with Y(ℓ)
i,p = ϕ(H(ℓ−1)

i,p ) and with Y(1) = X, ψ = n0

m , and φ = n0

n1
. Under the

assumption that each column in Y(ℓ) is distributed according to Y(ℓ)
:p ∼ N (0, q(ℓ)I), the matrix

M =
1

m
EX

[
ϕ(W(ℓ)Y(ℓ))ϕ(W(ℓ)Y(ℓ))⊤

]
− 1

m2σ2
x

EX

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
EX

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
(34)

2In this subsection the superscript (ℓ) is omitted for clarity.
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Figure 2: Approximation of the eigen-spectrum for the matrices Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) with n = 100 and

(σw, σb, σn) = (2, 0, 0.01) at the second and fourth layers. The histogram (Empirical Results) corresponds to the
eigenvalues obtained on 100 different simulations and it is compared to the Marchenko-Pastur distribution with the
same mean, to the distributions obtained with the Stieltjes transform for Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) in Theorem 3.2.

has an eigen-distribution whose Stieltjes transform is asymptotically defined by

GM(z) ≃ 1− φ
z

+
φ

z
H(z) (35)

where

H(z) =

Hψb(z)Hφ(z)

(
θ
(ℓ)
1 − σ2

xσ
2ℓ
w

(∏ℓ
l=1 θ

(l)
3

)2)
φz

−
Hψc(z)Hφ(z)

(
θ
(ℓ)
2 − σ2

xσ
2ℓ
w

(∏ℓ
l=1 θ

(l)
3

)2)
φz

+

Hψc(z)Hφ(z)

(
θ
(ℓ)
2 − σ2

xσ
2ℓ
w

(∏ℓ
l=1 θ

(l)
3

)2)
φz −Hψc(z)Hφ(z)

(
θ
(ℓ)
2 − σ2

xσ
2ℓ
w

(∏ℓ
l=1 θ

(l)
3

)2) + 1 (36)

with

θ
(ℓ)
1 =

∫
1√
2π
ϕ(σw

√
q(ℓ)z)2e−

z2

2 dz, θ
(ℓ)
2 =

(∫ √
q(ℓ)√
2π

e−
z2

2 ϕ′(
√
q(ℓ)z)dz

)2

, (37)

θ
(ℓ)
3 =

∫ ϕ′
(√

q(ℓ)z
)

√
2π

e−
z2

2 dz, (38)

Hψα(z) = 1 + καψ(H(z) − 1), Hφ = 1 + φ(H(z) − 1), α ∈ {b, c}, κc = 1 +
2σ2
xσ

2
wθ

(ℓ)2

3 θ
(ℓ)
2 −σ4

xσ
4
wθ

(ℓ)4

3

(θ
(ℓ)
2 −σ2

xσ
2
wθ

(ℓ)2

3 )2
, and

κb = 1 +
θ
(ℓ)
1 σ2

xσ
2
wθ

(ℓ)2

3 +σ2
xσ

2
wθ

(ℓ)2

3 θ
(ℓ)
2 −σ4

xσ
4
wθ

(ℓ)4

3

(θ
(ℓ)
1 −σ2

xσ
2
wθ

(ℓ)2

3 )(θ
(ℓ)
2 −σ2

xσ
2
wθ

(ℓ)2

3 )
.

The proof is included in Appendix A which relies on Appendices B and C.

In Figure 2, the empirical eigen-distribution of the matrices Λh(ℓ) − 1
σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) at the second and fourth layers is

compared with the approximation that is retrieved by considering the Stieltjes transform in Theorem 3.2. As for Λh(ℓ) ,
the second layer’s eigen-distribution is visually approximated very accurately, while there remains a visually observable
difference for deeper layers, although of a smaller entity than for Λh(ℓ) .

3.3 Noise Application

The expectation on which Λh(ℓ) and Λh(ℓ) − 1
σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) are computed also considers the random vector n.

Therefore, as for the input x it is necessary to consider an input matrix N = [n1, . . . ,nm] with m→∞ and m/n→∞,
and therefore the following cases are considered

Λh(ℓ+1) =
σ2
w

n
W (ℓ)Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤]W (ℓ)⊤ + NN⊤ (39)
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and

Λh(ℓ) − 1

σ2
x

Σ⊤
xh(ℓ)Σxh(ℓ) = W(ℓ)

(
Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤] − 1

σ2
x

Ex[ϕ(h(ℓ))x⊤]Ex[xϕ(h(ℓ))⊤]

)
W(ℓ)⊤

+ NN⊤. (40)

Crucially, for computational purposes, the noise at the previous layers is assumed to not affect the distribution
significantly to be modelled since only small noises are considered.

The Stieltjes transform of the perturbation is

GNN⊤(z) =
1

z − σ2
n

(41)

and thus by considering the implicit equation (23), the Stieltjes transform of the perturbed matrix is

GA+NN⊤(z) = GA(z − σ2
n). (42)

This corresponds to a shift to the right of the distribution of the matrices that are used for the computation of the mutual
information. Thanks to this shift the matrices Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) are guaranteed of not being singular,

and thus allow the computation of the mutual information.

3.4 Estimation of the mutual information

Relying on the determination of the Stieltjes transform of the matrices Λh(ℓ) and Λh(ℓ) − 1
σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) in Sections

3.1 and 3.2 with σb = 0, and on the distribution shift caused by the noise application determined in Section 3.3, it is
now possible to numerically compute the lower bound of the mutual information thanks to the property reported in (6)
when no bias is considered.

In Figure 3 the empirical mutual information lower bound for different layers of a neural network is compared to
the approximation attained with different approaches when σw varies, σb = 0, σn = 0.1, and the input is considered
with σx = 1. The empirical lower bound3 is generated by considering 200 initialisations of neural networks with
100-dimensional matrices and with 100, 000 samples. It is possible to notice that the analysis conducted by considering
the Stieltjes transform is exact on the second layer, but as soon as the layers increase the bound is over-estimated;
however, this approach yields to more accurate approximations of the lower bound introduced in [21]. In Figure 4
the behaviour of the different approximations of the terms log(|Λh(ℓ) |)/n and log(|Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) |)/n for

the second and fifth layers are compared in the same settings, and it is possible to infer how the error observed in
Figure 3 is primarily due to the inaccurate estimation of the log-determinant of Λh(ℓ) ; thus giving a direction for future
improvements.

Similarly to [21], the approximation with the Stieltjes transform of the mutual information lower bound allows to rely on
an analytical expression to study the behaviour of the bound at deep layers; thus avoiding running expensive simulations.
Therefore, it is possible to obtain results such as those reported in Figure 5, where the bound approximation for very deep
layers supports that selecting σw = 1 when σb = 0 and ϕ(·) = tanh(·) is optimal from a mutual information perspective.
This conclusion follows from how the bound decreases the slowest for this kind of initialisation parameters, consistently
with [21]. Furthermore, as it was observed in [21], the same choice of parameters (σw, σb, ϕ(·)) = (1, 0, tanh(·)) is
on the edge of chaos [15], thus suggesting that initialisations that are optimal from a training perspective also yield
maximal information propagation.

4 Final Considerations

This work explored how the approximation of the lower bound of the mutual information for a neural network at
initialisation without bias can be approached from a random matrix perspective; which was shown to consist in
modelling the eigen-distribution of the matrices Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) .

In Section 2 a simple approximation of the eigen-spectra with the Marchenko-Pastur distribution was introduced and it
was shown that the results with this approximation correspond to those relative to the mean-field approximation in [21].
In Section 3 the eigen-distribution of Λh(ℓ) and Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) was approximated relying on the Stieltjes

3The log determinant of the sampled matrices log(|Λh(ℓ) |)/n and log(|Λh(ℓ) − 1
σ2
x
Σ⊤

xh(ℓ)Σxh(ℓ) |)/n was computed considering

the following identity log |A| = log |L||L⊤| = 2 log |L| = 2 log
(∏n

j=1 Lii

)
= 2

∑n
i=1 log(Lii).
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Figure 3: Comparison of the empirical mutual information lower bound between the input and the second (a), third
(b), fourth (c), and fifth (d) hidden layer with its approximation with the mean-field approximation and the Stieltjes
transform.

transform and its properties for free matrices. Specifically, in Section 3.1 the modelling of the eigen-distribution of
Λh(ℓ) in [13, 3] was considered, and in Section 3.2 an approximation for Λh(ℓ) − 1

σ2
x
Σ⊤
xh(ℓ)Σxh(ℓ) was introduced. This

approach resulted in an improved estimation of the mutual information in Section 3.4, despite some limitations were
identified in the computation of the log-determinant of Λh(ℓ) . The Stieltjes transform based method also identified the
same behaviour as in [21] for which there is a choice of parameters that optimises the decay of the mutual information
lower bound and at the same time is optimal from a training perspective according to the edge of chaos theory [12].

In conclusion, this work showed that it is possible to rely on techniques of random matrix theory to improve on the
estimation of the mutual information lower bound introduced in [21]. By expanding this work in the direction that it
was proposed within the text, it might be possible to model exactly how the mutual information lower bound decreases
through the layers, and this might be beneficial to the understanding of how to train neural networks optimally.
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Figure 4: Comparison of the empirical estimation of log(|Λh(ℓ) |)/n at the second (a) and fifth (b) layers, and of
log(|Λh(ℓ) − 1
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xh(ℓ)Σxh(ℓ) |)/n at the second (c) and fifth (d) layers with its approximation with the mean-field

approximation, and the Stieltjes transform.
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A Proof of Theorem 3.2

The proof of Theorem 3.2 relies on the use of the method of moments detailed in Section A.1. This method allows to
identify an implicit relation that the Stieltjes transform has to satisfy and that allows to compute the transform efficiently.
Therefore, this method is first used to prove the recursive relation at the second layer in Section A.2, and followingly it
is expanded to the subsequent layers in Section A.3. Appendix B and C are in support of these proofs.

A.1 The Method of Moments

The method of moments was used in [13] and [3] to find an implicit recursive relation for the Stieltjes transform of
matrix Λh(2) , GΛ

h(2)
(z)4 in the limit of nℓ →∞. Given a general random matrix M, this method aims at evaluating

the identity

GM(z) =

∞∑
k=0

mk
zk+1

(43)

by determining exactly the moments, mk, of the eigen-distribution ρM of M. When considering the matrices relevant
to the computation of the mutual information lower bound, the final expression of mk allows to identify the leading
contribution and therefore to show that there is a unique measure yielding the identified transform; but the expression is
too computationally complex to be computed in practice. However, by computing the moments mk it is possible to
identify an implicit relation that the Stieltjes transform has to satisfy and that allows to compute the transform efficiently.
Therefore, computing the moments will indirectly allow to identify the Stieltjes transform.

In this work similarly to [13] and [3], the method of moments is applied to matrices M ∈ Rn1×n1 that are the outer
product of two matrices M = 1

mYY⊤ where the elements of Y ∈ Rn1×m that share an index are not independent, i.e.
Yi,j ⊥⊥ Yp,q but Yi,j ⊥̸⊥ Yi,q and Yi,j ⊥̸⊥ Yp,j for i ̸= p and j ̸= q. Specifically, in this context the method of moments
aims to identify G(z) by considering the limiting moments mk = limn→∞ m

(n)
k

5 where

m
(n)
k =

1

n1
E[tr(Mk)] =

1

n1
E

 ∑
i1,...,ik∈[n]

Mi1i2Mi2i3 ...Miki1

 (44)

=
1

n1mk
E

 ∑
i1,...,ik∈[n]
µ1,...,µk∈[m]

Yi1µ1
Yi2µ1

Yi2µ2
Yi3µ2

...YikµkYi1µk

 (45)

=
1

n1mk

∑
i1,...,ik∈[n]
µ1,...,µk∈[m]

E [Yi1µ1
Yi2µ1

Yi2µ2
Yi3µ2

...YikµkYi1µk ] (46)

and these finite dimensional moments m
(n)
k are computed by associating each sequence of indices

{(i1, µ1), . . . , (i1, µk)} to a pattern which is going to be represented with a graph. These graphs are such that
despite having different indices, all the addends in (46) sharing the same pattern have the same expected value because
of the independence of the weights. Therefore, the addends can be grouped according to their pattern, and, once the
contribution of each pattern6 is established, it is necessary to only quantify the pattern’s frequency in the outer sum of
(46).

The patterns that arise in (46) are identifiable as graphs by associating the indices, iξ and µξ, to the vertex indices of a
graph whose edges are defined by Yiξµξ . The work in [13] and [3] proves that (46) is dominated by the terms in the
sum whose index pattern is associated to a connected outer-planar graphs in which all blocks are simple even cycles,
and these graphs are defined as admissible graphs; for details consider Definition A.1. For example, all the admissible
patterns for k = 3 are shown in Figure 6; all the admissible graphs would consist in permutations of the indices.
Definition A.1 ([13]). For any positive integer k, a 2k-cycle, is an admissible graph. Start by labelling the vertices in
the 2k-cycle as 1, . . . , 2k in a clockwise fashion. Consider any pair of vertices v1 and v2 of the same parity, one may

4In the upcoming work the subscript on the Stieltjes transform identifying the corresponding matrix on which the transform is
computed is going to be dropped unless the context requires it.

5Note that with the expression n → ∞ we assume that all of the layer dimension of the nets are proportional to each other and
therefore nℓ → ∞ for any ℓ.

6From now on, the contribution of a pattern or a graph will correspond to the expected value of any term in (46) whose indices
define the same pattern or graph.
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Figure 6: Admissible patterns according to Definition A.1 when considering k=3. Any admissible graph with k = 3
consist of a permutation of the indices in the illustrated patterns. This Figures reproduces parts of [13, Figure S1].

obtain an admissible graph from another admissible graph by identifying v1 and v2 if there exist two vertex-disjoint
paths between v1 and v2. The merged vertex is assigned the same parity as that on v1 and v2.

The above definition of admissible graphs, allows to compute the moments m(n)
k for finite n-dimensional matrices M

by first considering simple cycles and then aggregating their contributions. At leading order, the contribution of a graph
is multiplicative in the contributions of its constituent cycles.

When considering the limiting moment mk = limn→∞ m
(n)
k , the explicit formulation of the moments allow to explicitly

determine the Stieltjes transform of the matrices relevant to the mutual information lower bound estimation, however,
this formulation is too complex to be used in practice. Nevertheless, thanks to the explicit formulation of the Stiletjes
transform, it is possible to retrieve an implicit formulation of the Stieltjes transform that can be computed in practice.
To find this implicit formulation, two properties of the limiting moments mk are considered: the fact that there exists a
generating function based on mk that is related to the limiting Stieltjes transform G, and the fact that the multiplicativity
of the constituent cycles used to compute m

(n)
k is preserved.

A.2 Stieltjes Transform of the Matrix Ex[ϕ(h(1))ϕ(h(1))⊤]− Ex[ϕ(h(1))x⊤]Ex[xϕ(h(1))⊤] with σb = 0 and
σn = 0

To rely on the moment of methods as in Section 3.1, it is necessary to study the expectation on the input as an empirical
expectation with m→∞ samples. By considering an input matrix X, the Stieltjes transform of Ex[ϕ(h(1))ϕ(h(1))⊤]−
Ex[ϕ(h(1))x⊤]Ex[xϕ(h(1))⊤] is determined by studying the eigen-distribution of

M =
1

m
EX

[
ϕ(W(1)X)ϕ(W(1)X)⊤

]
− 1

m2σ2
x

E
[
ϕ(W(1)X)X⊤

]
E
[
ϕ(W(1)X)X⊤

]⊤
(47)

when m→∞. The definition of M already considers the expectation over X and this is necessary because of the nature
of the matrix product Σ⊤

xh(ℓ)Σxh(ℓ) .
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Considering the admissible graphs of Definition A.1, shown to be the leading order contribution also in this setting
in Appendix B.4, we determine an implicit relation for the Stieltjes transform of M, defined in Theorem A.1. When
m/n→∞ Theorem A.1 holds for the matrix Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤]− Ex[ϕ(h(ℓ))x⊤]Ex[xϕ(h(ℓ))⊤].
Theorem A.1. Consider the odd activation function ϕ∣∣∣∣∫ dz√

2π
e−

z2

2 ϕk(σwσxz)

∣∣∣∣ <∞ and
∣∣∣∣∫ dz√

2π
e−

z2

2 ϕ(k)(σwσxz)

∣∣∣∣ <∞ (48)

for k > 1 with ϕ(k) being the k-th derivative of ϕ and the matrices W ∈ Rn1×n0 and X ∈ Rn0×m with their respective
columns being sampled as follows wi ∼ N (0, σ

2
w

n I) and xi ∼ N (0, σ2
xI). Then, defining ψ = n0

m and φ = n0

n1
, the

matrix M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
XY⊤

]
with Y = ϕ(WX) has an eigen-distribution whose Stieltjes

transform is asymptotically defined by

GM(z) ≃ 1− φ
z

+
φ

z
H(z) (49)

where

H(z) = 1 +
Hψb(z)Hφ(z)(θ1 − σ2

xσ
2
wθ

2
3)

φz
− Hψc(z)Hφ(z)(θ2 − σ2

xσ
2
wθ

2
3)

φz

+
Hψc(z)Hφ(θ2 − σ2

xσ
2
wθ

2
3)

φz −Hψc(z)Hφ(θ2 − σ2
xσ

2
wθ

2
3)

(50)

with

θ1 =

∫
1√
2π
ϕ(σwσxz)

2e−
z2

2 dz, (51)

θ2 =

(∫
σwσx√

2π
e−

z2

2 ϕ′(σwσxz)dz

)2

, (52)

θ3 =

∫
z1

ϕ′ (σxσwz)√
2π

e−
z2

2 dz (53)

Hψα(z) = 1 + ψκα(H(z) − 1), Hφ = 1 + φ(H(z) − 1), α ∈ {b, c}, and κb = 1 +
θ1σ

2
xσ

2
wθ

2
3+σ

2
xσ

2
wθ

2
3θ2−σ

4
xσ

4
wθ

4
3

(θ1−σ2
xσ

2
wθ

2
3)(θ2−σ2

xσ
2
wθ

2
3)

,

κc = 1 +
2σ2
xσ

2
wθ

2
3θ2−σ

4
xσ

4
wθ

4
3

(θ2−σ2
xσ

2
wθ

2
3)

2 .

