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Adaptive filters for piecewise smooth spectral data†
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We introduce a new class of exponentially accurate filters for processing piecewise smooth spectral data.
Our study is based on careful error decompositions, focusing on a rather precise balance between physical
space localization and the usual moments condition. Exponential convergence is recovered by optimizing
the order of the filter as an adaptive function of both the projection order and the distance to the nearest
discontinuity. Combined with the automated edge detection methods, e.g. Gelb & Tadmor (2002, Math.
Model. Numer. Anal., 36, 155–175), adaptive filters provide a robust, computationally efficient, black box
procedure for the exponentially accurate reconstruction of a piecewise smooth function from its spectral
information.
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1. Introduction

The Fourier projection of a 2π -periodic function, SN f (·), enjoys the well-known spectral convergence
rate, i.e. the convergence rate is as rapid as the global smoothness of f (·) permits. Specifically, if f (·)
has s bounded derivatives, then |SN f (x) − f (x)| � Const.‖ f ‖Cs N 1−s . This interplay between global
smoothness and spectral convergence is reflected in the dual Fourier space through the rapidly decaying
Fourier coefficients | f̂ (k)| � 2π‖ f ‖Cs |k|−s . On the other hand, spectral projections of piecewise
smooth functions suffer from the well-known Gibbs’ phenomena, where the uniform convergence of
SN f (x) is lost in the neighbourhood of discontinuities and the global convergence rate of SN f (x)
deteriorates to first order. These related phenomena are manifestations of unacceptably slowly decaying
Fourier coefficients.

Two interchangeable processes are available for recovering the rapid convergence in the piecewise
smooth case. These are mollification, carried out in the physical space, and filtering, carried out in the
Fourier space. Filtering accelerates convergence when premultiplying the Fourier coefficients f̂ (k) by a
rapidly decreasing function σ(·), resulting in modified coefficients, f̂ (k)σ (|k|/N ), with a greatly accel-
erated decay rate as |k| ↑ N . This accelerated decay in the dual space corresponds to a smoothly local-
ized mollification in the physical space. In Tadmor & Tanner (2002) we showed how to parameterize an
optimal mollifier in order to gain the exponential convergence for piecewise analytic f values. The key
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ingredient in our approach was adaptivity, where the optimal mollifier is adapted to the maximal region
of local smoothness. Here we continue the same line of thought by introducing adaptive filters, which
allow the same optimal recovery of piecewise smooth functions from their Fourier coefficients. In par-
ticular, piecewise analytic functions are recovered with exponential accuracy. A brief overview follows.

We consider a family of general filters σ(·) which are characterized by two main properties. First,
we seek the rapid decay of σk := σ(|k|/N ) which is tied to a regular, compactly supported multiplier
σ ∈ Cq

0 [−1, 1]. Being compactly supported, such filters are restricted to N -Fourier expansions,

Sσ
N f (x) :=

∑
|k|�N

σ

( |k|
N

)
f̂ (k) eikx . (1.1)

The operation of such filters in Fourier space corresponds to mollification in physical space, ex-
pressed in terms of the associated mollifier, Φσ (y) := 1/2π

∑
|k|�N σ(|k|/N ) eiky ,

Sσ
N f (x) ≡ f ∗ Φσ (x) = 1

2π

∫ π

−π
Φσ (y) f (x − y) dy, Φσ (y) := 1

2π

∑
|k|�N

σ

( |k|
N

)
eiky . (1.2)

Second, such filters are required to satisfy the usual moments condition, e.g. (Majda et al., 1978;
Vandeven, 1991) ∫ π

−π
ynΦσ (y) = δn0, n = 0, 1, . . . , p − 1 < q. (1.3)

The first requirement of Cq
0 -smoothness is responsible for localization—the essential part of the

associated mollifier, Φσ , is supported near the origin, see (2.5) below. The second property drives the
accuracy of the filter by annihilating an increasing number of its moments.