In the following subsections, the proof of Theorem A.1 determines the moments of M defined according to the following
expectation

1

n
EW[tr(Mk)] =

1

n
EW

 ∑
i1,...,ik∈[n]

Mi1i2Mi2i3 ...Miki1

 (54)

=
1

nmk
EW

 ∑
i1,...,ik∈[n]
µ1,...,µk∈[m]

Mµ1

i1i2
Mµ2

i2i3
...Mµk

iki1

 (55)

where

Mµ1

i1i2
= EX

[
ϕ(
∑
l

Wi1,lXlµ1
)ϕ(
∑
l

Wi2,lXlµ1
)

]

− 1

mσ2
x

n,m∑
p,q=1

EX

[
ϕ(
∑
l

Wi1,lXlµ1)Xpµ1

]
EX

[
ϕ(
∑
l

Wi2,lXlq)Xpq

]
. (56)

In Subsection A.2.1 the contribution of single cycle patterns are determined and in Subsection A.2.2 they are aggregated
to identify the contribution to the moments of an admissible graph. This allows to define a generating function and to
determine the contribution of two graphs that are connected via a vertex. These observations are then used in Subsection
A.2.3 to prove Theorem A.1.

An interesting consequence on the Theorem A.1 being applied at the first layer is reported in Corollary A.1.1 whose
proof is included in Appendix B.5.
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Corollary A.1.1. For M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
and Y = ϕ (WX) as defined in Theorem A.1,

the eigen-distribution of the matrix WMW⊤ asymptotically follows the Marchenko-Pastur distribution with mean
σ2
w(θ1 − θ2) and shape γ = n1

n0
when ψ = 0 and φ = 1.

A.2.1 2k-cycle Contributions

Similarly the heterogeneous input proof, the contribution of cycles of length 2k is first computed to then study
the contribution of any admissible graph. We thus start by considering cycles of length 2k, i.e. in Equation (55)
i1 ̸= i2 ̸= ... ̸= ik and µ1 ̸= µ2 ̸= ... ̸= µk.

E
(n)
2k = EW

[
Mµ1

i1i2
Mµ2

i2i3
...Mµk

iki1

]
(57)

=

∫
W

{(∫
ϕ(
∑
l

Wi1,lXlµ1
)ϕ(
∑
l

Wi2,lXlµ1
)DX

− 1

mσ2
x

n,m∑
p,q=1

∫
ϕ(
∑
l

Wi1,lXlµ1
)Xpµ1

DX
∫
ϕ(
∑
l

Wi2,lXlq)XpqDX

)
...(∫

ϕ(
∑
l

Wik,lXl,µk)ϕ(
∑
l

Wi1,lXl,µk)DX

− 1

mσ2
x

n,m∑
p,q=1

∫
ϕ(
∑
l

Wik,lXlµk)XpµkDX
∫
ϕ(
∑
l

Wi1,lXlq)XpqDX

)}
DW (58)

It is possible to reformulate the right addend thanks to the following identity∫
X
ϕ(
∑
l ̸=β

WαlXlp + WαβXβ,p)Xβ,pDX =

∫
X
σ2
xϕ

′(
∑
l

WαlXlp)WαβDX (59)

= σ2
xWαβ

∫
ϕ′ (σxσwz)Dz = σ2

xWαβθ3 (60)

where Dz is the standard normal measure.

This leads to the following expression

E
(n)
2k =

∫
W

{(∫
ϕ(
∑
l

Wi1,lXlµ1
)ϕ(
∑
l

Wi2,lXlµ1
)DX− σ2

x

m

n,m∑
p,q=1

Wi1pWi2pθ
2
3

)
(61)

...(∫
ϕ(
∑
l

Wik,lXl,µk)ϕ(
∑
l

Wi1,lXl,µk)DX− σ2
x

m

n,m∑
p,q=1

WikpWi1pθ
2
3

)}
DWDX (62)

=

∫
W,X


k∏
ξ=1

(
ϕ(
∑
l

Wiξ,lXl,µξ)ϕ(
∑
l

Wiξ+1,lXl,µξ)− σ2
x

n∑
p=1

WiξpWiξ+1pθ
2
3

)DWDX. (63)

In the case of k = 1, the integral can be split in two due to its linearity, and this leads to

Lemma A.2. For M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
and Y = ϕ (WX) as defined in Theorem A.1, when

k = 1 then contribution of an admissible cycle is

E
(n)
2 = θ1

(
1 +O

(
1

n

))
− σ2

wσ
2
xθ

2
3 (64)

with

θ1 =

∫
1√
2π
ϕ(σwσxz)

2e−
z2

2 dz, (65)

θ3 =

∫
1√
2π
ϕ′ (σxσwz) e

− z2

2 dz. (66)
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Proof. See proof in Section B.1.

However, when considering k > 1, we have to consider also mixed products. More complex considerations allow to
determine the contribution of a general 2k-cycle.

Lemma A.3. For M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
and Y = ϕ (W X) as defined in Theorem A.1, when

k > 1 then contribution of an admissible cycle is

E
(n)
2k = n1−k0

(
θ2 − σ2

wσ
2
xθ

2
3

)k (
1 +O

(
1

n

))
(67)

with

θ2 =

(∫
σwσx√

2π
e−

z2

2 ϕ′(σwσxz)z

)2

, (68)

θ3 =

∫
1√
2π
ϕ′ (σxσwz) e

− z2

2 dz (69)

Proof. See proof in Section B.2.

A.2.2 Agglomeration of the Contributions

To compute the moments of the distribution, we follow the exact same process as in the heterogeneous case for Λhl

where we identify all of the possible patterns, identify their cardinality (each pattern can be achieved by selecting
different vertices), and their Expected contribution thanks to the previous subsection.

To count the different patterns, after naming Ii and Iµ the identifications in Definition A.1 of respectively odd and even
parity, the following variable is considered similarly to [13, 3]:

Definition A.2. C(k, Ii, Iµ, b, bµ, cµ) is the number of admissible pattern with 2k edges, Ii i-identifications, Iµ =
bµ + cµ µ-identifications where cµ are the identifications that do not define any two dimensional cycle, and with exactly
b cycles of size 2, similarly to [13, 3].

Therefore, it is possible to compute the k-th moment of the eigen-distribution

Proposition 2. For M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
and Y = ϕ (WX) as defined in Theorem A.1, the

k-th moment of the eigen-distribution, for k > 1, is

m
(n)
k = mk

(
1 +O

(
1

n

))
(70)

with

mk = lim
n→∞

m
(n)
k (71)

= φ1−k
k∑

Ii,Iµ=1

Ii+Iµ+1∑
b=0

b∑
bµ=0

C(k, Ii, Iµ, b, bµ, cµ)
2π
√

(k − Ii)(k − Iµ)
(θ1 − σ2

xσ
2
wθ

2
3)
b·

· (θ2 − σ2
xσ

2
wθ

2
3)
k−bκb

µ

b κ
Iµ−bµ
c φI1ψIµ

(
e

k − Ii

)k−I1 ( e

k − Iµ

)k−Iµ
(72)

= φ1−kHk (73)

where we define κb = 1 +
θ1σ

2
xσ

2
wθ

2
3+σ

2
xσ

2
wθ

2
3θ2−σ

4
xσ

4
wθ

4
3

(θ1−σ2
xσ

2
wθ

2
3)(θ2−σ2

xσ
2
wθ

2
3)

, κc = 1 +
2σ2
xσ

2
wθ

2
3θ2−σ

4
xσ

4
wθ

4
3

(θ2−σ2
xσ

2
wθ

2
3)

2 , and based on these finally

Hk =
∑k
Ii,Iµ=1

∑Ii+Iµ+1
b=0

∑b
bµ=0 C(k, Ii, Iµ, b, bµ, cµ)(θ1 − σ2

xσ
2
wθ

2
3)
b(θ2 − σ2

xσ
2
wθ

2
3)
k−bκb

µ

b κ
cµ

c φ
I1ϕIµ .

Proof. See proof in Section B.3.

This allows to compute the Stieltjes transform by introducing the generating function H .
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Corollary A.3.1. For M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
and Y = ϕ (WX) as defined in Theorem A.1,

the Stieltjes transform of the eigen-distribution of M asymptotically satisfies the following equation

GM(z) ≃ 1− φ
z

+
φ

z
H(z) (74)

where H(z) is the generating function defined as H(z) = 1 +
∑∞
k=1

Hk
zkφk

= 1 + 1
φ

∑∞
k=1

mk
zk

.

Proof. To start with we notice that using the definition of the Stieltjes transform (43)

GM(z) =

∞∑
k=0

m
(n)
k

zk+1
=

∞∑
k=0

mk
zk+1

(
1 +O

(
1

n

))
(75)

= G(z)

(
1 +O

(
1

n

))
(76)

By relying on equations (43) and (71)-(73)

G(z) =
1

z
+

∞∑
k=1

mk
zk+1

=
1

z
+
φ

z

∞∑
k=1

Hk

zkφk
(77)

=
1− φ
z

+
φ

z

(
1 +

∞∑
k=1

Hk

zkφk

)
=

1− φ
z

+
φ

z
H(z). (78)

Moreover, from Proposition 2 it follows that the total contribution to the moment of a graph which is defined by the
junction of two graphs, is equal to the contribution of each defining block with a penalty term that depends on the
identification joining the two graphs.

Corollary A.3.2. Consider M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
and Y = ϕ (WX) as defined in Theorem

A.1, and consider a graph G3 with 2(p+ q) edges that is defined, via etiher an i or µ identification, by two graphs G1

and G2 with 2p and 2q edges. Then the asymptotic contribution, mG3
p+q, of the graph G3 to the moment mp+q is equal

to the product of the contributions of the block cycle graphs that define G3 with a correction term. This is, they are
joined with an i-identification

mG3
p+q = mG1

p

n1
n1

mG2
p (79)

and if they are joined with a µ-identification

mG3
p+q = mG1

p

n1κα
m

mG2
p (80)

where if either one of the block cycles connected to the identification are of dimension 2, then α = b or otherwise α = c,
and κb = 1 +

θ1σ
2
xσ

2
wθ

2
3+σ

2
xσ

2
wθ

2
3θ2−σ

4
xσ

4
wθ

4
3

(θ1−σ2
xσ

2
wθ

2
3)(θ2−σ2

xσ
2
wθ

2
3)

, κc = 1 +
2σ2
xσ

2
wθ

2
3θ2−σ

4
xσ

4
wθ

4
3

(θ2−σ2
xσ

2
wθ

2
3)

2 .

A.2.3 Proof of the Implicit Relation in Theorem A.1

Proof. As shown in Corollary A.3.2, a graph G3, that is defined by a graph G1 and G2, contributes to the total moment
according to the following identity.

mG3
q+p = mG1

q

n1
n1

mG2
p (81)

when considering an i-identification or
mG3
q+p = mG1

q

n1κα
m

mG2
p (82)

when considering a µ-identification where α = b if either of the adjacent blocks to the identifications is a 2 dimensional
cycle, or α = c otherwise.

If a vertex v is fixed, it is possible to use the moment generating function to define the contributions of all the possible
patterns that include the chosen vertex. For each of these patterns, the vertex is going to be in a cycle of dimension
2ℓ, with a contribution m2ℓ−cycle

ℓ , and to each of the remaining vertices either nothing or a further graph is connected
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with a correction depending on the identification. By considering the limiting variables E2ℓ = limn→∞E
(n)
2ℓ , the total

contribution, C2ℓ, to the different moments for graphs in which the vertex v is included in a 2ℓ cycle is defined by

C2ℓ =
m2ℓ−cycle
ℓ

zℓ

(
1 +

∑
Gα

mGα|Gα|

z|Gα|

)ℓ(
1 +

∑
Gα

καn1
m

mGα|Gα|

z|Gα|

)ℓ
(83)

=
1

n1mℓzℓ
E2ℓn

ℓ−1
1 mℓ

(
1 +

∑
Gα

mGα|Gα|

z|Gα|

)ℓ(
1 +

∑
Gα

καn1
m

mGα|Gα|

z|Gα|

)ℓ
(84)

=
1

n1mℓzℓ
E2ℓn

ℓ−1
1 mℓ

(
1 +

n1
n1
φ(H(z)− 1)

)ℓ (
1 +

καn1
m

φ(H(z)− 1)
)ℓ

(85)

=
1

n1mℓzℓ
E2ℓn

ℓ−1
1 mℓ (1 + φ(H(z)− 1))

ℓ
(1 + καψ(H(z)− 1))

ℓ (86)

=
1

n1mℓzℓ
E2ℓn

ℓ−1
1 mℓHℓ

φH
ℓ
ψα (87)

where Gα is any possible graph, |Gα| is its dimension, and the following definition of the generating function was used

H(z)− 1 =
1

φ

∑
Gα

mGα|Gα|

z|Gα|
, (88)

the following variables were introduced

Hφ(z) = 1 + φ(H(z)− 1) and Hψα(z) = 1 + καψ(H(z)− 1), (89)

and κα was considered to be dependent uniquely on the cycle that contains vertex v is part of. If ℓ > 1, then α = b only
if the block of Gα to which the cycle is attached is of dimension 2. However, the cardinality of the connection to these
kinds of graphs is of a lower order than to any other kind, thus, for any cycle with ℓ > 1 it is going to be assumed that
α = c .

Therefore, by summing the contribution C2ℓ over all the possible fixed vertices v and over all the possible cycle
dimensions ℓ, the moment generating function is retrieved.

φ(H(z)− 1) =
∑
k

mk
zk

=

n1∑
i=1

∞∑
ℓ=1

C2ℓ (90)

=

∞∑
ℓ=1

E2ℓn
ℓ−1
1

zℓ
Hψα(z)

ℓHφ(z)
ℓ (91)

=
θ1 − σ2

xσ
2
wθ

2
3

z
Hψb(z)Hφ(z) +

∞∑
ℓ=2

n1−ℓ0

(θ2 − σ2
xσ

2
wθ

2
3)
ℓ

zℓ
nℓ−1
1 Hψc(z)

ℓHφ(z)
ℓ (92)

=
θ1 − σ2

xσ
2
wθ

2
3

z
Hψb(z)Hφ(z) +

∞∑
ℓ=2

φ1−ℓ(θ2 − σ2
xσ

2
wθ

2
3)
ℓ

zℓ
Hψc(z)

ℓHφ(z)
ℓ. (93)

Therefore the recursive formula is

H(z) = 1 +
Hψb(z)Hφ(z)(θ1 − σ2

xσ
2
wθ

2
3)

φz
+

∞∑
q0=2

(
Hψc(z)Hφ(θ2 − θ1 − σ2

xσ
2
wθ

2
3)

φz

)q0
(94)

= 1 +
Hψb(z)Hφ(z)(θ1 − σ2

xσ
2
wθ

2
3)

φz
− Hψc(z)Hφ(z)(θ2 − σ2

xσ
2
wθ

2
3)

φz

+

∞∑
q0=1

(
Hψc(z)Hφ(θ2 − θ3)

φz

)q0
(95)

= 1 +
Hψb(z)Hφ(z)(θ1 − σ2

xσ
2
wθ

2
3)

φz
− Hψc(z)Hφ(z)(θ2 − σ2

xσ
2
wθ

2
3)

φz

+
1

1−
(
Hψc(z)Hφ(θ2−θ3)

φz

) − 1 (96)
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= 1 +
Hψb(z)Hφ(z)(θ1 − σ2

xσ
2
wθ

2
3)

φz
− Hψc(z)Hφ(z)(θ2 − σ2

xσ
2
wθ

2
3)

φz

+
φz

φz −Hψc(z)Hφ(θ2 − σ2
xσ

2
wθ

2
3)
− 1 (97)

= 1 +
Hψb(z)Hφ(z)(θ1 − σ2

xσ
2
wθ

2
3)

φz
− Hψc(z)Hφ(z)(θ2 − σ2

xσ
2
wθ

2
3)

φz

+
Hψc(z)Hφ(θ2 − σ2

xσ
2
wθ

2
3)

φz −Hψc(z)Hφ(θ2 − σ2
xσ

2
wθ

2
3)

(98)

A.3 Stieltjes Transform of the Matrix Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤]− Ex[ϕ(h(ℓ))x⊤]Ex[xϕ(h(ℓ))⊤] with σb = 0 and
σn = 0

In this section, the matrix Ex[ϕ(h(ℓ))ϕ(h(ℓ))⊤]− Ex[ϕ(h(ℓ))x⊤]Ex[xϕ(h(ℓ))⊤] is studied at deeper layers following a
similar argument to the one for Ex[ϕ(h(1))ϕ(h(1))⊤]−Ex[ϕ(h(1))x⊤]Ex[xϕ(h(1))⊤]. Therefore we study the following
matrix

M =
1

m
EX

[
ϕ(W(ℓ)Y(ℓ))ϕ(W(ℓ)Y(ℓ))⊤

]
− 1

m2σ2
x

Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
. (99)

The consequent Stieltjes transform introduced in Theorem 3.2 however has to rely on the assumption that all the
elements in the hidden layer are independent since it is not amenable to keeping track of the covariance through the
layers, as shown in Lemma A.5.

The proof of Theorem 3.2 relies on the proof of Theorem A.1 to implement the moments method. This subsection will
focus on implementing the method of moments by considering the following expectation

1

n
EW[tr(Mk)] =

1

n
EW

 ∑
i1,...,ik∈[n]

Mi1i2Mi2i3 ...Miki1

 (100)

=
1

nmk
EW

 ∑
i1,...,ik∈[n]
µ1,...,µk∈[m]

Mµ1

i1i2
Mµ2

i2i3
...Mµk

iki1

 (101)

where

Mµ1

i1i2
=EX

[
ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lµ1

)ϕ(
∑
l

W(ℓ)
i2,l

Y(ℓ)
lµ1

)

]

− 1

mσ2
x

n,m∑
p,q=1

EX

[
ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lµ1

)Xpµ1

]
EX

[
ϕ(
∑
l

W(ℓ)
i2,l

Y(ℓ)
lq )Xpq

]
. (102)

In Section A.3.1 the contribution of simple cycles is computed and it is shown how it is necessary to include the
assumption of the elements in the hidden layer being independent, i.e. Y(ℓ)

:p ∼ N (0, q(ℓ)I), to retrieve a tractable
analytical formulation. Once this assumption is considered, then in Section A.3.2 two updated Lemmas from Section
A.2.2 are presented and their expression allows to state that the proof of Theorem 3.2 is the same as for Theorem A.1.
The results in Section A.3.2 are not proven explicitly since their proofs trivially consist in renaming some variable in
the proofs for Theorem A.1 .

A.3.1 2k-cycle Contributions

The contribution of cycles of length 2k is first computed to then study the contribution of any admissible graph. We
then consider cycles of length 2k, i.e. in Equation (101) i1 ̸= i2 ̸= ... ̸= ik and µ1 ̸= µ2 ̸= ... ̸= µk

E
(ℓ,n)
2k = EW

[
Mµ1

i1i2
Mµ2

i2i3
...Mµk

iki1

]
(103)
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=

∫
W

{(∫
ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lµ1

)ϕ(
∑
l

W(ℓ)
i2,l

Y(ℓ)
lµ1

)DX

− 1

mσ2
x

n,m∑
p,q=1

∫
ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lµ1

)Xpµ1DX
∫
ϕ(
∑
l

W(ℓ)
i2,l

Y(ℓ)
lq )XpqDX

)
...(∫

ϕ(
∑
l

W(ℓ)
ik,l

Y(ℓ)
lµk

)ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lµk

)DX

− 1

mσ2
x

n,m∑
p,q=1

∫
ϕ(
∑
l

W(ℓ)
ik,l

Y(ℓ)
lµk

)XpµkDX
∫
ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lq )XpqDX

)}
DW (104)

This can be rewritten thanks to the following identity.∫
X
ϕ(H(ℓ)

αp)XβpDXβp =
∫

X
ϕ(H(ℓ)

αp)Xβpe
−

X2
βp

2σ2x dX (105)

= −σ2
x

[
ϕ(H(ℓ)

αp)Xβpe
−

X2
βp

2σ2x

]+∞

−∞

+ σ2
x

∫
X

∂
(
ϕ(H(ℓ)

αp)
)

∂Xβp
e
−

X2
βp

2σ2x dXβp (106)

= σ2
x

∫
X
ϕ′(H(ℓ)

αp)
∑
kℓ

W(ℓ)
αkℓ

∂
(
ϕ(H(ℓ−1)

kℓp
)
)

∂Xβp
DX (107)

= σ2
x

∫
X
ϕ′(H(ℓ)

kℓp
)
∑
kℓ

W(ℓ)
αkℓ

ℓ−2∏
j=1

ϕ′(H(ℓ−j)
kℓ−j+1p

)
∑
kℓ−j

W(ℓ−j)
kℓ−j+1kℓ−j

)

 ∂
(
ϕ(H(1)

αp )
)

∂Xβp
DX (108)

= σ2
x

∫
X
ϕ′(H(ℓ)

kℓp
)
∑
kℓ

W(ℓ)
αkℓ

ℓ−2∏
j=1

ϕ′(H(ℓ−j)
kℓ−j+1p

)
∑
kℓ−j

W(ℓ−j)
kℓ−j+1kℓ−j

)

ϕ′(H(1)
k1p

)W(1)
k2β
DX (109)

= σ2
x

∑
kℓ

W(ℓ)
αkℓ

ℓ−2∏
j=1

∑
kℓ−j

W(ℓ−j)
kℓ−j+1kℓ−j

)

W(1)
k2β

∫
X

 ℓ∏
j=1

ϕ′(H(ℓ−j)
kℓ−j+1p

)

DX (110)

= σ2
xW

(ℓ)
αβ

∫
X

 ℓ∏
j=1

ϕ′(H(ℓ−j)
kℓ−j+1p

)

DX (111)

where the new variable W
(ℓ)
αβ =

∑
kℓ

W(ℓ)
αkℓ

(∏ℓ−2
j=1

(∑
kℓ−j

W(ℓ−j)
kℓ−j+1kℓ−j

)
))

W(1)
k2β

=
∑
kℓ

W(ℓ)
αkℓ

W
(ℓ−1)
kℓβ

is intro-

duced and the symmetry of the problem for which H(ℓ+1)
αβ ∼ H(ℓ)

γδ for any α, β, γ, and δ, is used to isolate the terms in∫
X

(∏ℓ
j=1 ϕ

′(H(ℓ−j)
kℓ−j+1p

)
)
DX.

Therefore, by defining

θ
(ℓ)
3 =

∫
X
ϕ′(H(ℓ)

αβ)DX =

∫
ϕ′(
√
q(ℓ)zDz)

we can consider

Mµ1

i1i2
=

∫
ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lµ1

)ϕ(
∑
l

W(ℓ)
i2,l

Y(ℓ)
lµ1

)DX

− 1

mσ2
x

n,m∑
p,q=1

∫
ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lµ1

)Xpµ1
DX

∫
ϕ(
∑
l

W(ℓ)
i2,l

Y(ℓ)
lq )XpqDX (112)

=

∫
ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lµ1

)ϕ(
∑
l

W(ℓ)
i2,l

Y(ℓ)
lµ1

)DX
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− σ2
x

m

n,m∑
p,q=1

W
(ℓ)
i1p

∫
X

 ℓ∏
j=1

ϕ′(H(ℓ−1)
kℓµ1

)

DXW
(ℓ)
i2p

∫
X

 ℓ∏
j=1

ϕ′(H(ℓ−1)
kℓq

)

DX (113)

=

∫
ϕ(
∑
l

W(ℓ)
i1,l

Y(ℓ)
lµ1

)ϕ(
∑
l

W(ℓ)
i2,l

Y(ℓ)
lµ1

)DX− σ2
x

n∑
p

W
(ℓ)
i1p

W
(ℓ)
i2p

 ℓ∏
j=1

θ
(j)
3

2

(114)

and we therefore aim at computing

E
(ℓ,n)
2k =

∫
WX


k∏
ξ=1

(
ϕ(
∑
l

W(ℓ)
iξ,l

Y(ℓ)
lµξ

)ϕ(
∑
l

W(ℓ)
iξ+1,l

Y(ℓ)
lµξ

)−

σ2
x

n∑
p

W
(ℓ)
iξp

W
(ℓ)
iξ+1p

 ℓ∏
j=1

θ
(j)
3

2

DXDW (115)

=

k∑
nw=0

(
k

nw

) ∑
nϕ s.t.

∥nϕ∥1=n−nw

n∑
p=1

E
(k,nw,nϕ,p)
w (116)

where nw is the number of terms of the type W
(ℓ)
iξp

W
(ℓ)
iξ+1p

(∏ℓ
j=1 θ

(j)
3

)2
in one addend of the expan-

sion of the product in E
(ℓ,n)
2k , and nϕ corresponds to a vector whose entries define how many terms

of the type ϕ(
∑
l W(ℓ)

iξ,l
Y(ℓ)
lµξ

)ϕ(
∑
l W(ℓ)

iξ+1,l
Y(ℓ)
lµξ

) are sequentially included between two terms of the type

W
(ℓ)
iξp

W
(ℓ)
iξ+1p

(∏ℓ
j=1 θ

(j)
3

)2
.

To achieve accurate modelling of the contribution ofE(ℓ,n)
2k for deeper layers, it is necessary to to keep into consideration

the covariance matrix of each hidden layer Y(ℓ). Therefore, at each layer the matrix W̃
(ℓ)

Σ(ℓ)1/2Ỹ is going to be
considered instead of W(ℓ)Y(ℓ). For k = 1, the contribution of a two dimensional cycle is determined as follows
Lemma A.4. For the matrix

M =
1

m
EX

[
ϕ(W(ℓ)Y(ℓ))ϕ(W(ℓ)Y(ℓ))⊤

]
− 1

m2σ2
x

Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
(117)

and Y(ℓ) = ϕ
(

H(ℓ−1)
)

as defined in Theorem 3.2 without the hypothesis of independence for the elements of Y(ℓ), i.e.

Y(ℓ)
:p ∼ N (0, q(ℓ)Σ(ℓ)), when k = 1 then the contribution of an admissible cycle is

E
(ℓ,n)
2 =

∫
θ̃
(ℓ,n)
1 DΣ(ℓ)

(
1 +O

(
1

n

))
− σ2

xσ
2ℓ
w

ℓ∏
l=1

(θ
(l)
3 )2 (118)

where

θ̃
(ℓ,n)
1 =

∫
1√
2π
ϕ(
√
q(ℓ)

√
tr(Σ(ℓ))

n
z)2e−

z2

2 dz (119)

θ
(ℓ)
3 =

∫
ϕ′(
√
q(ℓ)z)e−

z2

2 dz. (120)

Proof. See proof in Section C.1.

For k > 1, this modelling leads to the following result for an addend ω in the expansion of (116) with nϕ and nw
Lemma A.5. For the matrix

M =
1

m
EX

[
ϕ(W(ℓ)Y(ℓ))ϕ(W(ℓ)Y(ℓ))⊤

]
21
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− 1

m2σ2
x

Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
(121)

and Y(ℓ) = ϕ
(

H(ℓ−1)
)

as defined in Theorem 3.2 without the hypothesis of independence for the elements of Y(ℓ), i.e.

Y(ℓ)
:p ∼ N (0, q(ℓ)Σ(ℓ)), when k > 1 then the contribution of a single term in the expanded sum of (116) is

E
(n,k,nw,nϕ,p)
ω =

∫ −σ2
wσ

2
x

(∏ℓ
l=1 θ

(l)
3

)2
n


nw (

θ̃
(ℓ,n)
2

n

)k−nw ∏
ξ=1

µ
(n)

n(ξ)
ϕ

 (122)

where µ(n)
k = tr(Σ(ℓ)k )

n and

θ̃
(ℓ,n)
2 =

(∫ √
q(ℓ)√
2π

e−
z̃2

2 ϕ′(
√
q(ℓ)

√
tr(Σ(ℓ))

n
z̃)dz̃

)2

, (123)

θ
(ℓ)
3 =

∫
ϕ′(
√
q(ℓ)z)e−

z2

2 dz. (124)

Proof. See proof in Section C.2.

The dependence of E(n,k,nw,nϕ,p)
ω on the moments of Σ(ℓ) is such that it is not possible to aggregate explicitly all of

the contributions in (116). For this reason, it is necessary to introduce a new assumption that Σ = I. With this new
assumption, it is then possible to compute explicitly the contribution of cycles with k > 1.

Lemma A.6. For the matrix

M =
1

m
EX

[
ϕ(W(ℓ)Y(ℓ))ϕ(W(ℓ)Y(ℓ))⊤

]
− 1

m2σ2
x

Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
(125)

and Y(ℓ) = ϕ
(

H(ℓ−1)
)

as defined in Theorem 3.2, i.e. Y(ℓ)
:p ∼ N (0, q(ℓ)I), when k > 1 then contribution of an

admissible cycle is

E2k = n1−k0

θ(ℓ)2 − σ2ℓ
w σ

2
x

(
ℓ∏
l=1

θ
(ℓ)
3

)2
k (

1 +O
(
1

n

))
(126)

where

θ
(ℓ)
2 =

(∫ √
q(ℓ)√
2π

e−
z̃2

2 ϕ′(
√
q(ℓ)z̃)dz̃

)2

, (127)

θ
(ℓ)
3 =

∫
ϕ′(
√
q(ℓ)z)e−

z2

2 dz. (128)

Proof. See proof in Section C.3.

When considering Σ(ℓ) = I then Lemma A.4 is updated as follows

Lemma A.7. For the matrix

M =
1

m
EX

[
ϕ(W(ℓ)Y(ℓ))ϕ(W(ℓ)Y(ℓ))⊤

]
− 1

m2σ2
x

Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
(129)
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and Y(ℓ) = ϕ
(

H(ℓ−1)
)

as defined in Theorem 3.2 without the hypothesis of independence for the elements of Y(ℓ), i.e.

Y(ℓ)
:p ∼ N (0, q(ℓ)I), when k = 1 then the contribution of an admissible cycle is

E
(ℓ,n)
2 = θ

(ℓ)
1

(
1 +O

(
1

n

))
− σ2

xσ
2ℓ
w

ℓ∏
l=1

(θ
(l)
3 )2 (130)

where

θ
(ℓ)
1 =

∫
1√
2π
ϕ(
√
q(ℓ)z)2e−

z2

2 dz (131)

θ
(ℓ)
3 =

∫
ϕ′(
√
q(ℓ)z)e−

z2

2 dz. (132)

A.3.2 Aggregation of the Contributions and Implicit Relation in Theorem 3.2

Once the hypothesis of independence of the elements in the hidden layers is considered, the propositions for the
aggregation of the contributions are achieved in the same exact way as for the first layer of Λh(1) − 1

σ2
x
Σ⊤
xh(1)Σxh(1) ,

leading to the following two Lemmas.

Lemma A.8. For the matrix

M =
1

m
EX

[
ϕ(W(ℓ)Y(ℓ))ϕ(W(ℓ)Y(ℓ))⊤

]
− 1

m2σ2
x

Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
(133)

and Y(ℓ) = ϕ
(

H(ℓ−1)
)

as defined in Theorem 3.2, the Stieltjes transform of the eigen-distribution of M asymptotically
satisfies the following equation

GM(z) ≃ 1− φ
z

+
φ

z
H(z) (134)

where H(z) is the generating function defined as H(z) = 1 +
∑∞
k=1

Hk
zkφk

= 1 + 1
φ

∑∞
k=1

mk
zk

.

Lemma A.9. Consider the matrix

M =
1

m
EX

[
ϕ(W(ℓ)Y(ℓ))ϕ(W(ℓ)Y(ℓ))⊤

]
− 1

m2σ2
x

Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
(135)

and Y(ℓ) = ϕ
(

H(ℓ−1)
)

as defined in Theorem 3.2, and consider a graph G3 with 2(p+ q) edges that is defined, via

either an i or µ identification, by two graphs G1 and G2 with 2p and 2q edges. Then the asymptotic contribution, mG3
p+q ,

of the graph G3 to the moment mp+q is equal to the product of the contributions of the block cycle graphs that define
G3 with a correction term. This is, they are joined with an i-identification

mG3
p+q = mG1

p

n1
n1

mG2
p (136)

and if they are joined with a µ-identification

mG3
p+q = mG1

p

n1κα
m

mG2
p (137)

where if either one of the block cycles connected to the identification are of dimension 2, then α = b or otherwise α = c

and κb = 1 +
θ1σ

2
xσ

2
wθ

2
3+σ

2
xσ

2
wθ

2
3θ2−σ

4
xσ

4
wθ

4
3

(θ1−σ2
xσ

2
wθ

2
3)(θ2−σ2

xσ
2
wθ

2
3)

, κc = 1 +
2σ2
xσ

2
wθ

2
3θ2−σ

4
xσ

4
wθ

4
3

(θ2−σ2
xσ

2
wθ

2
3)

2 .