The rich subject of filters includes the classical filters of finite-order accuracy where finite p � q
dictate a fixed convergence of polynomial order, O(N−p), see Vandeven (1991). By letting q ↑ ∞,
one obtains a C∞

0 [−1, 1]-filter, i.e. an infinitely differentiable compactly supported filter σ , which
respects (1.3) for increasing orders p. Majda et al. (1978) employed such filters to postprocess piece-
wise solutions with propagating singularities and achieve spectral convergence in the sense of having a
convergence rate faster than any fixed order. Vandeven (1991) constructs spectrally accurate filters by
relating the order of the filter, (q, p), to the increasing order of the projection, q = q(N ), p = p(N ).
An alternative approach for spectral accuracy employs highly oscillatory mollifiers which are activated
in physical space. Gottlieb & Tadmor (1985) constructed such (properly dilated) mollifiers of the form
Φ(y) = ρ(y)Dp(y), where Dp(·) stands for the usual Dirichlet kernel of degree p ∼ √

N and ρ is a
standard C∞

0 [−1, 1] cut-off function normalized so that ρ(0) = 1.
The different filters and mollifiers advocated in these works enable us to reconstruct the underlying

piecewise smooth data from its given spectral content. Spectral accuracy is achieved in smooth regions
as long as they are bounded away from discontinuities, but the error deteriorates in the neighbourhood
of such discontinuities due to spurious oscillations. The latter difficulty was addressed by Gottlieb,
Shu and collaborators, by invoking Gegenbauer expansions which are driven by a judicious choice of
a localizer (1 − y2)λ which is appended to the Dirichlet kernel Dp(y), see Gottlieb & Shu (1998) and
the references therein. Their approach allows for high resolution uniformly up to the discontinuities,
but its precise (p, λ)-parameterization as a function of N has a rather sensitive f -dependence which
impacts the overall robustness of the Gegenbauer reconstruction, e.g. Boyd (2005). In Tadmor &
Tanner (2002) we have introduced an alternative approach where the accuracy is adapted according
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to the maximal region of local smoothness. Specifically, we have shown how the Gottlieb–Tadmor
mollifiers are optimized when their order is chosen adaptively as p ∼ Nd(x). Here d(x) is the distance
from the location x to its nearest discontinuity, d(x) = distance(x, sinsupp f (·)); the distance function
d(x) could be recovered from the Fourier coefficients by edge detection, e.g. Gelb & Tadmor (2000,
2002). The resulting adaptive mollifiers lead to exponentially accurate, numerically robust mollifiers of
order exp(−α(κNd(x))1/α) with α > 1 dictated by the detailed C∞

0 -regularity of ρ; specifically, α > 1
reflects the Gevrey regularity of ρ (for Gevrey regularity and the similar class of ultramodulation spaces,
we refer to, e.g. John, 1982 and Pilipovic & Teofanov, 2002, respectively). The key ingredient in our
adaptive approach is giving up the exact moments condition; instead, it is satisfied modulo exponentially
small errors, by replacing the exact (1.3) with the requirement

σ (n)(0) = δn0, n = 0, 1, . . . , p − 1 < q. (1.4)

The precise relation between (1.4) and (1.3) is quantified in Theorem 2.2 below. We note that it is
rather simple to construct admissible filters satisfying the last requirement for an arbitrary p; a prototype
example is given by the C∞

0 [−1, 1]-filters

σp(ξ) =
{

exp
(

ξ p

ξ2−1

)
, |ξ | < 1,

0, |ξ | � 1.
(1.5)

The purpose of this paper is to construct a new class of exponentially accurate adaptive filters. As
before, the key issue is the parameterization of their order, p. Here we develop the rigorous study
for the optimal parameterization for such filters. We advocate adaptive filters in the sense that their
order, p = p(N , d(x)), depends on both the order of the projection, N , and the distance function
d(x). Summarized in Theorem 2.1 below, our main result states that the optimal adaptive filter is
determined to be of order p(N ) ∼ (Nd(x))1/α with α > 1 reflecting the Gevrey regularity of σ . While
achieving exponential accuracy away from discontinuities, the new filters are adapted so as to prevent
spurious oscillations throughout the computational domain, including discontinuous neighbourhoods.
We mention here the adaptive filters introduced by Boyd (1995, 1996). Boyd’s procedure was based
on the acceleration summability by the so-called Euler-lag averaging; the acceleration was limited,
however, since the resulting piecewise constant filters of order p ∼ Nd(x) were consistently larger than
the optimal order and they exhibit slower convergence than the non-adaptive order of Majda et al. (1978).