By using Lemmas A.8 and A.9 it is then possible to proof Theorem 3.2 by using the same exact process as for Theorem
A.1.
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B Proofs Relevant to Theorem A.1

B.1 Lemma A.2

The expectation of any 2k cycle can be expressed in a different format thanks to Lemma B.1. From such a formulation
it is then possible to identify the expected contribution for k = 1. First thought the following result is proven
Lemma B.1. For Y = ϕ (WX) as defined in Theorem A.1, when k = 1 then the following identity holds∫

W,X
ϕ(
∑
l

Wi1,lXl,µ1)ϕ(
∑
l

Wi1,lXl,µ1)DWDX

=

∫
1√
2π
ϕ(σwσwz)

2e−
z2

2 dz (1 +O(1/n)) = θ1 (1 +O(1/n)) (138)

with
θ1 =

∫
1√
2π
ϕ(σwσwz)

2e−
z2

2 dz. (139)

Proof. Let’s start by considering the general case with i1 ̸= i2 ̸= ... ̸= ik and µ1 ̸= µ2 ̸= ... ̸= µk when computing

E [Yi1µ1
Yi2µ1

...Yµki1 ] . (140)

After expanding the expectation, we consider auxiliary integrals over z, by adding delta functions enforcing Z = W X
with

Ziµ =

{
ziµ if (i, µ) ∈ Z
0 otherwise.

(141)

where Z denotes the set of unique pairs (i, µ) in equation (140):∫
ϕ(
∑
l

Wi1lXlµ1)ϕ(
∑
l

Wi2lXlµ1)...ϕ(
∑
l

Wi1lXlµk)DWDX (142)

=

∫ ∏
(α,β)∈Z

δ(zαβ −
∑
k

WαkXkβ)ϕ(zi1µ1
)ϕ(zi2µ1

)...ϕ(zi1µk)DzDWDX (143)

where
Dz =

∏
(α,β)∈Z

dzαβ . (144)

Now we consider the Fourier expression of the Dirac δ

δ(x) =
1

2π

∫
eiλxdλ (145)

and therefore introduced the matrix Λ ∈ Rn×m whose entries are

Λiµ =

{
λiµ if (i, µ) ∈ Z
0 otherwise.

(146)

with
Dλ =

∏
(α,β)∈Z

dλαβ
2π

. (147)

to obtain∫
ϕ(
∑
l

Wi1lXlµ1)ϕ(
∑
l

Wi2lXlµ1)...ϕ(
∑
l

Wi1lXlµk)DWDX (148)

=

∫ ∏
zαβ∈Z

δ(zαβ −
∑
k

WαkXkβ)ϕ(zi1µ1)ϕ(zi2µ1)...ϕ(zi1µk)DzDWDX (149)

=

∫ ∏
zαβ∈Z

exp

(
−iλαβ

(∑
k

WαkXkβ − zαβ
))

ϕ(zi1µ1)ϕ(zi2µ1)...ϕ(zi1µk)DzDWDXDλ (150)

24



Mutual Information of Neural Network Initializations: a Random Matrix Theory Study A PREPRINT

=

∫
exp

−i
∑
zαβ∈Z

λαβ

(∑
k

WαkXkβ − zαβ
)

︸ ︷︷ ︸
(WX−Z)αβ

ϕ(zi1µ1
)ϕ(zi2µ1

)...ϕ(zi1µk)DzDWDXDλ (151)

=

∫
exp

−i n,m∑
α,β=1

Λαβ(WX− Z)αβ

ϕ(zi1µ1
)ϕ(zi2µ1

)...ϕ(zi1µk)DzDWDXDλ (152)

=

∫
e−i tr(Λ

⊤(WX−Z))ϕ(zi1µ1
)ϕ(zi2µ1

)...ϕ(zi1µk)DzDWDXDλ (153)

where tr() corresponds to the trace function.

Now we first integrate over X the factors of (153) that depend on it∫
e−itr(Λ

⊤WX)DX =

m,n∏
b,c=1

∫
dXcb√
2πσ2

x

exp

[
− 1

2σ2
x

X2
cb − i

n∑
a=1

λabWacXcb

]

=

m,n∏
b,c=1

∫
dXcb√
2πσ2

x

exp

− 1

2σ2
x

(
Xcb + iσ2

x(

n∑
a=1

λabWac)

)2

− σ2
x

2
(

n∑
a=1

λabWac)
2

 (154)

=

m,n∏
b,c=1

exp

[
−σ

2
x

2
(

n∑
a=1

λabWac)
2

]∫
dXcb√
2πσ2

x

exp

− 1

2σ2
x

(
Xcb + iσ2

x(

n∑
a=1

λabWac)

)2


︸ ︷︷ ︸
=1

(155)

=

m,n∏
b,c=1

exp

[
−σ

2
x

2
(

n∑
a=1

λabWac)
2

]
= exp

−σ2
x

2

m,n∑
b,c=1

(

n∑
a=1

λabWac)
2

 (156)

= exp

[
−σ

2
x

2
∥Λ⊤W∥2F

]
= e−

σ2x
2 tr(W⊤ΛΛ⊤W) (157)

where in equation (155) we used the property the complex integral of z = x+ iy over the closed cycle (−∞,∞, iµ+

∞, iµ−∞) of the analytical function 1√
2πσ2

e−(x−iy)2/(2σ2) is null and therefore∫ ∞

−∞

1√
2πσ2

e−(x−iµ)2/(2σ2)dx =

∫ ∞

−∞

1√
2πσ2

e−(x)2/(2σ2)dx = 1.

Now we integrate over W

∫
e−

σ2x
2 tr(W⊤ΛΛ⊤W)DW

=

∫  n∏
i,j=1

dWij√
2πσ2

w/n
e
−
nW2

ij

2σ2w

 e−
σ2x
2 tr(W⊤ΛΛ⊤W) (158)

=

∫  n∏
i,j=1

dWij√
2πσ2

w/n

 e
−
n
∑n
i,j=1 WjiWij

2σ2w e−
σ2x
2 tr(W⊤ΛΛ⊤W) (159)

=

∫  n∏
i,j=1

dWij√
2πσ2

w/n

 e
−ntrW⊤W

2σ2w e−
σ2x
2 tr(W⊤ΛΛ⊤W) (160)

=

∫  n∏
i,j=1

dWij√
2πσ2

w/n

 e
−ntrW⊤W

2σ2w
−σ2x

2 tr(W⊤ΛΛ⊤W)
(161)
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=

∫  n∏
j=1

dnwj
(2πσ2

w/n)
n/2

 e
−
∑n
j=1

(
n

2σ2w
w⊤
j wj+

σ2x
2 w⊤

j ΛΛ⊤wj
)

(162)

=

∫  n∏
j=1

dnwj
(2πσ2

w/n)
n/2

e
−
(

n
2σ2w

w⊤
j wj+

σ2x
2 w⊤

j ΛΛ⊤wj
) (163)

=

n∏
j=1

∫
dnwj

(2πσ2
w/n)

n/2
e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΛΛ⊤

)
wj

(164)

=

n∏
j=1

∫
dnwj

(2πσ2
w/n)

n/2

det−1(I + σ2
xσ

2
w

n ΛΛ⊤)1/2

det−1(I + σ2
xσ

2
w

n ΛΛ⊤)1/2
e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΛΛ⊤

)
wj

(165)

=

n∏
j=1

1

det(I + σ2
xσ

2
w

n ΛΛ⊤)1/2

∫
dnwj

(2πσ2
w/n)

n/2

e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΛΛ⊤

)
wj

det−1(I + σ2
xσ

2
w

n ΛΛ⊤)1/2
(166)

=
n∏
j=1

1

det(I + σ2
xσ

2
w

n ΛΛ⊤)1/2

∫
dnwj

(2πσ2
w/n)

n/2

e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΛΛ⊤

)
wj

det
(
(I + σ2

xσ
2
w

n ΛΛ⊤)−1
)1/2 (167)

=

n∏
j=1

1

det(I + σ2
xσ

2
w

n ΛΛ⊤)1/2

∫
dnwj

(2π)n/2
e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΛΛ⊤

)
wj

det
(
σ2
w/n(I +

σ2
xσ

2
w

n ΛΛ⊤)−1
)1/2 (168)

=

n∏
j=1

1

det(I + σ2
xσ

2
w

n ΛΛ⊤)1/2

∫
dnwj

(2π)n/2
e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΛΛ⊤

)
wj

det
(
( nσ2

w
I + σ2

xΛΛ⊤)−1
)1/2

︸ ︷︷ ︸
=1

(169)

=
1

det(I + σ2
xσ

2
w

n ΛΛ⊤)n/2
(170)

where we consider wj as the jth column of W and we used the property that for a general non-singular matrix
det(A−1) = det−1(A).

This implies that by considering F (z) =
∏

(α,β)∈Z ϕ(zαβ)∫
ϕ(
∑
l

Wi1lXlµ1)ϕ(
∑
l

Wi2lXlµ1)...ϕ(
∑
l

Wi1lXlµk)DWDX (171)

=

∫ (
1

det(I + σ2
xσ

2
w

n ΛΛ⊤)n/2

)
e−i tr(Λ

⊤Z)F (z)DzDλ (172)

=

∫
exp

(
−n
2
log det(I +

σ2
xσ

2
w

n
ΛΛ⊤)− itrΛ⊤Z

)
F (z)DzDλ (173)

Now we will consider the integration over the λαβ variables. Since the eigenvalues of ΛΛ⊤ are non-negative, as a
matter of fact for any pair (λ, v) the following holds λ = vTΛTΛv

vT v = ∥Λv∥2

∥v∥2 ≥ 0, the maximizer of the argument in the
exponential is Λ = 0, by the saddle point approximation we can consider only an expansion around Λ = 0. We can
then use the same analysis done in [13] and decompose the log determinant via logdet|I + X| =∑ξ=1

(−1)ξ+1

ξ tr(Xξ).

Then it follows that

∫
ϕ(
∑
l

Wi1lXlµ1)ϕ(
∑
l

Wi2lXlµ1)...ϕ(
∑
l

Wi1lXlµk)DWDX (174)
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=

∫
exp

(
−n
2
log det(I +

σ2
xσ

2
w

n
ΛΛ⊤)− itrΛ⊤Z

)
F (z)DzDλ (175)

=

∫
e
−σ2xσ

2
w

2 tr(ΛΛ⊤)−n
2

∑
ξ≥2

(−1)ξ+1

ξ tr

((
σ2xσ

2
w

n ΛΛ⊤
)ξ)

−itrΛ⊤Z
F (z)DzDλ (176)

=

∫
e−

σ2xσ
2
w

2 tr(ΛΛ⊤)e
−n

2

∑
ξ≥2

(−1)ξ+1

ξ tr

((
σ2xσ

2
w

n ΛΛ⊤
)ξ)

−itrΛ⊤Z
F (z)DzDλ (177)

We now consider the following change of variable

λ̄ij =
σwσx√
n
λij (178)

DΛ̄ =
∏

(α,β)∈Z

dλ̄αβ
2πσxσw/

√
n

(179)

therefore

∫
ϕ(
∑
l

Wi1lXlµ1)ϕ(
∑
l

Wi2lXlµ1)...ϕ(
∑
l

Wi1lXlµk)DWDX (180)

=

∫
e−

σ2xσ
2
w

2 tr(ΛΛ⊤)e
−n

2

∑
ξ≥2

(−1)ξ+1

ξ tr

((
σ2xσ

2
w

n ΛΛ⊤
)ξ)

−itrΛ⊤Z

F (z)DzDλ (181)

=

∫
e−

n
2 tr(Λ̄Λ̄⊤)e

−n
2

∑
ξ≥2

(−1)ξ+1

ξ tr
(
(Λ̄Λ̄⊤)

ξ
)
−itr

√
n

σwσx
Λ̄⊤Z

F (z)DzDΛ̄. (182)

We will study the contribution of the exponential e−
n
2

∑
ξ≥2

(−1)ξ+1

ξ tr
(
(Λ̄Λ̄⊤)

ξ
)

by considering its Taylor expansion
ex =

∑∞
ν=0 x

ν/ν!∫
ϕ(
∑
l

Wi1lXlµ1)ϕ(
∑
l

Wi2lXlµ1)...ϕ(
∑
l

Wi1lXlµk)DWDX (183)

=

∫  ∞∑
ν=0

(
−n2

∑
ξ≥2

(−1)ξ+1

ξ tr
((

Λ̄Λ̄⊤)ξ))ν
ν!

e−n
2 tr(Λ̄Λ̄⊤)−itr

√
n

σwσx
Λ̄⊤ZF (z)DzDΛ̄ (184)

=

∫  ∞∑
ν=0

(
−n2

∑
ξ≥2

(−1)ξ+1

ξ tr
((

Λ̄Λ̄⊤)ξ))ν
ν!

e−∑λαβ∈Z

(
n
2 λ̄

2
αβ−i

√
n

σwσx
λ̄αβzαβ

)
F (z)DzDΛ̄ (185)

=

∫  ∞∑
ν=0

(
−n2

∑
ξ≥2

(−1)ξ+1

ξ tr
((

Λ̄Λ̄⊤)ξ))ν
ν!

 ∏
λαβ∈Z

e−
n
2 λ̄

2
αβ−i

√
n

σwσx
λ̄αβzαβ

F (z)DzDΛ̄ (186)

When k = 1, following [11] the zeroth order expansion of the Taylor series ∞∑
ν=0

(
−n2

∑
ξ≥2

(−1)ξ+1

ξ tr
((

Λ̄Λ̄⊤)ξ))ν
ν!


is the leading contribution to

∫
W,X ϕ(

∑
l Wi1,lXl,µ1

)ϕ(
∑
l Wi1,lXl,µ1

)DWDX.

The zeroth order contribution is determined as follows.

∫ ( √
n

2πσxσw
e−

n
2 tr(Λ̄Λ̄⊤)e−itr

√
n

σwσx
Λ̄ZF (z)

)
dzi1µ1dλ̄i1µ1
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=

∫ (∫ √
n

2πσxσw
e−

n
2 λ

2−i
√
n

σwσx
λ̄zϕ(z)2dzdλ̄

)
(187)

=

∫ (∫ √
n

2πσxσw
e
− z2

2σ2wσ
2
x

√
2π√
n
ϕ(z)2

(∫ √
n√
2π
e
−n

2

(
λ+ i

√
n

nσwσx
z
)2

dλ̄

)
dz

)
(188)

=

∫ √
n

2πσxσw
ϕ(z)2e

− z2

2σ2wσ
2
x

√
2π√
n
dz =

∫
1√

2πσxσw
ϕ(z)2e

− z2

2σ2wσ
2
x dz (189)

=

∫
1√

2πσxσw
ϕ(σwσxz̃)

2e−
z̃2

2 σwσxdz̃ =

∫
1√
2π
ϕ(σwσxz̃)

2e−
z̃2

2 dz̃ = θ1 (190)

For higher order terms of the exponential Taylor series we first notice that−n
2

∑
ξ≥2

(−1)ξ+1

ξ
tr
((

Λ̄Λ̄⊤)ξ)ν

=

−n
2

∑
ξ≥2

(−1)ξ+1

ξ
λ̄2ξ

ν

.

For each of the expansion terms, the same steps in (187)-(189) lead to the following 2ξν-th non-central moment of a
Gaussian to be considered∫ √

n√
2π
λ̄2ξνe−

n
2 (λ̄+ i

√
nz

nσxσw
)dλ̄ =

(
1

n

)ξν/2
2ξν

Γ( 2ξν+1
2 )√
π

Φ(−2ξν

2
;
1

2
;− z2

σ2
wσ

2
x

) (191)

where the solution of the non-central moment is given in [22] with

Φ(−2ξν

2
;
1

2
;− z2

σ2
wσ

2
x

) =

∞∑
i=1

1

i!

(− 2ξν
2 )(− 2ξν

2 + 1)...(− 2ξνν
2 + i− 1)

(− 1
2 )(− 1

2 + 1)...(− 1
2 + i− 1)

( −z2
σ2
wσ

2
x

)i
. (192)

This leads to the computation of the following integral∫ ∑
i

αi

( −z2
σ2
wσ

2
x

)i
ϕ2(σ2

xσ
2
wz)Dz (193)

which is finite since Φ(− 2ξν
2 ; 1

2 ;− z2

σ2
wσ

2
x
) is an entire function of ξν and z, and when solving it by parts we compute

the following integrals that are finite by hypothesis∫
ϕ(k)(σ2

xσ
2
wz)Dz (194)

for any derivative k. However, because of the non-central moment, we also gain a factor
(
1
n

)ξν/2
and therefore these

terms have a contribution that is O( 1n ) relative to the zeroth-order one.

Therefore it follows that ∫
W,X

ϕ(
∑
l

Wi1,lXl,µ1
)ϕ(
∑
l

Wi1,lXl,µ1
)DWDX

=

∫
1√
2π
ϕ(σwσwz)

2e−
z2

2 dz (1 +O(1/n)) = θ1 (1 +O(1/n)) (195)

B.1.1 Proof of Lemma A.2

Proof. In the case where k = 1,

E
(n)
2 =

∫
W,X

ϕ(
∑
l

Wi1,lXl,µ1
)ϕ(
∑
l

Wi1,lXl,µ1
)− σ2

x

n∑
p=1

Wi1pWi1pθ
2
3DWDX (196)

= θ1(1 +O(1/n))− σ2
wσ

2
xθ

2
3 (197)

where the first term follows from LemmaB.1 and θ3 =
∫
ϕ′(σwσwz)e

− z2

2 dz

28



Mutual Information of Neural Network Initializations: a Random Matrix Theory Study A PREPRINT

Π1 Π2 Π3

i1

µ1

i2

µ2

i3

µ5

i6

µ6

i7

µ7

i8i4 i5

σxθ3Wi1p ϕ(
∑

l Wi1lXlµ1)

ϕ(
∑

l Wi2lXlµ1) ϕ(
∑

l Wi2lXlµ2)

ϕ(
∑

l Wi3lXlµ2)
σxθ3Wi3q

σxθ3Wi4q

σxθ3Wi4r

σxθ3Wi5r

ϕ(
∑

l Wi5lXlµ5)

ϕ(
∑

l Wi6lXlµ5)

ϕ(
∑

l Wi6lXlµ6) ϕ(
∑

l Wi7lXlµ6)

ϕ(
∑

l Wi7lXlµ7)

ϕ(
∑

l Wi8lXlµ7) σxθ3Wi9p

Figure 7: Example of how in the Schur complement the contribution to the momentum is defined on as many independent
blocks of products, Πj , as the number of factors in the form σ2

xWiξpWiξ+1pθ
2
3 .

B.2 Lemma A.3

When considering k > 1 we need to consider all the mixed products in (63). As a matter of fact each term in the
expansion of the product in E2k consists of successions of products of the kind ϕ(

∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ)

alternated with products of the kind σ2
xθ

2
3

∑n
p=1 WiξpWiξ+1p. Each element of the kind σ2

xθ
2
3WiξpWiξ+1p divides the

sequence of products into independent blocks Πj . As we see in Figure 7, with three factors of the kind σ2
xθ

2
3WiξpWiξ+1p

we generate three independent blocks Πj that are independent among themselves.

Lemma B.2. For M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
and Y = ϕ (WX) as defined in Theorem A.1,

when k > 1 each independent block Πlj , with l terms ϕ(
∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ), generates the following

contribution

E
(n)

Π
(l)
i

= −σ
2
wσ

2
xθ

2
3θ
l
2

n1+l
. (198)

with

θ2 =

(∫
σwσx√

2π
e−

z̃2

2 ϕ′(σwσxz̃)dz̃

)2

, (199)

θ3 =

∫
z1

ϕ′ (σxσwz1)Dz1 (200)

Proof. We focus on the integration of one independent block Π
(l)
j , where l identifies the numbers of factors

ϕ(
∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ) between two of the σxθ3Wiξp kind, i.e.

E
(n)

Π
(l)
i

= −
∫

W,X

σxθ3Wi1p

l∏
ξ=1

(
ϕ(
∑
l

Wiξ,lXl,µξ)ϕ(
∑
l

Wiξ+1,lXl,µξ)

)
σxθ3Wil+1q

DWDX. (201)

We are going to compute this expectation following the structure of the proof in [13]. We will introduce a dummy
variable z with a delta Dirac function within each ϕ element, and then introduce a Fourier representation for all the
arguments in the ϕ functions. We introduce for each factor Πj the set ZΠj ⊂ Z which contains only the combinations
(iξ, µν) that are included in the ϕ(

∑
l Wiξ+1,lXl,µν ) arguments. Thus we consider auxiliary integrals over z, by adding

delta functions enforcing Z = WX with

Ziµ =

{
ziµ if (i, µ) ∈ ZΠj

0 otherwise.
(202)

and consequently

E
(n)

Π
(l)
i

= −
∫ σxθ3Wi1p

l∏
ξ=1

(
ϕ(
∑
l

Wiξ,lXl,µξ)ϕ(
∑
l

Wiξ+1,lXl,µξ)

)
σxθ3Wil+1q

DWDX (203)
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= −
∫ ∏

(α,β)∈ZΠj

δ(zαβ −
∑
k

WαkXkβ)

σ2
xθ

2
3Wi1p

l∏
ξ=1

(
ϕ(ziξµξ)ϕ(ziξµξ)

)
Wil+1q

DWDXDz (204)

= −
∫
e−itrΛ

⊤(WX−Z)σ2
xθ

2
3Wi1p

l∏
ξ=1

(
ϕ(ziξµξ)ϕ(ziξ+1µξ)

)
Wil+1qDWDXDλDz (205)

where
Dz =

∏
(α,β)∈ZΠj

dzαβ (206)

and in the second equality we used the property that

δ(x) =
1

2π

∫
eiλxdλ (207)

and therefore introduced the matrix Λ ∈ Rn×m whose entries are

Λiµ =

{
λiµ if (i, µ) ∈ ZΠj

0 otherwise.
(208)

and therefore
Dλ =

∏
(α,β)∈ZΠj

dλαβ
2π

. (209)

We integrate over X∫
e−itr(Λ

⊤WX)DX =

m,n∏
b,c=1

∫
dXcb√
2πσ2

x

exp

[
− 1

2σ2
x

X2
cb − i

n∑
a=1

λabWacXcb

]
(210)

=

m,n∏
b,c=1

∫
dXcb√
2πσ2

x

exp

− 1

2σ2
x

(
Xcb + iσ2

x(

n∑
a=1

λabWac)

)2

− σ2
x

2
(

n∑
a=1

λabWac)
2

 (211)

=

m,n∏
b,c=1

exp

[
−σ

2
x

2
(

n∑
a=1

λabWac)
2

]
= exp

−σ2
x

2

m,n∑
b,c=1

(

n∑
a=1

λabWac)
2

 (212)

= exp

[
−σ

2
x

2
∥Λ⊤W∥2F

]
= e−

σ2x
2 tr(W⊤ΛΛ⊤W). (213)

We also integrate over W, first considering the case where p ̸= q∫
W
σ2
xθ

2
3e

−σ2x
2 tr(ΛΛ⊤WW⊤)Wi1pWil+1qDW (214)

= σ2
xθ

2
3

∫  n∏
i,j=1

dWij√
2πσ2

w/n

 e
−ntr(W⊤W)

2σ2w e−
σ2x
2 tr(W⊤ΛΛ⊤W)Wi1pWil+1q (215)

= σ2
xθ

2
3

∫  n∏
j=1

dnwj
(2πσ2

w/n)
n/2

 e
−
∑n
j=1(

n
2σ2w

w⊤
j wj+

σ2x
2 w⊤

j ΛΛ⊤wj)w(i1)
p w(il+1)

q (216)

= σ2
xθ

2
3

∫ 
n∏
j=1
j ̸=p
j ̸=q

dnwj
(2πσ2

w/n)
n/2

 e

−
∑n
j=1
j ̸=p
j ̸=q

( n
2σ2w

w⊤
j wj+

σ2x
2 w⊤

j ΛΛ⊤wj)

·
∫

dnwp
(2πσ2

w/n)
n/2

w(i1)
p e

− n
2σ2w

w⊤
p wp−

σ2x
2 w⊤

p ΛΛ⊤wp

︸ ︷︷ ︸
=0
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·
∫

dnwp
(2πσ2

w/n)
n/2

w(il+1)
q e

− n
2σ2w

w⊤
q wq−

σ2x
2 w⊤

q ΛΛ⊤wq

︸ ︷︷ ︸
=0

(217)

= 0. (218)

While now we will consider the case where q = p∫
W
e−

σ2x
2 tr(ΛΛ⊤WW⊤)σ2

xθ
2
3Wi1pWil+1qDW

= σ2
xθ

2
3

∫  n∏
i,j=1

dWij√
2πσ2

w/n

 e
−ntr(W⊤W)

2σ2w e−
σ2x
2 tr(W⊤ΛΛ⊤W)Wi1pWil+1q (219)

= σ2
xθ

2
3

∫  n∏
j=1

dnwj
(2πσ2

w/n)
n/2

 e
−
∑n
j=1(

n
2σ2w

w⊤
j wj+

σ2x
2 w⊤

j ΛΛ⊤wj)w(i1)
p w(il+1)

q (220)

= σ2
xθ

2
3

∫  n∏
j=1
j ̸=p

dnwj
(2πσ2

w/n)
n/2

 e

−
∑n
j=1
j ̸=p

( n
2σ2w

w⊤
j wj+

σ2x
2 w⊤

j ΛΛ⊤wj)

·
∫

dnwp
(2πσ2

w/n)
n/2

w(i1)
p w(il+1)

p e
− n

2σ2w
w⊤
p wp−

σ2x
2 w⊤

p ΛΛ⊤wp (221)

= σ2
xθ

2
3

n∏
j=1
j ̸=p

(∫
dnwj

(2πσ2
w/n)

n/2

det−1(I + σ2
xσ

2
w

n ΛΛ⊤)1/2

det−1(I + σ2
xσ

2
w

n ΛΛ⊤)1/2
e
− n

2σ2w
w⊤
j wj−

σ2x
2 w⊤

j ΛΛ⊤wj)
)

︸ ︷︷ ︸
= 1

det(I+
σ2xσ

2
w

n
ΛΛ⊤)1/2
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=
σ2
xθ

2
3

det(I + σ2
xσ

2
w

n ΛΛ⊤)n/2
Cov

[
w(i1)
p w(il+1)

p

]
. (223)

Consequently, each non-zero contribution to the momentum is going to be defined by addends in (63) whose elements
in the form σxθ3Wiξp have the same pedex p.

We notice that the covariance matrix of the vector wj is(
n

σ2
w

I + σ2
xΛΛ⊤

)−1

=
σ2
w

n

∞∑
k=0

(−σ
2
wσ

2
x

n
ΛΛ⊤)k (224)

therefore assuming that n is large enough

Cov
[
w(i1)
j w(il+1)

j

]
=

[(
n

σ2
w

I + σ2
xΛΛ⊤

)−1
]
i1il+1

=

[
σ2
w

n

∞∑
k=0

(−σ
2
wσ

2
x

n
ΛΛ⊤)k

]
i1il+1

. (225)

Since Λ is defined on ZΠj , the non-zero terms in
[
(ΛΛ⊤)k

]
i1il

correspond to products
∏l
j=1

(
λijµjλij+1µj

)l̃j . The

sequence of exponents
−→
l = (l̃1, . . . , l̃l) can be determined by considering diagrams as the one reported in Figure 8

with l = 5. For each power k, the sequence of edges that are non-zero correspond to the paths that connect i1 to il in
exactly k steps; the exponent l̃j correspond to the number of times that the path goes through the interval (ij , ij+1).

Therefore, k = l is the only case where all of the variables λijµjλij+1µj have exponent of exactly one and this allows
to write the covariance in the following way.

Cov
[
w(i1)
j w(il+1)

j

]
=

[
σ2
w

n

∞∑
k=0

(−σ
2
wσ

2
x

n
ΛΛ⊤)k

]
i1il+1

(226)
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i1 i2 i3 i4 i5 i6k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

k = 9

Figure 8: Diagram of sequences of paths that allow to connect i1 to il+1, with l = 5, for different number of steps k.
The blue line corresponds to the unique path connecting i0 to il with k = l steps; the dashed magenta lines corresponds
to the l paths connecting i0 to il with k = l + 2 steps; and the dotted red lines corresponds to the l2 paths connecting i0
to il with k = l + 4 steps.

= (−1)l σ
2
w

n

l∏
j=1

σ2
wσ

2
x

n
λijµjλij+1µj +

∞∑
ν=1
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2
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∥
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(
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2
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λijµjλij+1µj

)l̃j
(227)

Let’s now consider the integral on DλDz of the first addend in (227) and denote it with E(n)

Π
(l)
i

L.O.
. By considering

F (z) =
∏l
ξ=1

(
ϕ(ziξµξ)ϕ(ziξ+1µξ)

)
E

(n)

Π
(l)
i
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=

−
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2
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 1

det(I + σ2
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2
w

n ΛΛ⊤)n/2
e−itrΛ

⊤ZF (z)DλDz (228)

= −
∫
σ2
xθ

2
3(−1)l

σ2
w

n

 l∏
j=1

σ2
wσ

2
x

n
λijµjλij+1µj

 e−
n
2 log det(I+σ2xσ

2
w

n ΛΛ⊤)e−itrΛ
⊤ZF (z)DλDz (229)

= −(−1)l σ
2
wσ

2
xθ

2
3

n

∫  ∏
(α,β)∈ZΠj

σwσx√
n
λαβ


e
−σ2xσ

2
w

2 tr(ΛΛ⊤)−n
2

∑
ξ≥2

(−1)ξ+1

ξ tr

(
σ2xσ

2
w

n ΛΛ⊤
)ξ

−itrΛ⊤Z
F (z)DλDz (230)

where in the last equation we used the Taylor expansion logdet|I + X| =∑ξ=1
(−1)ξ+1

ξ tr(Xξ). However, differently
from the study of the covariance matrix Λh(ℓ) , thanks to the W integral, we already have a factor containing all of the
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variables λαβ exactly once. Therefore, we can consider only the first order expansion, ie. ξ = 1. Further we are also
going to consider the following change of variable,

λ̃αβ = σwσxλαβ (231)

therefore

E
(n)

Π
(l)
i

L.O.
≈ −(−1)l σ

2
wσ

2
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2
3
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 e−
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2
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2 tr(ΛΛ⊤)−itrΛ⊤ZF (z)DλDz (232)
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2
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Now we introduce the following change of variable

z̃ =
z

σxσw
(239)

and then

E
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. (242)

The integral on DλDz for the remaining addends in (227) lead to the computation of higher moments of the gaussian
variable λ, which are finite. However, 1/n is elevated to the same power as λ and therefore the contribution of the

remaining addends in (227) is E(n)

Π
(l)
i

L.O.
O(1/n).

It then follows that
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. (244)
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B.2.1 Proof of Lemma A.3

Proof. Now we can use Lemma B.2 for the computation of E2k. Let’s assume k > 1, and compute the contribution
of each term ω in the expansion of (63). Specifically each term has an associated number nw of independent blocks
Πj , and we denote with n(ξ)ϕ and n(ϕ)w the number of factors of the type ϕ(

∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ) and

σ2
xθ

2
3WiξpWiξ+1p respectively within each block Πξ, note that k =

∑
ξ(n

(ξ)
w + n

(ξ)
ϕ ), and n(ξ)w = 1 for each block.

Further, we also fix the index p in the factors σ2
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2
3WiξpWiξ+1p, and then
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=
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The expected contribution for the 2k cycle is defined by considering the contribution Ẽϕ2k = n1−k0 θk2
(
1 +O

(
1
n

))
of

the addend ω whose nw = 0 and of the addends for which nw ̸= 0
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(
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(251)

B.3 Proof of Proposition 2

For each possible pattern we have to consider how many graphs, #1 and #2 we can build by varying respectively the Ii
i-identifications, and the Iµ µ-identifications. Since, we have to assign for each of the k − Ii i-identification a value
among the n1 available without reinsertion

#1 =

(
n1

k − Ii

)
=

(
n1e

k − Ii

)k−I1
(2π(k − Ii))−1/2(1 + o(
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)) (252)

and equivalently

#2 =

(
m

k − Iµ

)
=

(
me

k − Iµ

)k−Iµ
(2π(k − Iµ))−1/2(1 + o(

1

m
)). (253)

Thanks to the formulation for the contribution of 2k-cycles in Lemmas A.2 and A.3, we are now able to determine the
contribution of any admissible graph G.

Proposition 3. For M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
and Y = ϕ (WX) as defined in Theorem A.1, an

admissible graph G with 2k edges, b blocks of size 1, c blocks of dimensions
−→
k = {k1, . . . , kc}, and bµ of the Iµ

identifications define a one dimensional cycle, while the remaining cµ of the Iµ identifications define larger cycles, is
such that the contribution of the graph, E(n)

G , grows as

E
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i ki
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Proof. When considering the contribution of a generic composite graph we have to keep into consideration what kind of
identification defines it. Specifically, if an identification is of the i-type, then this allows to consider the two connected
sub-graphs separately. However, if it is a µ-type contribution, then there is a correction term that has to be kept into
consideration.

To give an intuition on why the correction term arises, and to introduce the cases that we have to investigate, we are
going to consider a graph G generated by two cycles. When they are connected by an i-identification, the factors
σ2
xθ

2
3WiξpWiξ+1q always appear as a pair in each constituent cycle of the graph. However, if they are connected with a

µ-identification, this is not the case; the factors σ2
xθ

2
3WiξpWiξ+1q can be split by the identification in the two different

cycles. We will show that if none of the four edges connected to the identification vertex are of the σxθ3Wiξp kind,
then the cycles can be considered separately, while if not, they have to be considered as one. Considering separately
two cycles implies that it is possible to choose the column p of the matrices w independently, thus leading to a n0 fold
increase in the estimation.

Now we are going to consider the expected contribution of a general graph G, which is defined by the following integral

E
(n)
G =

∫ k∏
ξ=1

(
ϕ(
∑
l

Wiξ,lXl,µξ)ϕ(
∑
l

Wiξ+1,lXl,µξ)− σ2
x

n∑
p=1

WiξpWiξ+1pθ
2
3

)
DWDX. (255)

We are going to compute the contribution E(n)
G by considering each term, ω, in the resulting sum that results from

the expansion of (255). However, to simplify the computations, we are first going to consider the contribution of
the different kinds of blocks of dependent variable Πj that determine the addend ω. As in Lemma B.2, if there are
no identifications between two successive terms σ2

xθ
2
3WiξpWiξ+1p then a block is isolated to the factors of the type

ϕ(
∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ) between two of the type σxθ3Wiξp and their contribution is the same as in

Lemma B.2. We refer to the contribution of these terms as 0E
(n)
Πj

.