Our current discussion on adaptive filters follows a similar approach for the adaptive Gottlieb–
Tadmor mollifiers constructed in Tadmor & Tanner (2002), ρ(y)Dp(y), where the precise Gevrey regu-
larity of ρ allows us to obtain tight error bounds which in turn reveal the optimal adaptive parameteriza-
tion, p = p(N , d(x)). New tight error bounds are outlined in Section 2 and are confirmed by numerical
simulations in Section 3.

2. Adaptive-order filters

In this section we show how the regularity and moments properties of the filter σ are translated into
precise statements of localization and accuracy of the associated mollifier Φσ (x). We begin by decom-
posing the filtering error f (·) − Sσ

N f (·) = f − f ∗ Φσ into the two terms

f (x) − f ∗ Φσ (x) =
∫ π

−π
Φσ (y)[ f (x) − f (x − y)][1 − χ(y)] dy

+
∫ π

−π
Φσ (y)[ f (x) − f (x − y)]χ(y) dy =: I1 + I2. (2.1)
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Here χ(·) = χx (·) is an auxiliary cut-off function adapted to the smoothness region of f . To this
end, we let d(x) denote the distance between x and its nearest discontinuity so that the y-function
f (x) − f (x − y) remains smooth for the largest symmetric interval, |y| � d(x). We then set χ(y) ≡
χx (y) := ρ(y/d(x)), where ρ is a standard C∞

0 cut-off function,

χ(y) ≡ χx (y) := ρ

(
y

d(x)

)
, ρ(y) ≡

{
1, |y| � 1/2,

0, |y| � 1.

We observe that the dilated cut-off function χx (y) = ρ(y/d(x)) enforces the support of the first
integrand on the right-hand side of (2.1) to be bounded d(x)/2-away from x , while the second term is
supported in the d(x)-neighbourhood of x . To simplify matters, we assume that ρ is adapted to the same
C∞

0 -regularity of σ .
We turn to estimate the first error term on the right-hand side of (2.1) which measures the essential

localization of the mollifier. To this end, we use the following aliasing formula, expressing our N -degree
mollifier Φσ (y) in terms of the equally sampled inverse Fourier transform, ϕσ (y) := ∫

σ(ξ) eiyξ dξ (1),

Φσ (y) ≡ N

2π

∞∑
n=−∞

ϕσ((N (y + 2πn)), Φσ (y) = 1

2π

∑
|k|�N

σ

( |k|
N

)
eiky . (2.2)

The usual Fourier decay rate estimates then yield

|Φσ (y)| � N

2π

∞∑
n=−∞

|ϕσ (N (y + 2πn))| � N 1−p‖σ‖C p

∞∑
n=−∞

|y + 2πn|−p

< Const.N‖σ‖C p (N |y|)−p ∀p, 0 < |y| < π. (2.3)

We observe that the first integrand on the right-hand side of (2.1) is supported across the possible
discontinuities of f (x) − f (x − ·). Lack of smoothness excludes the possibility of high-oscillatory
cancellations. Instead, we now seek a tight upper bound on the decay of the associated mollifier, Φσ

for |y| � d(x)/2. To this we need to quantify the C∞-regularity of our filter σ . We focus on σ values
which have Gevrey regularity of order α, denoted Gα below; in our case, σ = σp in (1.5) belong to G2,
namely, there exist constants, M = Mσ and η = ησ > 0 (independent of p) such that

‖σp‖C p � Mσ (p!)αη−p
σ , α = 2, σp(ξ) =

{
exp

(
ξ p

ξ2−1

)
, |ξ | < 1,

0, |ξ | � 1.
(2.4)

Details are outlined in Lemma 2.1 below. Incorporating the above growth rate into the localization
estimate, (2.3) yields

|Φσ (y)| � Const.Mσ (p!)2
(

1

ησ N |y|
)p

, 0 < |y| < π,

1The result follows, e.g. by sampling the Fourier transform σ(ξ) = 1/2π
∫

ϕσ (y) e−iyξ dy,

σ

( |k|
N

)
= N

2π

∫
ϕσ (N y) e−iN y |k|

N dy

= N

2π

∞∑
n=−∞

∫ π

−π
ϕσ (N (y + 2πn)) e−i|k|y dy = N

2π

∫ π

−π

( ∞∑
n=−∞

ϕσ (N (y + 2πn))

)
e−i|k|y dy,

and comparing with the discrete inverse Fourier transform, σ(|k|/N ) = ∫
Φσ (y) e−i|k|y dy.