Differently from the cycle case, if there are some identifications the blocks might be defined by more than two σxθ3Wiξp

factors. We consider the following three kind of identifications:

• in the block Πj there are only two factors of the type σxθ3Wiξp and there are some identifications on the
vertices in between the two blocks, see Figure 9a.

• there are multiple factors σ2
xθ

2
3WiξpWiξ+1q defining the block Πj , but none is such that µξ is an identification,

see Figure 9b as an example;

• there is at least one factor σ2
xθ

2
3WiξpWiξ+1q such that µξ is an identification, see Figure 9c as an example.

This corresponds to the term σ2
xθ

2
3WiξpWiξ+1q being split into two different cycles.

We are now going to identify all of their contributions.

First Kind: Let’s consider the integration over the block Π
(l,p)
j with l factors ϕ(

∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ)

and p specifying the column considered of W7. Then
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)
σxθ3Wil+1pDWDX. (256)

and we define nind as the number of identifications within the block; this corresponds to the number of complete cycles
between the two factors σxθ3Wi1p and σxθ3Wil+1p. By integrating over X and W as done in Lemma B.2 to retrieve
(223), we confirm that the two factors Wi1p and Wil+1p must be relative to the same column and thus

IE
(n)

Π
(l,p)
i

= −
∫
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2
3(−1)l
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] 1
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e−itrΛ

⊤ZF (z)DλDz (257)

7If the two factors were relative to different columns p and q the contribution would be null

35



Mutual Information of Neural Network Initializations: a Random Matrix Theory Study A PREPRINT
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(a) First kind of identification
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(b) Second kind of identification
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(c) Third kind of identification

Figure 9: Illustration of some examples of how the σ2
xθ

2
3WiξpWiξ+1q factors might be arranged around some identifica-

tions.
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Let’s now denote the set of indices that are respectively on the shortest path between the two factors σxθ3Wi1p and
σxθ3Wil+1p or in the ith cycle in Πj as D and Ci. Then, by referring to all of the possible combinations of the different
Ci as π(Ci), the covariance is
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where |C| and |D| correspond to the cardinality of the two set, hence twice the number of factors
ϕ(
∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ) identified in the sets.

Because of the same argument as in Lemma B.2, the terms of the covariance where the variables λαβ have exponential
at maximum equal to one are the leading contribution of E(n)

Π
(l,p)
j

up to a termO (1/n). Among these terms we now show

that the leading contribution in the covariance is given by the term just relying on D; each time a cycle is considered, the
contribution incurs a cost of 1/n. By approximating the covariance with the contribution of the shortest path between
the two factors of the σxθ3Wil+1p kind, we find the following contribution
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= −(−1)|D|σ
2
wσ

2
xθ
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n
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σwσx√
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λαβ
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σ2xσ

2
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−itrΛ⊤Z
F (z)DλDz (262)

The leading order of the contribution IE
(n)

Π
(l,p)
i

is defined with a relative error O( 1n ) by considering the different cycles

separately. Moreover, as for Lemma B.2 there is a relative error of O(1/n) by considering only the zeroth order

approximation of the exponent e
n
2

∑
ξ≥2

(−1)ξ+1

ξ tr

(
σ2xσ

2
w

n ΛΛ⊤
)ξ

when considering the direct arch D and first order for
the remaining cycles. Therefore

− (−1)|D|σ
2
wσ

2
xθ

2
3

n

∫  |D|∏
(αβ)∈D

σwσx√
n
λαβ

F (z)

exp

− ∑
αβ∈D∪nindi=1 Ci
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σ2
xσ

2
w

2
λ2αβ − iλαβzαβ

)
− n

2

∑
ξ≥2

(−1)ξ+1

ξ
tr

(
σ2
xσ

2
w

n
ΛΛ⊤

)ξDλDz
= −(−1)|D|σ

2
wσ

2
xθ

2
3

n

∫  |D|∏
(αβ)∈D

σwσx√
n
λαβ

F (z)
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exp

− ∑
αβ∈D∪nindi=1 Ci
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σ2
xσ

2
w

2
λ2αβ − iλαβzαβ

)
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nind∑
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(−1)|Ci|+1
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∏

(αβ)∈Ci

σxσw√
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λαβ
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·
(
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(
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(263)

= −(−1)|D|σ
2
wσ

2
xθ
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n
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σwσx√
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σ2xσ
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·
(
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(
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(264)

= −(−1)|D|σ
2
wσ

2
xθ

2
3

n

∫  |D|∏
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σwσx√
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−
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σ2
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λ2αβ − iλαβzαβ
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·
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(
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=
−σ2

wσ
2
xθ

2
3

n
nnind

(
θ2
n

)|D|+
∑nind
i=1 |Ci|(

1 +O
(
1

n
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(266)

=
−σ2

wσ
2
xθ

2
3

n

(
θ2
n

)|D| nind∏
i=1

E
(n)
2|Ci|

(
1 +O

(
1

n

))
(267)

where the identities in (265) are taken from the study of the 2k cycles in (234)-(244), and E(n)
2|Ci| is the contribution of a

cycle of dimension 2|Ci|. Note that the last step is justified since if |Ci| = 1 we would have retrieved θ1 rather than
n1−|Ci|θ

|Ci|
2 .

If instead we considered one of the expansion terms of the covariance also including one of the sets Ci, then the relative
variables λαβ would already appear in line (261), and the contribution in the log-determinant would not be relevant.
Consequently the n term resulting from the expansion of the exponential of the log-determinant would not appear and
we would have a relative contribution of O(1/n).
Therefore the contribution if the first case is

IE
(n)

Π
(l,p)
j

= −nnind σ
2
wσ

2
xθ

2
3

n

(
θ2
n

)l(
1 +O

(
1

n

))
(268)

and crucially it shows that the contribution of a cycle with no factors of the type σxθ3Wi1p can be considered
independently from the block.

Second Kind: Since the block of dependent variables might contain multiple weights in the form of σxθ3Wi1p we
have to first identify the arches within the block, i.e. sequences of successive iξ that are all within the block. With this
purpose, we consider the set of indices that define the beginning and the end of each arch

A = {(iξ, iξ+l) | ∃{µj}lj=1s.t. ∪lj=1 ((iξ+j−1, µj) ∪ (iξ+j , µj)) ⊂ Πj}. (269)

This allows to determine the contribution of Π
(l,p)
j where l is the number of factors

ϕ(
∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ) in Πj and p is a vector containing the indices of the columns of W
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that are considered in each cycle that Πj intersects, and therefore has dimension |A|. We rewrite the expected
contribution in terms of the arches which define Πj

IIE
(n)

Π
(l,p)
i

=

∫
W,X

∏
(iα,iα+l)∈A

(
−σ2

xθ
2
3Wiαpα

·
l∏

ξ=1

(
ϕ(
∑
l

Wiξ,lXl,µξ)ϕ(
∑
l

Wiξ+1,lXl,µξ)

)
Wiα+l+1qα

DWDX. (270)

where pα and qα are the dependent on the cycle in which Wiαp is. By integrating over X and W we implement similar
steps as in Lemma B.2 were taken to to determine (223), we find that

IIE
(n)

Π
(l,p)
i

= (−σ2
xθ

2
3)

|A|
∫

E

 ∏
(iα,iα+l)∈A

w(iα)
pα w(iα+l)

qα

 1

det(I + σ2
xσ

2
w

n ΛΛ⊤)n/2
etrΛ

⊤ZF (z)DλDz. (271)

The weight vectors wpα are distributed according to a Gaussian, therefore we can rely on Isserlis’ theorem [8]. If
(X1, . . . , Xn) is a zero-mean multivariate normal random vector, then

E [X1X2 · · ·Xn] =
∑
p∈P 2

n

∏
{i,j}∈p

E [XiXj ] =
∑
p∈P 2

n

∏
{i,j}∈p

Cov (Xi, Xj) (272)

where the sum is over all the pairings of {1, . . . , n}. For example, when we consider four variables then we get that

E [X1X2X3X4] = Cov (X1, X2)Cov (X3, X4)

+ Cov (X1, X3)Cov (X2, X4) + Cov (X1, X4)Cov (X2, X3) . (273)

We are going to consider the term in the expansion (272) where the covariances are only between elements in the same
cycle, i.e. pα is the same within the same cycle. The other terms have a lower order contribution to the moments
because they imply two separate cycles being relative to the same sample pα, and this implies that total contribution
incurs in a cost of at least 1/n0.

Therefore, let’s compute the contribution by defining the set of all the indices in a cycle as Ci, then

IIE
(n)

Π
(l,p)
i

= (−σ2
xθ

2
3)

|A|
∫
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qα

 1

det(I + σ2
xσ

2
w

n ΛΛ⊤)n/2
etrΛ

⊤ZF (z)DλDz (274)

= (−σ2
xθ

2
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∫ (nint∏
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wiαpαwiβpα
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1 +O
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))
1

det(I + σ2
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2
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etrΛ

⊤ZF (z)DλDz (275)
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xθ

2
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−σ2xσ
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2 tr(ΛΛ⊤)−n
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(−1)ξ+1

ξ tr

(
σ2xσ

2
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n ΛΛ⊤
)ξ

−itrΛ⊤Z
F (z)DλDz (276)

The leading order of the contribution IIE
(n)

Π
(l,p)
i

is defined with a relative error O( 1n ) by considering the different cycles

separately. Moreover, as for Lemma B.2 there is a relative error of O(1/n) by considering only the zeroth order

approximation of the exponent e
n
2

∑
ξ≥2

(−1)ξ+1

ξ tr

(
σ2xσ

2
w

n ΛΛ⊤
)ξ

. Therefore

IIE
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(277)
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= (−σ2
xθ
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σ2xσ

2
w
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(279)

= (−σ
2
xθ

2
3σ

2
w

n
)|A|

(
θ2
n

)l(
1 +O

(
1

n

))
(280)

Note that if there is a complete cycle without factors of the type σxθ3Wil+1p within Πj , then we can rely on the first
case to separate its contribution obtaining a further term n0.

Third Kind: This case is uniquely due to µ-identifications. In this case, if we have an identification at µξ with
(iξ, iξ+1) ∈ A then we have to keep the same sample pα in both the cycles in which A is defined. Therefore

IIIE
(n)

Π
(l,p)
i

= (−σ
2
xθ

2
3σ

2
w

n
)|A|

(
θ2
n

)l(
1 +O

(
1

n

))
1p=p1 (281)

where

1p=p1 =

{
1 if p = p1 with p ∈ [n0]

0 otherwise.
(282)

and 1 is a vector whose entries are all 1.

Combination of the Contributions Let’s now consider how the contribution of each identification affects the
contribution of one term ω of the expansion of (255). For simplicity let’s start by considering the case where there are
no 2-dimensional cycles in the graph G, and denote with p = (p1, . . . , pc) the column index of W for each of the c
cycle, then

E(n,p)
ω =

ngroups∏
j=1

(
type(j)E

(n)

Π
(lj ,pj)

j

1p=pα(j)

)(
1 +O

(
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n

))
(283)

=
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n
n
(j)
ind

0 (−σ
2
xθ

2
3σ

2
w

n
)|Aj |

(
θ2
n

)lj
1p=pα(j)

)


∏
(α,β)∈

{cycles connected
by third kind

identifications}

1pα=pβ


·
(
1 +O

(
1

n

))
(284)

where the functions type(·) : [ngroups] → {0, I, II, III} and α(·) : [ngroups]→ [n0] assign to each block Πj the
typology of identification in it and the index of the column of W considered, and Aj identifies the set of arches within
a cycle for each block Πj . This suggests that when considering the contribution of a term ω of a graph with no
2-dimensional cycles we need to keep track of the third kind of identifications since they are the only case requiring two
adjacent cycles to have the same index pα.

When considering also cycles of dimension 2, we have to distinguish between 3 cases if they are connected with a
µ-identification: if the two edges within the 2-dimensional cycle are of the ϕ(

∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ) type,

if they are of the σ2
xθ

2
3WiξpWiξ+1q type, or if they are alternate. In the first case, their contribution can be seen as a

simple cycle and therefore we gain a factor θ1/n rather than
(
θ2
n

)l
in equation 284. In the second case we consider the

2 cycle as a simple block Πj of dimension one with contribution (−σ
2
xθ

2
3σ

2
w

n ), but since this is a third case identification
we need to ensure that the index p is the same between the two adjacent cycles. Finally, in the third case, we are also
considering a third case identification where the intra-dependent variables of the block are the σxθ3Wiξp edges in the
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2-dimensional cycle and in the adjacent one, and all of the ϕ(
∑
l Wiξ,lXl,µξ)ϕ(

∑
l Wiξ+1,lXl,µξ) edges in-between

them. This implies that we gain a factor (−σ
2
xθ

2
3σ

2
w

n )
(
θ2
n

)l (
1 +O

(
1
n

))
with the constraining that the index of the

weight is the same as in the adjacent cycle. Note that in this case we do not have any θ1 contribution although there is a
2-dimensional cycle.

From the above statements, it follows that there is no need to keep track of all the independent blocks Πj to compute
E

(n,p)
ω ; it is sufficient to identify the terms σ2

xθ
2
3WiξpWiξ+1q, the third kind identifications, and the structure of 2-

dimensional cycles. To keep track of all of these cases we will consider the following notation for each graph. We
define bµ as the number µ-identifications where at least one of the two joined cycles is of dimension 2, and cµ as the
remaining µ-identifications, i.e. Iµ = cµ+ bµ. We then introduce the variables bµw ∈ {0, . . . , bµ} and cµw ∈ {0, . . . , cµw}
which determine how many of the bµ and cµ identifications have at least two edges of the σxθ3Wiξp kind connected
to the identification and therefore are of the third kind. Finally, we introduce the variables b1/2w ∈ {0, . . . , bµw} and
c
1/2
w ∈ {0, . . . , cµw} which indicate if the remaining two edges are of the σxθ3Wiξp type.

Therefore, an addend ω of a graph with 2k edges defined by bi, biw, b
µ, bµw, b

1/2
w , ci, ciw, c

µ, cµw, c
1/2
w generates the

following contribution

E
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µ,bµw,b
1/2
w ,ci,ciw,c
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ω =
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. (285)

For each of the addends ω, there are n1+Iµ+Ii0 ways to choose the indices p for each of the 1+ Iµ+ Ii cycles. However,
for all the identifications of third kind there is a constraint on adjacent cycles having the same index p, therefore there are
actually 1+Iµ+Ii− bµw− cµw non zero terms ω sharing the same structure (k, ·, bi, biw, bµ, bµw, b1/2w , ci, ciw, c

µ, cµw, c
1/2
w )

and therefore having the same contribution.

Now let’s consider the contribution of the full graph by considering all of the combinations on how the structure
(k, p, bi, biw, bµ, bµw, b

1/2
w , ci, ciw, c

µ, cµw, c
1/2
w ) may change. Let’s start by considering the edges located in any of the∑

i ki − bµ − 2c
µ

pair of edges that are not adjacent to a µ-identification and are in cycles bigger than 2, there

are
(
k−bi−2bµ−2c

µ

l

)
ways for l terms σ2

xθ
2
3WiξpWiξ+1q to be located. Similarly, there are

(
bi

biw

)
ways to have biw

2-dimensional cycles whose edges are of the σ2
xθ

2
3WiξpWiξ+1q kind. Considering the Iµ identifications, there are(

bµ

bµw

)
and

(
cµ

cµw

)
ways to choose only one pair in the identification to be of the σ2

xθ
2
3WiξpWiξ+1q type for the case with

2-dimensional cycles or higher dimensions. Finally if a µ-identification is such that all the four edges are of the
σ2
xθ

2
3WiξpWiξ+1q kind, there are

( bµ
b
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w

)
and

( cµ
c
1/2
w

)
choices in the b1/2w and c1/2w cases.
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Combining all of the contributions above, it is possible to compute the contribution of a graph G with 2k edges and
with Iµ and Ii identifications, of which bµ and bi generate a 2-dimensional cycle.

EG =
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Let’s now group all the factors that are independent from each other and consider their sum and consider
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= n
1+Iµ+Ii
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xσ
2
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·
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xσ
2
wθ

2
3

n2

(
θ2
n
− σ2

xσ
2
wθ

2
3

n

)]bµ
·
(
1 +O
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= n
1+Iµ+Ii
0

(
θ2
n
− σ2

xσ
2
wθ

2
3

n

)k−bi−2bµ−2cµ (
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(
1

n

)]cµ
[
1 +
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∑
i ki
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i ki
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3θ2 − σ4

xσ
4
wθ

4
3

(θ2 − σ2
xσ

2
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θ1σ
2
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4
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2
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(
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(
1
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(294)

where in the last inequality we used the two equalities k =
∑
i ki + bi + bµ and 1 + Iµ + Ii = c+ bi + bµ.