ADAPTIVE FILTERS WITH EXPONENTIAL CONVERGENCE 5 of 13

which is minimized at p = pmin := (η|y|)1/2. This shows that with this choice of adaptive p, the
mollifier associated with our σ -filter, Φσ , is essentially localized in the neighbourhood of x as it admits
an exponential decay

|Φσp (y)| � Const.σ (1 + N |y|) e−(ησ N |y|)1/2
. (2.5)

Here and below, η is a positive constant which may differ among the different estimates. In par-
ticular, since [1 − χx (y)] and hence the first integrand on the right-hand side of (2.1) is supported at
|y| � d(x)/2, the exponential bound follows

|I1| � Const.σ, f (1 + Nd(x)) e−(ησ Nd(x))1/2
. (2.6)

We turn to the second error term, I2 = ∫
Φσ (y)[ f (x) − f (x − y)]χx (y) dy. Traditionally, such a

term is bounded above by (d(x))p‖ f ‖C p[x−d(x),x+d(x)]/p! through Taylor-expanding f (x − y) about
y = 0 and by invoking the moments condition (1.3). This bound is useful for a vanishing neighbour-
hood, d(x) � 1, while suffering by increasing the contribution of the first term on the right-hand side
of (2.1), as reflected through its upper bound (2.6). We therefore let d(x) be as large as possible so
that we cannot argue by localization. Instead, this portion of the error decreases due to cancellation of
oscillations by increasing the order p of Φσp . To this end, we write

I2 =
∫ π

−π
Φσp (y)g(y) dy ≡

∑
|k|�N

σ

( |k|
N

)
ĝ(k), g(y) = gx (y) := [ f (x)− f (x − y)]χx (y), (2.7)

and we turn to estimate the Fourier coefficients on the right-hand side. By our assumption, f (x) −
f (x − y) remains analytic for |y| � d(x) and hence gx (y) = [ f (x) − f (x − y)]χ(y) is C∞. We
quantify the C∞-regularity of χx (·) in terms of the same Gevrey regularity of order α = 2 that σ has,
so that ‖χx‖C p � M(p!)2(ηρd(x))−p. Thanks to the analyticity of f (x) − f (x − y), it follows that if
ρ(·) and hence χx (·) belongs to Gevrey class Gα , so does gx (y) = [ f (x) − f (x − y)]χx (y), and hence

‖gx (y)‖C p � M
(p!)α

(d(x)η)p
, |y| < d(x).

The constants M = Mρ,η and η = ηρ, f capture the detailed Gevrey and analyticity properties of
ρ(y) and f (x − y) for |y| < d(x); the order p is arbitrary. The Fourier coefficients ĝ(k) in (2.7) do not
exceed

|̂g(k)| � Const.‖gx (y)‖C p |k|−p � Const.M
(p!)2

(η|k|d(x))p
, η = ηρ, f .

For σ(|k|/N ), we distinguish between the low modes |k|� N/2 and the high modes N/2< |k| � N ,
setting

I21 :=
∑

|k|�N/2

[
σp

( |k|
N

)
− 1

]
ĝ(k)

I22 :=
∑

N/2<|k|�N

[
σp

( |k|
N

)
− 1

]
ĝ(k).

Since g(y) = [ f (·) − f (· − y)]χ(y) vanishes at y = 0, we have
∑

ĝ(k) = g(0) = 0 and hence
I2 = I21 + I22 + I23, where I23 := − ∑

|k|>N ĝ(k). For the first term, we use a Taylor expansion
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around the origin: the accuracy assumption (1.4) yields∣∣∣∣σp

( |k|
N

)
− 1

∣∣∣∣ � 1

p!
‖σ‖

C p
([

− 1
2 , 1

2

]) ( |k|
N

)p

, |k| � N

2
.