B.3.1 Proof of Proposition 2

Proof.

m
(n)
k =

1

n1mk

k∑
Ii,Iµ=1

Ii+Iµ+1∑
b=0

b∑
bµ=0

C(k, Ii, Iµ, b, bµ, cµ)EG(k,Ii,Iµ,b,bµ,cµ)#1#2 (295)

=
1

n1mk

k∑
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0 ·
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bκb

µ

b κ
Iµ−bµ
c nk−I11 mk−Iµ
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1 +O
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1

n0
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·
(

e

k − Ii

)k−I1
(2π(k − Ii))−1/2

(
e

k − Iµ

)k−Iµ
(2π(k − Iµ))−1/2
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·
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=
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n
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0

mIµ
κb
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b κ
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·
(

e
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√
(k − Ii)(k − Iµ)

·
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1
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(297)

= φ1−k
k∑

Ii,Iµ=1

Ii+Iµ+1∑
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b∑
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b κ
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·
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1 +O

(
1

n0
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(298)

where we used the coefficients φ = n0/n1, ψ = n0/m. Therefore

mk = lim
n→∞

m
(n)
k (299)

= φ1−k
k∑

Ii,Iµ=1

Ii+Iµ+1∑
b=0

b∑
bµ=0

C(k, Ii, Iµ, b, bµ, cµ)
2π
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(θ1 − σ2

xσ
2
wθ

2
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b·
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wθ

2
3)
k−bκb

µ

b κ
Iµ−bµ
c φI1ψIµ

(
e

k − Ii

)k−I1 ( e

k − Iµ

)k−Iµ
(300)

and |m(n)
k −mk| = O

(
1
n

)
.

B.4 Side Theorems

Convergence to the empirical spectral measure As for the case with the correlated input, the explicit Stieltjes
transform in Corollary A.3.1 is too computationally intensive to be used to compute the transform. However, it allows
to check that the Carleman’s condition [18, Theorem 4.3] for the spectral measure defining the moments to be unique
[18]. This is done, by ensuring that mk < Ck.

Lemma B.3. For M = 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
and Y = ϕ (WX) as defined in Theorem A.1, there

exists a variable C such that

mk ≤ Ck. (301)

Proof. Following a similar logic as in [3], there is a constant C̄ such that C(k, Ii, Iµ, b, bµ, cµ) < C̄ 3τ
4
√
π
νk−3/2

k5/2
and

consequently
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≤ φ1−k
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κb
µ

b κ
Iµ−bµ
c φI1ψIµ (e)

k−I1 (e)
k−Iµ (303)
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≤ φ1−k 3C̄τ

2π4
√
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xσ
2
wθ
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Iµ
(φ
e

)I1 (ψ
e
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(Ii + Iµ + 1)(Ii + Iµ + 2)/2 (305)

≤ φ1−k 3C̄τ

2π4
√
π

νk−3/2

k5/2
max(1, θ1 − σ2

xσ
2
wθ

2
3)
kmax(1, θ2 − σ2

xσ
2
wθ

2
3)
kmax(1, κb)

k

max(1, κc)
k
(φ
e

)k (ψ
e

)k
(2k + 1)(2k + 2)/2 (306)

≤ Ck (307)

and therefore the Carleman’s condition is satisfied and there is a unique distribution µ defined by the considered Stieltjes
transform.

Contribution of non-admissible graphs The computation of the moments relies on the set of admissible graphs, as
defined in Definition A.1. The contributions of the addends in (46) with non-admissible graphs is not significant to the
moments of the eigen-distribution as in the corrleated input case. This is because the argument in [13, Supplementary
Material 1.2.1] and [3, Section 3.1.4] showing that the leading order contribution for non-admissible graphs is
O(nc−1−k

0 ) rather than O(nc−k0 ) as for the admissible graphs, relies on the fact that non-admissible graphs require a
further identification and this does not change in this case. This statement relies on the assumption that the activation
function is such that

∣∣∫ ϕk(σwσxz)Dz∣∣ < ∞ since otherwise the contribution of a graph that consists in going
through the same 2-dimensional cycle k-times could blow up. Therefore, non-admissible graphs generate a negligible
contribution for n→∞.

B.5 Proof Corollary A.1.1

Proof. Becuase of θ2 = σ2
xσ

2
wθ

2
3 at the first layer and of considering ψ = 0 and φ = 1, then we find that the recursive

relation for H is

H(z) = 1 +
Hψb(z)Hφ(z)(θ1 − σ2

xσ
2
Wθ

2
3)

φz
(308)

= 1 +
H(z)(θ1 − θ2)

z
(309)

and therefore

H

z
=

1

z − (θ1 − θ2)
. (310)

By expliciting the related Stieltjes transform we find that

G(z) =
H

z
=

1

z − (θ1 − θ2)
. (311)

which implies that the covariance matrix 1
mEX

[
YY⊤

]
− 1

σ2
xm

2Ex

[
YX⊤

]
EX

[
X Y⊤

]
is the identity matrix scaled by

(θ1 − θ2). Therefore, the distribution of the post-activation layer is going to be defined by WW.
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C Proofs Relevant to Theorem 3.2

In this section, it is going to be necessary computing expectations over the variable

W
(ℓ)
αβ =

∑
kℓ

W(ℓ)
αkℓ

ℓ−2∏
j=1

∑
kℓ−j

W(ℓ−j)
kℓ−j+1kℓ−j

)

W(1)
k2β

.

Specifically the following Lemma is going to be used.

Lemma C.1. Consider a succession of independent matrices {W(l)}ℓl=1 such that W(l) ∈ Rnl×nl−1 and define the
following variable

W
(ℓ)
αβ =

∑
kℓ

W(ℓ)
αkℓ

ℓ−2∏
j=1

∑
kℓ−j

W(ℓ−j)
kℓ−j+1kℓ−j

)

W(1)
k2β

.

Then ∫
W

(ℓ)
αβW

(ℓ)
γβDW(ℓ) = 1{γ}(α)

σ2ℓ
w

n
(312)

where 1{γ} is the indicator function, i.e. 1{γ}(α) = 1 if α = γ and 1{γ}(α) = 0 if α ̸= γ.

Proof. Consider α ̸= γ, then∫
W

(ℓ)
αβW

(ℓ)
γβDW(ℓ) =

∫ n∑
k1,k2=1

W(ℓ)
αk1

W
(ℓ−1)
k1β

W(ℓ)
γk2

W
(ℓ−1)
k2β

DW(ℓ)DW(ℓ−1) (313)

=

n∑
k1,k2=1

∫
W(ℓ)
αk1

W(ℓ)
γk2
DW(ℓ)︸ ︷︷ ︸

=0

∫
W

(ℓ−1)
k1β

W
(ℓ−1)
k2β

DW(ℓ−1) = 0. (314)

While, if α = γ∫
W

(ℓ)
αβ

2
DW(ℓ) =

∫ n∑
k1,k2,...,kℓ−1=1

(
W(ℓ)
αk1

W(ℓ−1)
k1k2

. . .W(1)
kℓ−1β

)2
DW(ℓ)DW(ℓ−1) . . .DW(1) (315)

=
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αk1

2
DW(ℓ)

∫
W(ℓ−1)
k1k2

2
DW(ℓ−1) . . .

∫
W(1)
kℓ−1β

2
DW(1)
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(316)

=

n∑
k1,k2,...,kℓ−1=1

(
σ2
w

n

)ℓ
= nℓ−1

(
σ2
w

n

)ℓ
=
σ2ℓ
w

n
(317)

where we used in (315) the i.i.d. nature of the terms in Wαβ for whom the following statement holds: if two variables
X1 and X2 are independent then E[(X1 +X2)

2] = E[X2
1 ] + E[X2

2 ] since Cov[X1X2] = 0.

C.1 Lemma A.4

To prove Lemma A.4 it is first necessary to study the expected contribution of 2 cycles to the moment of the covariance
matrix.

C.1.1 Supporting Lemmas

Lemma C.2. For M = 1
mYY⊤ and Y = ϕ

(
WX̃
)

as defined in Theorem 3.2 without the hypothesis of independence

for the elements of Y(ℓ), i.e. Y(ℓ)
:p ∼ N (0, q(ℓ)Σ(ℓ)),, then

E [Yi1µ2
Yi2µ1

...Yµki1 ] (318)

=

∫  ∞∑
ν=0

(
− 1

2

∑
ξ≥2

(−1)ξ+1

ξ trΣξtr
((

Λ̄Λ̄⊤)ξ))ν
ν!

·
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·

 ∏
λαβ∈Z

e−
trΣ
2 λ̄2

αβ−i
√
n

σwσx
λ̄αβzαβ

F (z)DzDΣDλ̄ (319)

where Z is the set of combinations {(i1, µ1), (i2, µ1), . . . , (i1, µk)} on which the function F (z) =
∏

(αβ)∈Z ϕ(zαβ),
the variables

Ziµ =

{
ziµ if (i, µ) ∈ Z
0 otherwise.

and Λ̄iµ =

{
σxσw√
n
λ̄iµ if (i, µ) ∈ Z

0 otherwise.
(320)

and the measures
Dz =

∏
zαβ∈Z

dzαβ and Dλ̄ =
∏

λαβ∈Z

dλαβ
2πσxσw/

√
n

(321)

are defined.

Proof. Now we consider auxiliary integrals over z, by adding delta functions enforcing Z = WΣ1/2 X with

Ziµ =

{
ziµ if (i, µ) ∈ Z
0 otherwise.

(322)

where Z denotes the set of unique pairs (i, µ) in equation (140):

E [Yi1µ2
Yi2µ1

...Yµki1 ] (323)

=

∫ ∏
(α,β)∈Z

δ(zαβ −
∑
k

WαkΣ
1/2
kk Xkβ)ϕ(zi1µ1

)ϕ(zi2µ1
)...ϕ(zi1µk)DzDWDΣDX (324)

where
Dz =

∏
(α,β)∈Z

dzαβ . (325)

Now we consider the Fourier expression of the Dirac δ

δ(x) =
1

2π

∫
eiλxdλ (326)

and therefore introduced the matrix Λ ∈ Rn×m whose entries are

Λiµ =

{
λiµ if (i, µ) ∈ Z
0 otherwise.

(327)

with
Dλ =

∏
(α,β)∈Z

dλαβ
2π

. (328)

to obtain
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Yi2µ1

...Yµki1 ] (329)

=
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=
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k
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·
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=

∫
exp

−i n,m∑
α,β=1
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where tr() corresponds to the trace function.

Now we first integrate over X the factors of (334) that depend on it∫
e−itr(Λ

⊤WΣ1/2X)DX =

m,n∏
b,c=1

∫
dXcb√
2πσ2

x

exp

[
− 1

2σ2
x

X2
cb − i

n∑
a=1

λabWacΣ
1/2
cc Xcb

]

=

m,n∏
b,c=1

∫
dXcb√
2πσ2

x

exp

− 1

2σ2
x

(
Xcb + iσ2

x(

n∑
a=1

λabWacΣ
1/2
cc )

)2

− σ2
x

2
(

n∑
a=1

λabWacΣ
1/2
cc )2

 (335)

=

m,n∏
b,c=1

exp

[
−σ

2
x

2
(

n∑
a=1

λabWacΣ
1/2
cc )2

]
∫

dXcb√
2πσ2

x

exp

− 1

2σ2
x

(
Xcb + iσ2

x(

n∑
a=1

λabWacΣ
1/2
cc )

)2


︸ ︷︷ ︸
=1

(336)

=

m,n∏
b,c=1

exp

[
−σ

2
x

2
(

n∑
a=1

λabWacΣ
1/2
cc )2

]
= exp

−σ2
x

2

m,n∑
b,c=1

(

n∑
a=1

λabWacΣ
1/2
cc )2

 (337)

= exp

[
−σ

2
x

2
∥Λ⊤WΣ1/2∥2F

]
= e−

σ2x
2 tr(Σ

1/2⊤W⊤ΛΛ⊤WΣ1/2) (338)

where in equation (336) we used the property the complex integral of z = x+ iy over the closed cycle (−∞,∞, iµ+

∞, iµ−∞) of the analytical function 1√
2πσ2

e−(x−iy)2/(2σ2) is null and therefore∫ ∞

−∞

1√
2πσ2

e−(x−iµ)2/(2σ2)dx =

∫ ∞

−∞

1√
2πσ2

e−(x)2/(2σ2)dx = 1.

Now we integrate over W

∫
e−

σ2x
2 tr(Σ

1/2⊤W⊤ΛΛ⊤WΣ1/2)DW

=

∫  n∏
i,j=1

dWij√
2πσ2

w/n
e
−
nW2

ij

2σ2w

 e−
σ2x
2 tr(Σ

1/2⊤W⊤ΛΛ⊤WΣ1/2) (339)

=

∫  n∏
i,j=1

dWij√
2πσ2

w/n

 e
−
n
∑n
i,j=1 WjiWij

2σ2w e−
σ2x
2 tr(Σ

1/2⊤W⊤ΛΛ⊤WΣ1/2) (340)

=

∫  n∏
i,j=1

dWij√
2πσ2

w/n

 e
−ntrW⊤W

2σ2w e−
σ2x
2 tr(Σ

1/2⊤W⊤ΛΛ⊤WΣ1/2) (341)

=

∫  n∏
i,j=1

dWij√
2πσ2

w/n

 e
−ntrW⊤W

2σ2w
−σ2x

2 tr(Σ
1/2Σ1/2⊤W⊤ΛΛ⊤W)

(342)

=

∫  n∏
j=1

dnwj
(2πσ2

w/n)
n/2

 e
−
∑n
j=1

(
n

2σ2w
w⊤
j wj+

σ2x
2 Σjjw⊤

j ΛΛ⊤wj
)

(343)
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=

∫  n∏
j=1

dnwj
(2πσ2

w/n)
n/2

e
−
(

n
2σ2w

w⊤
j wj+

σ2x
2 Σjjw⊤

j ΛΛ⊤wj
) (344)

=

n∏
j=1

∫
dnwj

(2πσ2
w/n)

n/2
e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΣjjΛΛ⊤

)
wj

(345)

=

n∏
j=1

∫
dnwj

(2πσ2
w/n)

n/2

det−1(I + σ2
xσ

2
w

n ΣjjΛΛ⊤)1/2

det−1(I + σ2
xσ

2
w

n ΣjjΛΛ⊤)1/2
e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΣjjΛΛ⊤

)
wj

(346)

=

n∏
j=1

1

det(I + σ2
xσ

2
w

n ΣjjΛΛ⊤)1/2

∫
dnwj

(2πσ2
w/n)

n/2

e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΣjjΛΛ⊤

)
wj

det−1(I + σ2
xσ

2
w

n ΣjjΛΛ⊤)1/2
(347)

=

n∏
j=1

1

det(I + σ2
xσ

2
w

n ΣjjΛΛ⊤)1/2

∫
dnwj

(2πσ2
w/n)

n/2

e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΣjjΛΛ⊤

)
wj

det
(
(I + σ2

xσ
2
w

n ΣjjΛΛ⊤)−1
)1/2 (348)

=

n∏
j=1

1

det(I + σ2
xσ

2
w

n ΣjjΛΛ⊤)1/2

∫
dnwj

(2π)n/2
e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΣjjΛΛ⊤

)
wj

det
(
σ2
w/n(I +

σ2
xσ

2
w

n ΣjjΛΛ⊤)−1
)1/2 (349)

=

n∏
j=1

1

det(I + σ2
xσ

2
w

n ΣjjΛΛ⊤)1/2

∫
dnwj

(2π)n/2
e
− 1

2 w⊤
j

(
n
σ2w

I+σ2
xΣjjΛΛ⊤

)
wj

det
(
( nσ2

w
I + σ2

xΣjjΛΛ⊤)−1
)1/2

︸ ︷︷ ︸
=1

(350)

=

n∏
j=1

1

det(I + σ2
xσ

2
w

n ΣjjΛΛ⊤)1/2
(351)

where we consider wj as the jth column of W and we used the property that for a general non-singular matrix
det(A−1) = det−1(A).

This implies that by considering F (z) =
∏

(α,β)∈Z ϕ(zαβ)

E [Yi1µ2
Yi2µ1

...Yµki1 ] (352)

=

∫ ∏
j

1

det(I + σ2
xσ

2
w

n ΣjjΛΛ⊤)1/2

 e−i tr(Λ
⊤Z)F (z)DzDΣDλ (353)

=

∫
exp

−∑
j

1

2
log det(I +

σ2
xσ

2
w

n
ΣjjΛΛ⊤)− itrΛ⊤Z

F (z)DzDΣDλ (354)

Now we will consider the integration over the λαβ variables. Since Σjj > 0 and the eigenvalues of ΛΛ⊤ are non-
negative, as a matter of fact for any pair (λ, v) the following holds λ = vTΛTΛv

vT v = ∥Λv∥2

∥v∥2 ≥ 0, the maximizer of the
argument in the exponential is Λ = 0, and since the argument is going to be summed over the n → ∞ eigenvalues
Σjj , by the saddle point approximation we can consider only an expansion around Λ = 0. We can then use the same

analysis done in [13] and decompose the log determinant via logdet|I + X| =∑ξ=1
(−1)ξ+1

ξ tr(Xξ).

Then it follows that

E [Yi1µ2Yi2µ1 ...Yµki1 ] (355)

=

∫
exp

− n∑
j=1

1

2
log det(I +

σ2
xσ

2
w

n
ΣjjΛΛ⊤)− itrΛ⊤Z

F (z)DzDΣDλ (356)
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=

∫
e
−
∑
j

σ2xσ
2
w

2n Σjjtr(ΛΛ⊤)− 1
2

∑n
j=1

∑
ξ≥2

(−1)ξ+1

ξ tr

((
σ2xσ

2
w

n ΣjjΛΛ⊤
)ξ)

−itrΛ⊤Z
F (z)DzDΣDλ (357)

=

∫
e−

σ2xσ
2
w

2n trΣtr(ΛΛ⊤)e
− 1

2

∑
ξ≥2

(−1)ξ+1

ξ tr(Σξ)tr

((
σ2xσ

2
w

n ΛΛ⊤
)ξ)

−itrΛ⊤Z
F (z)DzDΣDλ (358)

We now consider the following change of variable

λ̄ij =
σwσx√
n
λij (359)

DΛ̄ =
∏

(α,β)∈Z

dλ̄αβ
2πσxσw/

√
n

(360)

therefore

E [Yi1µ2Yi2µ1 ...Yµki1 ] (361)

=

∫
e−

σ2xσ
2
w

2n trΣtr(ΛΛ⊤)e
− 1

2

∑
ξ≥2

(−1)ξ+1

ξ trΣξtr

((
σ2xσ

2
w

n ΛΛ⊤
)ξ)

−itrΛ⊤Z

F (z)DzDΣDλ (362)

=

∫
e−

trΣ
2 tr(Λ̄Λ̄⊤)e

− 1
2

∑
ξ≥2

(−1)ξ+1

ξ trΣξtr
(
(Λ̄Λ̄⊤)

ξ
)
−itr

√
n

σwσx
Λ̄⊤Z

F (z)DzDΣDΛ̄. (363)

We will study the contribution of the exponential e−
1
2

∑
ξ≥2

(−1)ξ+1

ξ trΣξtr
(
(Λ̄Λ̄⊤)

ξ
)

by considering its Taylor expansion
ex =

∑∞
ν=0 x

ν/ν!

E [Yi1µ2
Yi2µ1

...Yµki1 ] (364)

=

∫  ∞∑
ν=0

(
− 1

2

∑
ξ≥2

(−1)ξ+1

ξ trΣξtr
((

Λ̄Λ̄⊤)ξ))ν
ν!


· e− trΣ

2 tr(Λ̄Λ̄⊤)−itr
√
n

σwσx
Λ̄⊤ZF (z)DzDΣDΛ̄ (365)

=

∫  ∞∑
ν=0

(
− 1

2

∑
ξ≥2

(−1)ξ+1

ξ trΣξtr
((

Λ̄Λ̄⊤)ξ))ν
ν!


· e−

∑
λαβ∈Z

(
trΣ
2 λ̄2

αβ−i
√
n

σwσx
λ̄αβzαβ

)
F (z)DzDΣDΛ̄ (366)

=

∫  ∞∑
ν=0

(
− 1

2

∑
ξ≥2

(−1)ξ+1

ξ trΣξtr
((

Λ̄Λ̄⊤)ξ))ν
ν!


·

 ∏
λαβ∈Z

e−
trΣ
2 λ̄2

αβ−i
√
n

σwσx
λ̄αβzαβ

F (z)DzDΣDΛ̄ (367)

Lemma C.3. For M = 1
mYY⊤ and Y = ϕ

(
WX̃
)

as defined in Theorem 3.2 without the hypothesis of independence

for the elements of Y(ℓ), i.e. Y(ℓ)
:p ∼ N (0, q(ℓ)Σ(ℓ)),, then for k = 1

E [Yi1µ2Yi2µ1 ...Yµki1 ] =
∫
θ̃
(n)
1 DΣ

(
1 +O

(
1

n

))
(368)

with

θ̃
(n)
1 =

∫
1√
2π
ϕ(

√
µ̃
(n)
1 σwσxz̃)

2e−
z̃2

2 dz̃ (369)
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where µ̃(n)
k = tr(Σk)/n.

Proof. When k = 1, following [11] the zeroth order expansion of the Taylor series ∞∑
ν=0

(
− 1

2

∑
ξ≥2

(−1)ξ+1

ξ trΣξtr
((

Λ̄Λ̄⊤)ξ))ν
ν!


in the integral of Lemma C.2 is the leading contribution to E(n)

2 . Defining the trace of the power matrices as µ̃(n)
k , i.e.

µ̃
(n)
k = tr(Σk)/n, the zeroth order is determined as follows.

∫ ( √
n

2πσxσw
e−

nµ̃
(n)
1
2 tr(Λ̄Λ̄⊤)e−itr

√
n

σwσx
Λ̄ZF (z)

)
dzi1µ1

dλ̄i1µ1
DΣ

=

∫ (∫ √
n

2πσxσw
e−

nµ̃
(n)
1
2 λ2−i

√
n

σwσx
λ̄zϕ(z)2dzdλ̄

)
DΣ (370)

=

∫ ∫ √
n

2πσxσw
e
− z2

2µ̃
(n)
1 σ2wσ

2
x

√
2π√
nµ̃

(n)
1

ϕ(z)2

∫
√
nµ̃

(n)
1√

2π
e
−nµ̃

(n)
1
2

(
λ+ i

√
n

nµ̃
(n)
1 σwσx

z

)2

dλ̄

 dz

DΣ (371)

=

∫ √
n

2πσxσw
ϕ(z)2e

− z2

2µ̃
(n)
1 σ2wσ

2
x

√
2π√
nµ̃

(n)
1

dzDΣ (372)

=

∫
1√

2πµ̃
(n)
1 σxσw

ϕ(z)2e
− z2

2µ̃
(n)
1 σ2wσ

2
x dzDΣ (373)

=

∫
1√

2πµ̃
(n)
1 σxσw

ϕ(

√
µ̃
(n)
1 σwσxz̃)

2e−
z̃2

2

√
µ̃
(n)
1 σwσxdz̃DΣ (374)

=

∫
1√
2π
ϕ(

√
µ̃
(n)
1 σwσxz̃)

2e−
z̃2

2 dz̃DΣ =

∫
θ̃1

(n)DΣ (375)

For higher order terms of the exponential Taylor series we first notice that−1

2

∑
ξ≥2

(−1)ξ+1

ξ
trΣξtr

((
Λ̄Λ̄⊤)ξ)ν

=

−1

2

∑
ξ≥2

(−1)ξ+1

ξ
(trΣξ)λ̄2ξ

ν

.

For each of the expansion terms, the same steps in (370)-(373) lead to the following 2ξν-th non-central moment of a
Gaussian to be considered∫ √

nµ̃
(n)
1√

2π
λ̄2ξνe

−nµ̃
(n)
1
2 (λ̄+ i

√
nz

nσxσwµ̃
(n)
1

)

dλ̄ =

(
1

nµ̃
(n)
1

)ξν/2
2ξν

Γ( 2ξν+1
2 )√
π

Φ(−2ξν

2
;
1

2
;− z2

σ2
wσ

2
xµ̃

(n)
1

) (376)

where the solution of the non-central moment is given in [22] with

Φ(−2ξν

2
;
1

2
;− z2

σ2
wσ

2
xµ̃

(n)
1

) =

∞∑
i=1

1

i!

(− 2ξν
2 )(− 2ξν

2 + 1)...(− 2ξνν
2 + i− 1)

(− 1
2 )(− 1

2 + 1)...(− 1
2 + i− 1)

(
−z2

σ2
wσ

2
xµ̃

(n)
1

)i
. (377)

This leads to the computation of the following integral∫ ∑
i

αi

(
−z2

σ2
wσ

2
xµ̃

(n)
1

)i
ϕ2(σ2

xσ
2
wµ̃

(n)
1 z)Dz (378)
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which is finite since Φ(− 2ξν
2 ; 1

2 ;− z2

σ2
wσ

2
x
) is an entire function of ξν and z, and when solving it by parts we compute

the following integrals that are finite by hypothesis∫
ϕ(k)(σ2

xσ
2
wµ̃

(n)
1 z)Dz (379)

for any derivative k. However, because of the non-central moment, we also gain a factor
(

1

nµ̃
(n)
1

)ξν/2
and therefore

these terms have a contribution that is O( 1n ) relative to the zeroth-order one.

Therefore the contribution of a 2-dimensional cycle is

E
(n)
2 =

∫
θ̃
(n)
1 DΣ

(
1 +O

(
1

n

))
. (380)

C.1.2 Proof of Lemma A.4

Proof. In the case where k = 1 we then find

E
(n,ℓ)
2 =

∫
W,Y

ϕ(
∑
l

W(ℓ)
iξ,l

Y(ℓ)
l,µξ

)ϕ(
∑
l

W(ℓ)
iξ,l

Y(ℓ)
l,µξ

)− σ2
x

n∑
p=1

W
(ℓ)
iξp

W
(ℓ)
iξp

 ℓ∏
j=1

ϕ′(H(ℓ)
kℓp

)

DWDX (381)

=

∫
θ̃
(n,ℓ)
1 DΣ(ℓ)

(
1 +O

(
1

n

))
− σ2

x

ℓ∏
l=1

(θ
(ℓ)
3 )2

∫
W

n∑
p=1

W
(ℓ)
iξp

W
(ℓ)
iξp
DW (382)

=

∫
θ̃
(n,ℓ)
1 DΣ(ℓ)

(
1 +O

(
1

n

))
− σ2

x

ℓ∏
l=1

(θ
(ℓ)
3 )2

n∑
p=1

σ2ℓ
w

n
(383)

=

∫
θ̃
(n,ℓ)
1 DΣ(ℓ)

(
1 +O

(
1

n

))
− σ2

xσ
2ℓ
w

ℓ∏
l=1

(θ
(ℓ)
3 )2 (384)

where the first term is due to Lemma C.3 with

θ̃
(n,ℓ)
1 =

1√
2π
ϕ(
√
q(ℓ)

√
tr(Σ(ℓ))

n
z)2e−

z2

2 dz (385)

θ
(ℓ)
3 =

∫
ϕ′(
√
q(ℓ)z)e−

z2

2 dz. (386)

C.2 Lemma A.5

When considering k > 1 it is necessary to consider all the mixed products. As a matter of fact
each term in the expansion of the product in E

(n,ℓ)
2k consists of successions of products of the kind

ϕ(
∑
l W(ℓ)

iξ,l
Y(ℓ)
l,µξ

)ϕ(
∑
l W(ℓ)

iξ+1,l
Y(ℓ)
l,µξ

) alternated with products of the kind σ2
x

∑n
p=1 WiξpWiξ+1p

∏ℓ
j=1 θ

(j)2
3 . Each

element of the kind σ2
x

∑n
p=1 WiξpWiξ+1p

∏ℓ
j=1 θ

(j)2
3 divides the sequence of products into independent blocks Π(n,l)

j

as it was for the case in Appendix B. In this section we are also considering the covariance Σ(ℓ) and the contribution of
each addend E(n,k,nw,nϕ,p)

ω is considered in the following form

E
(n,k,nw,nϕ,p)
ω =

∫ ∏
j

E
Π

(n,n
(j)
ϕ

)

i

DΣ(ℓ) (387)

and therefore in the following expression of E
Π

(n,n
(j)
ϕ

)

i

, Σ(ℓ) should be considered as a random variable.
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Lemma C.4. For the matrix

M =
1

m
EX

[
ϕ(W(ℓ)Y(ℓ))ϕ(W(ℓ)Y(ℓ))⊤

]
− 1

m2σ2
x

Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
Ex

[
ϕ(W(ℓ)Y(ℓ))X⊤

]
(388)

and Y(ℓ) = ϕ
(

H(ℓ−1)
)

as defined in Theorem 3.2 without considering the elements in H(ℓ) independent, i.e. Y(ℓ)
:p ∼

N (0, q(ℓ)Σ(ℓ)), when k > 1 each block Π
(l)
j generates the following contribution

E
(n,ℓ)

Π
(l)
i

= −
σ2ℓ
w σ

2
x

(∏ℓ
j=1 θ

(j)
3

)2
θ̃
(n)l
2

n1+l

(
1

n

n∑
k=1

Σℓ
kk

l

)(
1 +O

(
1

n

))
(389)

with

θ̃
(n,ℓ)
2 =

(∫ √
q(ℓ)√
2π

e−
z2

2 ϕ′(
√
q(ℓ)

√
tr(Σℓ)

n
z)dz

)2

, (390)

θ3 =

∫
z1

ϕ′
(√

q(ℓ)z1

)
Dz1 (391)

and Σ(ℓ) being the covariance matrix of the hidden layers Y(ℓ).

Proof. Focusing on the integration of one independent block Π
(l)
j , where l identifies the numbers of factors

ϕ(
∑
p W(ℓ)

iξ,p
Y(ℓ)
p,µξ

)ϕ(
∑
p W(ℓ)

iξ+1,p
Y(ℓ)
p,µξ
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(∏ℓ

j=1 θ
(j)
3

)
W

(ℓ)
iξp

kind, i.e.

E
(n,ℓ)

Π
(l)
i

= −
∫
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 ℓ∏
j=1

θ
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3
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(
ϕ(
∑
p
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iξ,p
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)ϕ(
∑
p

W(ℓ)
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Y(ℓ)
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)

)

·σx

 ℓ∏
j=1

θ
(j)
3

W
(ℓ)
il+1q

DWDY. (392)

By defining as Σ(ℓ) the covariance of the post-activation layer, we are now able to consider the following equality∑
p

W(ℓ)
iξ,p

Y(ℓ)
p,µξ

=
∑
p

W̃
(ℓ)

iξ,p
Σ(ℓ)
pp

1/2
Ỹp,µξ (393)

where W̃
(ℓ) ∼W(ℓ) and Ỹij ∼ N

(
0, q

(ℓ)

σ2
w

)
and this allows to run analysis similar to Appendix B.

The computation of this expectation follows the structure of the proof in [13]. A dummy variable z is introduced with a
delta Dirac function within each ϕ element, and then a Fourier representation for all the arguments of the ϕ functions
is introduced. For each factor Πj the set ZΠj ⊂ Z is considered containing only the combinations (iξ, µν) that are

included in the ϕ(
∑
l W̃iξ,lΣ

(ℓ)
ll

1/2
Ỹl,µν ) arguments. Thus auxiliary integrals over z are considered by adding delta

functions enforcing Z = W(ℓ)Y(ℓ) = W̃
(ℓ)

Σ(ℓ)1/2Ỹ with

Ziµ =

{
ziµ if (i, µ) ∈ ZΠj

0 otherwise.
(394)

and consequently

E
(n,ℓ)

Π
(l)
i
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θ
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3
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(
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∑
p
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∑
p
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(ℓ)
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)

·σx

 ℓ∏
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3
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= −
∫ ∏

zαβ∈Z
δ(zαβ −

∑
k
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(ℓ)
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·

σ2
x
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3
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= −
∫
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x

 ℓ∏
j=1

θ
(j)
3

2

·
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)
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where
Dz =

∏
(α,β)∈ZΠi

dzαβ (398)

and in the second equality the following property is used

δ(x) =
1

2π

∫
eiλxdλ (399)

and therefore the matrix Λ ∈ Rn×m whose entries are

Λiµ =

{
λiµ if (i, µ) ∈ ZΠi

0 otherwise.
(400)

is considered and therefore
Dλ =

∏
(α,β)∈ZΠi

dλαβ
2π

. (401)

To start with, the integration over Ỹ is considered∫
e−itr(Λ

⊤W̃(ℓ)
Σ(ℓ)1/2Ỹ)DỸ =

m,n∏
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dỸcb√
2πq(ℓ)

exp

[
− σ

2
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]
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exp
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(ℓ)

acΣ
(ℓ)
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2
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w
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and this allows to integrate over W̃
(ℓ)

. Note that W̃
(ℓ)

= W(ℓ)O⊤ and the elements in W(ℓ) are dependent on W(ℓ),
therefore it is also necessary to integrate over the possible orthonormal transform O. The case where p ̸= q is now
considered∫

W̃,O
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e
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3
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dW̃
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x
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3
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54



Mutual Information of Neural Network Initializations: a Random Matrix Theory Study A PREPRINT

·

 n∑
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While now the case where q = p will be considered
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=
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The covariance matrix of the vector w̃k is(
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w
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Exactly as shown in Lemma A.3, the first addend in (420) determines the contribution E(n,ℓ)
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where in the last equation the Taylor expansion logdet|I + X| =∑ξ=1
(−1)ξ+1

ξ tr(Xξ) was used. Similar to Lemma
A.3, the first order expansion of the log-determinant. ξ = 1, is the leading order contribution with a relative error of
O(1/n). By introducing the following change of variable,
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we then retrieve the following expression
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Now the following change of variable is considered
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C.2.1 Proof of Lemma A.5

Proof. Lemma C.4 is now going to be used for the computation of E2k. Assume that k > 1, and consider the
contribution from an addend ω of (100) with nϕ and nw factors of the type ϕ(
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C.3 Lemma A.6

Considering the covariance as Σ = I, then all the moments are equal to one. Therefore,
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Then the expected contribution for the 2k cycle is defined by considering the contribution Ẽϕ2k = n1−k0 θk2
(
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of the addend ω whose nw = 0 and of the addends for which nw ̸= 0
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