Restricted to the interval [−1/2, 1/2], σ retains an analytic bound of lemma 2.1 below, ‖σ‖C p �
Const.p!η−p

σ , and hence I21 does not exceed

|I21| :=
∣∣∣∣∣∣

∑
|k|�N/2

[
σp

( |k|
N

)
− 1

]
ĝ(k)

∣∣∣∣∣∣ � Const.

p!
‖σ‖

C p
([

− 1
2 , 1

2

]) ∑
|k|�N/2

( |k|
N

)p (p!)2

(ηρ, f |k|d(x))p

� Const.(p!)2 1

(ηNd(x))p
, η = ησ ηρ, f . (2.8)

For the high modes, ĝx (k) is sufficiently small so that the simple bound of |σp(|k|/N )| � 1 will do
for I22,

|I22| :=
∣∣∣∣∣∣

∑
N/2<|k|�N

[
σp

( |k|
N

)
− 1

]
ĝ(k)

∣∣∣∣∣∣ �
∣∣∣∣∣∣

∑
N/2<|k|�N

(p!)2

(ησ |k|d(x))p

∣∣∣∣∣∣
� Const.(p!)2 1

(ησ Nd(x)/2)p
. (2.9)

Similarly, by taking into account that gx (·) is supported on an interval of length 2d(x) we find that
I23 does not exceed

|I23| :=
∣∣∣∣∣∣
∑

|k|>N

ĝ(k)

∣∣∣∣∣∣ � Const.d(x)(p!)2
∑

|k|>N

1

(ησ |k|d(x))p
� Const.

N

p
d(x)(p!)2 1

(ησ Nd(x))p
.

(2.10)
We combine the last three bounds to conclude

|I2| � Const.(1 + Nd(x))(p!)2 1

(ηNd(x))p
, η = min(ησ ηρ, f , ησ /2, ηρ, f ),

which is minimized at the same value as before, p = pmin := (ηNd(x))1/2, so that

|I2| � Const.(1 + Nd(x)) e−(ηNd(x))1/2
. (2.11)

Finally, we recall that the assumed regularity of ρ is in fact dictated by that of σ and hence the
various bounds, η = ησ, f . We summarize by stating the following theorem.

THEOREM 2.1 Given the Fourier projection SN f of a piecewise analytic function f (·), we consider a
C∞

0 [−1, 1]-filter σ(ξ),

Sσ
N f (x) =

∑
|k|�N

σ

( |k|
N

)
f̂k eikx .

Assume that σ has Gα-regularity and that it is accurate of order p in the sense of satisfying the
moments condition

σ (n)(0) = δn0, n = 0, 1, . . . , p − 1. (2.12)
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We set the adaptive order p(x) := (ηNd(x))1/α , depending on the distance function d(x) =
dist(x, sinsupp f (·)). The resulting adaptive filter, Sσ

N f , recovers the point values f (x) with the fol-
lowing exponential accuracy

| f (x) − Sσ
N f (x)| � Const.(1 + Nd(x)) e−α(ηNd(x))1/α

. (2.13)

The constant η = ησ, f is dictated by the specific Gevrey and piecewise-analyticity properties of σ
and f .

We close this section with the promised statements on the exponential error bound (2.4).

LEMMA 2.1 Consider the p-order filter σp(ξ) = {exp(ξ p/(ξ2−1)), |ξ |<1,
0, |ξ |�1

}
. Then there exists a constant η

such that

‖σp‖C p � Const.(p!)2η−p, (2.14)

‖σp‖C p
([

− 1
2 , 1

2

]) � Const.p!η−p. (2.15)

Proof. To verify (2.14) we first note that σ
(s)
p is a collection of polynomial terms which premultiply the

exponential in the variable ξ p/(ξ2 − 1). Each derivative of σp doubles the number of such terms; thus,

by successive application of Leibniz’s rule, σ
(s)
p consists of 2s α-terms, each of which is of the form

Cα

∏
α j

(
ξ p

ξ2 − 1

)(α j )

exp

(
ξ p

ξ2 − 1

)
, |α| =

∑
j

α j = s. (2.16)

Here the Cα values are constant integers with |Cα| � η−s
1 , for some fixed η1 > 0. We consider the

prototype term Tp,s :=
(

ξ p

ξ2−1

)(s)
exp

(
ξ p

ξ2−1

)
, corresponding to α = (0, 0, . . . , s),

Tp,s =
(

ξ p

ξ2 − 1

)(s)

exp

(
ξ p

ξ2 − 1

)
=

s∑
k=0

(
s

k

)
p!

(p − s + k)!
ξ p−s+k k!

(ξ2 − 1)k+1
exp

(
ξ p

ξ2 − 1

)
+ lower-order terms . (2.17)

Here by ‘lower-order terms’ we refer to the singular behaviour of (ξ2 − 1)− j , j � k near ξ = ±1,
which is weaker than the leading term (ξ2 − 1)−k+1. To control the amplitude of Tp,s we let a(ξ) :=
(ξ2 − 1) and note that the expression |a(ξ)|−kexp(αa(ξ) + β/a(ξ)) is maximized at ξ = ξmax so that
a(ξmax) ∼ −β/k, yielding

|Tp,s | � Const.
s∑

k=0

(
s

k

)
p!

(p − s + k)!
k!kk e−k < Const.p!

s∑
k=0

(
s

k

)
k! � Const.2s p!s!.

The other 2s terms in (2.16) admit similar bounds and the resulting Tp,p bound yields (2.14) with
η = 4η1. To prove (2.15), we restrict our attention to a subinterval which is bounded away from ±1, so
that the ξ -dependent terms in (2.17) remain uniformly bounded, (ξ2 − 1)− j exp(ξ p/(ξ2 − 1)) � η−k

2 ,
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j � k + 1, and we are left with the desired upper bound

|Tp,p| � Const.
p∑

k=0

(
p

k

)
p!

k!
k!η−k

2 < Const.2p p!(η2)
−p,

and (2.15) follows with η = 4η1η2. �
The intricate part in the construction of such highly accurate filters or mollifiers is the further require-

ment for their localization (in physical space) or smoothness (in Fourier space). One cannot increase
the order p arbitrarily without steepening Φσ or, equivalently, without losing smoothness of σ . The
solution taken here was to satisfy the moments condition approximately, modulo exponentially negli-
gible errors while retaining the desired smoothness properties. We note that our optimal adaptive filter is
essentially localized in the physical space in the sense that the associated mollifier Φσ is exponentially
small for |y| � 1/N , (2.5), see Fig. 1. In contrast, the adaptive mollifiers constructed in Tadmor &
Tanner (2002), ρ(y/d(x))Dp(y/d(x))/d(x), were compactly supported in physical space (adapted to
the smoothness neighbourhood of x) and only essentially localized in the dual Fourier space. The precise
result is quantified in the following theorem.

THEOREM 2.2 Consider the even filter σ with Gevrey regularity Gα satisfying the p-order accuracy
condition (1.4), with p ∼ N 1/α . Then the associated mollifier, Φσ , satisfies the moments condition
(1.3) modulo an exponentially negligible error,∫ π

y=−π
ynΦσ (y) dy = δn0 + Const. e−(ηN )1/α

, n � Const.N 1/α.

FIG. 1. The mollifier (top) and its semi-log plot (bottom) with the mollifier defined from the filter (3.1) used in the numerical
experiments, with N = 128 and filter orders p = 4, 8 and 12 in (a,b), (c,d) and (e,f), respectively.
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Proof. For proof, we appeal to (2.2)∫ π

y=−π
ynΦσ (y) dy = N

2π

∫ π

y=−π
ynϕσ (N y) dy + N

2π

∑
n 
=0

∫ π

y=−π
ynϕσ (N (y + 2πn)) dy

=: I1 + I2.

For the first term on the right-hand side, we have

I1 = N

2π

∫ ∞

y=−∞
ynϕσ (N y) dy − N

2π

∫
|y|�π

ynϕσ (N y) dy =: I11 + I12.

We now have I11 = (−i N )nσ (n)(0) = δn0 by (1.4), where the usual decay rate |ϕσ (y)| � Const.‖σ‖Cs

|y|−s yields

|I12| � Const.
N 1−s

2π
‖σ‖Cs

∫ ∞

π
yn−s dy � Const.(ηN )1−s(s!)α, n � s − 2.

The remainder amounts to a similarly exponentially small term

|I2| � Const.
N 1−s

2π
‖σ‖Cs

∫ π

y=−π
|y|n 1

(2π − |y|)s
dy � Const.(ηN )1−s(s!)α, n � s,

which is minimized at s ∼ (ηN )1/α and the lemma follows. �
We note in passing that the last theorem could be used as a starting point for an alternative proof of

the main result stated in Theorem 2.1.

3. Numerical experiments

For the following examples we utilize the filter

σp(ξ) =
{

exp
(

cpξ p

ξ2−1

)
, |ξ | < 1,

0, |ξ | � 1,
(3.1)

which has Gevrey regularity of order α = 2. Its advocated order is then optimized at the adaptive
order, p = p(x) = √

κNd(x). For a given filter, the free constant cp should be selected to enhance
the immediate localization of Φσ (·) by minimizing ‖σ‖C1 . The value of such an optimal cp does not
permit a closed-form expression; an approximate condition used in the numerical examples below is
σ (2)(1/2) = 0, resulting in

cp := 2p 3

4

9p2 + 3p + 14

9p2 + 12p + 4
.

To allow a direct comparison between our adaptive filters and the adaptive mollifiers advocated in
Tadmor & Tanner (2002), we concern ourselves with the two prototypes of piecewise analytic functions,
f1(x) and f2(x), given below.

f1(x) =
{

sin(x/2), x ∈ [0, π),

− sin(x/2), x ∈ [π, 2π),
(3.2)

f2(x) =
{

(2e2x − 1 − eπ )/(eπ − 1), x ∈ [0, π/2),

− sin(2x/3 − π/3), x ∈ [π/2, 2π)
. (3.3)
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FIG. 2. (a) the graph of the function (3.2) and (b) the graph of function (3.3)

FIG. 3. Recovery of f1(x) (top) and the approximation error (bottom) from their N = 128-mode spectral projections. The filter
(3.1) was of orders N1/4 in (a,b), N1/2 in (c,d) and max

(
2, 1

2 (Nd(x))1/2)
in (e,f ).

The first function, f1(·), shown in figure 2(a), possesses a mild regularity constant and a single
discontinuity at x = π ; consequently, d(x) = |x−π | for x ∈ [0, 2π ]. The second function, f2(·), shown
in figure 2(b), was constructed as a more challenging test problem with a large gradient to the left of the
discontinuity at x = π/2. Moreover, lacking periodicity f2(·) feels three discontinuities per period;

d(x) = min(|x |, |x − π/2|, |x − 2π |), x ∈ [0, 2π ].

For both functions, the exact Fourier coefficients, { f̂ (k)}k�N , are given and then filtered to recover
the intermediate point values π

N (ν − 1
2 ) for ν = 1, 2, . . . 2N . Graphs (a–d) in figures 3, 4 and 5 use
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FIG. 4. Recovery of f2(x) (top) and the approximation error (bottom) from its N = 128-mode spectral projections. The filter
(3.1) was of orders N1/4 in (a,b), N1/2 in (c,d) and max(2, 1

2 (Nd(x))1/2) in (e,f).

FIG. 5. Error plots for the recovery of f1(x) (top) and f2(x) (bottom) from their N = 32-, 64- and 128-mode spectral projections.
The filter (3.1) was of orders N1/4 in (a,b), N1/2 in (c,d) and max(2, 1

2 (Nd(x))1/2) in (e,f).
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fixed-order filters, verifying the well-known fact that higher-order filters give superior convergence away
from discontinuities and lower-order filters near discontinuities. Graphs (e–f) in figures 3, 4 and 5
illustrate the superior convergence for the adaptive filter described in Theorem 2.1, computed with
adaptive order p = p(x) = max(2, 1

2 (Nd(x))1/2). We note in passing that the same filter order is used
for both f1(·) and f2(·), ignoring the different analyticity properties of f1 and f2 (reflected by different
analyticity constants η f ) and achieving exponential accuracy in both instances. Results of the adaptive
filter are contrasted with the spectrally accurate filter of Vandeven (1991) where the order, p = N γ ,
remains uniform throughout the computational domain.

4. Summary

The analysis presented here quantitatively resolves the classical methodology that for improved accuracy
low-order filters should be used near discontinuities and high-order filters away from discontinuities.
The optimal adaptive filters presented here retain the traditional robustness associated with low-order
filtering, yet achieve a significant increase in accuracy with minimal increase to computational cost.
Combined with the automated edge detection methods (Gelb & Tadmor, 2000) adaptive-order filtering
is a black box procedure for the exponentially accurate reconstruction of a piecewise smooth function
from its spectral information.
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